RESEARCH ARTICLE

Algebra and Discrete Mathematics Number 3. (2009). pp. 62 – 68 (c) Journal "Algebra and Discrete Mathematics"

A new characterization of groups with central chief factors

Orlando Stanley Juriaans and Deborah Martins Raphael

Communicated by guest editors

ABSTRACT. In [1] it is proved that a locally nilpotent group is an (X)-group arising the question whether the converse holds. In this paper we derive some interesting properties and give a complete characterization of (X)-groups. As a consequence we obtain a new characterization of groups whose chief factors are central and it follows also that there exists an (X)-group which is not locally nilpotent, thus answering the question raised in [1]. We also prove a result which extends one on finitely generated nilpotent groups due to Gruenberg.

> Dedicated to Professor Miguel Ferrero on occasion of his 70-th anniversary

Introduction

Most families of known groups are defined in terms of certain identities or series. Clearly this is the most obvious way to define a family of groups. But for the sake of applications it might be interesting to define a family of groups by means of a non-trivial set theoretical property and or non-trivial equivalent relation. In [1] the following definition is given:

A group G is said to satisfy condition (X) if for every pair of elements $g, h \in G$ we have that either g[g, G] = h[h, G] or $g[g, G] \cap h[h, G] = \emptyset$.

Research partially supported by CNPq-Brazil.

²⁰⁰⁰ Mathematics Subject Classification: Primary 2036, 16U70. Secondary 20C10.

Key words and phrases: (X)-group, nilpotent, residually central, Z-group.

A group G which satisfies condition (X) will be called an (X)-group. Note that if G is an (X)-group then the sets g[g,G] induce a partition on G.

In [1] it is proved that for finite groups condition (X) is equivalent to nilpotency and that locally nilpotent groups are (X)-groups. The question is raised whether the converse holds, i.e., if an (X)-group is locally nilpotent.

Here we give a description of (X)-groups by means of well known properties.

Theorem 1. In a group G the following conditions are equivalent.

- 1. G is an (X)-group.
- 2. Every chief factor of G is a central factor.
- 3. Every homomorphic image of G is a Z-group.
- 4. Every homomorphic image of G is residually central.

We recall that a Z-group is a group which has a generalized central series and that G is a residually central group if for each $1 \neq x \in G$ we have $x \notin [x, G]$. See [4] and [6] for an account of these properties (see also [2]). The equivalence between items 2 and 3 and the implication from 3 to 4 can be found in [6] pages 5 and 6. For the sake of completeness a proof will be presented here.

In [6], page 5, Robinson quotes examples due to P. Hall and Merzljakov showing that a group satisfying item 3) of Theorem 1 may have non-cyclic free subgroups. So, it is clear from the theorem above that an (X)-group is not necessarily locally nilpotent. See also [7] where it is proved that for each prime p there is a non locally nilpotent residually finite p-group satisfying item 3) and which is also an \tilde{N} -group.

Since a locally nilpotent group is a Z-group (see [4] - 12.4.2) it also follows from the theorem above that a locally nilpotent group is an (X)-group. This result is Theorem A of [1].

A result due to Gruenberg states that a finitely generated torsion free nilpotent group is a residually finite p-group for every prime p. See [4] - 5.2.21. We use property (X) to prove an extension of this result giving at the same time a short proof.

Theorem 2. Let G be a torsion free nilpotent group, p any prime and $1 \neq x \in G$. Then there is $N \triangleleft G$ such that $x \notin N$ and Z(G/N) is locally cyclic p-group. In particular, if G is finitely generated then G/N is a finite p-group.

In other words, this theorem implies that any torsion free nilpotent group is residually a locally finite p-group with cyclic center for any prime p.

The fact that we obtain shorter proofs of some known results leads us to pose the following problem:

Which classes of groups can be defined by a non-trivial partition?

For example can soluble groups be defined by a non-trivial partition? If this were the case, could it be used to characterize groups of odd order? For more results on groups which are the union of certain subsets see [3] and its list of references.

In section two we prove some properties of (X)-groups. In the last section we prove our main results. Notation is standard largely following that of [4]. In particular, the term generalized central series follows the definition given in [4].

1. Some properties of (X)-groups

In this section we shall prove some properties of (X)-groups. It is easy to see that condition (X) is inherited by homomorphic images (see [1]). We state this as a lemma leaving the proof to the reader.

Lemma 1. If a group G satisfies property (X) then so does every homomorphic image of G.

Lemma 2. Let G be an (X)-group. For every $x \in G$ the following holds:

- 1. $x \notin [x, G]$ and hence G is residually central.
- 2. There exists $N \triangleleft G$ with $x \notin N$ but $x^p \in N$ for some rational prime number p. Moreover the intersection of all normal subgroups of G/N is $\langle xN \rangle$, and the center Z(G/N) is locally cyclic.

Proof. If $x \in [x, G]$ then $1 \in x[x, G]$ and thus x = 1. Using item one and Zorn's Lemma we can find a maximal normal subgroup N of G subject to the condition that $x \notin N$ and $[x, G] \subset N$. For every $yN \in Z(G/N)$ with $y \notin N$ it is clear that $x \in \langle y \rangle N$; in particular, for every non zero integer k with $x^k \notin N$ we have $x \in \langle x^k \rangle N$. Hence, the order of xN in G/N is finite and prime. That Z(G/N) is locally cyclic is a consequence of the fact that it is locally a finite abelian group with an element xNbelonging to every proper subgroup. \Box

The normal subgroup N of item 2 need not be maximal. In fact if G is nilpotent then its Frattini subgroup is nontrivial. Hence, taking $x \in Frat(G)$ the normal subgroup N can not be maximal because x belongs to all maximal subgroups of G.

By Lemma 2, first item, a minimal normal subgroup of an (X)-group must be central and hence, by Lemma 1 and [4] -12.4.1, every (X)-group has a generalized central series and all chief factors are central. Note that if G is finite this reasoning implies that G is nilpotent (see also [2]). A very different proof of this last result is given in [1]. Our next result generalizes this. It is weaker than the theorem presented in [6], page 7 (the residually central groups satisfying min-n are the hypercentral Chernikov groups). On the other hand its proof has the advantage of being very simple directly applying condition (X).

Theorem 3. Let G be an (X)-group and suppose that G satisfies min-n. Then G is hypercentral, hence locally nilpotent and by consequence it is the product of finitely many Chernikov p-groups for various primes p.

Proof. Let $x \in G$. If $y \in [x, G]$ then [y, G] is a proper subgroup of [x, G]. For if not then $y \in [x, G] = [y, G]$ which contradicts Lemma 2. Hence we can construct a strictly descending chain $([x_n, G])_{n \in \mathbb{N}}$. Using the hypothesis of minimality this chain shall reach the identity and thus there exists $n \in \mathbb{N}$ such that x_n is a central element. This proves that G has nontrivial center. Since homomorphic images of G also satisfies the minimal condition on normal subgroups it follows from Lemma 1 that all homomorphic images of G have non-trivial center, which is a necessary and sufficient condition for G to be hypercentral (see [5], page 50). By [[4], 12.2.4] G is locally nilpotent and thus, by [[4], 12.1.8], G is the direct product of finitely many Chernikov p-groups for various primes p.

Theorem 4. Let G be a finitely generated (X)-group. G is nilpotent if and only if G is soluble.

Proof. Suppose that G is a finitely generated soluble (X)-group. If G were not nilpotent then, by a result of Robinson and Wehrfritz [[4], 15.5.3], G would have a finite non-nilpotent image which contradicts the fact that a finite (X)-group must be nilpotent.

Theorem 5. Let G be an (X)-group. A maximal subgroup M of G has either infinite or prime index. Moreover M is normal if and only if [G:M] is finite.

Proof. Let M be a maximal subgroup of finite index and let $N = M_G$ be the core of M in G. Then N is normal subgroup and of finite index in G (see [[4], 1.6.9]). By Theorem 3 G/N is nilpotent and hence, by [[4], 5.4.7], M is normal and of prime index in G. Now let $M \triangleleft G$ be a normal

maximal subgroup. Suppose that G/M is not of prime order. Then, by Lemma 2, G/M is non-simple. But this contradicts the maximality of M and thus G/M has prime index.

Corollary 1. Let G be a locally nilpotent group and M a maximal subgroup of G. Then M is normal and has prime index in G.

Proof. By Theorem A of [1] G is an (X)-group and, by [[4], 12.1.5], all maximal subgroups of G are normal. The result now follows from Theorem 5.

2. Proofs of the Theorems

We start this section stating a result whose proof is straightforward.

Lemma 3. The following conditions on a group G are equivalent.

- 1. G is an (X)-group.
- 2. for all x and y in G, $x \in y[y,G]$ implies [x,G] = [y,G].
- 3. for all x and y in G, $x \in [y, G]$ implies [yx, G] = [y, G].

In any group $G, x \in y[y, G]$ implies $[x, G] \subset [y, G]$. Therefore, in order to prove that G satisfies (X) it suffices to show that $x \in y[y, G]$ implies $[x, G] \supset [y, G]$ for any x and y in G.

Proof of Theorem 1. (1) implies (2). This follows by Lemma 1 and item 1 of Lemma 2.

(2) implies (3).By Lemma 1, it is enough to show that G is a Z-group. This is an obvious consequence of the fact that every group has a generalized normal series and that every normal series can be refined to a composition series (see [4] or [6]).

(3) implies (4). See [6], page 6.

(4) implies (1). Suppose G satisfies (4) and consider $x, y \in G$ such that $x \in y[y, G]$. It is enough to show that $[y, G] \subset [x, G]$.

The bar denotes the image in $\overline{G} = G/[x, G]$. The fact that $\overline{x} \in Z(\overline{G})$ implies that $[\overline{y^{-1}x}, \overline{G}] = [\overline{y^{-1}}, \overline{G}] = [\overline{y}, \overline{G}]$. Since $x \in y[y, G]$, we have that

$$\overline{y^{-1}x} \in [\overline{y}, \overline{G}] = [\overline{y^{-1}x}, \overline{G}].$$

But \overline{G} is residually central and so $\overline{y^{-1}x} = \overline{1}$, that is, $y \in x[x, G]$. Therefore we have $[y, G] \subset [x, G]$ and this concludes the proof. \Box To finish this section we proceed toward the proof of the extension of Gruenberg's result. We first make some observations which we shall use during the proof.

Let G be a group and denote by $\gamma_n(G)$ the terms of the lower central series of G. Let $x \in \gamma_n(G)$. If $\langle x \rangle \bigcap [x,G] = \langle x^{k_1} \rangle \neq 1$ then $[x^{k_1},G] \subset \gamma_{n+1}(G)$. So, if G is nilpotent then there exists k such that $\langle x^k \rangle \bigcap [x^k,G] = 1$. Note that the same holds if we substitute nilpotency by min-n. In particular this is the case when G is a Chernikov group.

Proof of Theorem 2. Let G be a torsion free nilpotent group, $x \in G$ and p a prime. We will prove that there is $N \triangleleft G$ such that $x \notin N$ and G/N is a locally finite p-group.

By the remark above, there exists $k \in \mathbf{N}$ such that $\langle x^k \rangle \bigcap [x^k, G] = 1$. Consider the family $\mathcal{F} = \{N \lhd G : x^k \notin N, \langle [x^k, G], x^{pk} \rangle \subset N\}$ and the subgroup $N_0 = \langle [x^k, G], x^{pk} \rangle$. We claim that $N_0 \in \mathcal{F}$. In fact working with the quotient $G/[x^k, G]$ it is clear that N_0 is a normal subgroup of G and since G is torsion free and $\langle x^k \rangle \bigcap [x^k, G] = 1$ it follows easily that $x^k \notin N_0$.

Clearly \mathcal{F} is inductive and thus Zorn's Lemma guarantees the existence of a maximal element N. Set $\overline{G} = G/N$. As in the proof of Lemma 2 it follows that the center of \overline{G} is locally a cyclic *p*-group. In particular if G is finitely generated then \overline{G} is finite and we obtain Gruenberg's result (see [4] - 5.2.22 or [5] - Theorem 2.24)).

References

- M.A.Dokuchaev, On a property of nilpotent groups, Canad. Math. Bull. 37 (2), 1994, pp. 174-177.
- [2] K.W. Gruenberg, J.E. Roseblade, Group Theory, Essay for Phillip Hall, Academic Press, London, 1984.
- [3] Juriaans, S.O., Rogerio, J.R., On Groups Whose Maximal Cyclic Are Maximal, Algebra Colloquium, (2009), to appear.
- [4] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, Heidelberg, Berlin, 1996.
- [5] D.J.S. Robinson, Finiteness Conditions and Generalized Soluble Groups Part 1, Springer-Verlag, 1972.
- [6] D.J.S. Robinson, Finiteness Conditions and Generalized Soluble Groups Part 2, Springer-Verlag, 1972.
- [7] J.S. Wilson, On periodic generalized nilpotent groups, Bull. London Math. Soc., 9 (1977), pp. 81-85.

CONTACT INFORMATION

O. S. Juriaans

Instituto de Matemática e Estatística Universidade de São Paulo Caixa Postal 66281 CEP. 05315-970 São Paulo-Brasil *E-Mail:* ostanley@ime.usp.br

D. M. Raphael

Instituto de Matemática e Estatística Universidade de São Paulo Caixa Postal 66281 CEP. 05315-970 São Paulo-Brasil *E-Mail:* raphael@ime.usp.br

Received by the editors: 12.08.2009 and in final form 25.09.2009.