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ABSTRACT. We consider codes that are given as two-sided
ideals in a semisimple finite group algebra F,G defined by idem-
potents constructed from subgroups of G in a natural way and
compute their dimensions and weights. We give a criterion to de-
cide when these ideals are all the minimal two-sided ideals of F,G
in the case when G is a dihedral group and extend these results
also to a family of quaternion group codes. In the final section, we
give a method of decoding; i.e., of finding and correcting eventual
transmission errors.
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1. Introduction

Let [F, denote a finite field with g elements. A linear code of length n
over Iy is a subspace of Fy. Given a finite group G of order n, the group
algebra F,G is a vector space over F,, with basis G and thus, isomorphic
to Fy as a vector space. An important family of linear codes are the
cyclic codes which are codes C' C Fy such that if (zg,...,opn—1) € C then
also (zp—1, %0, ...,2n—2) € C. If we denote by C,, = (a) the cyclic group
of order n, then it is easy to show that a code C' C Fy is cyclic if and
only if its image under the map Fy — F,C,, given by (zo,...,7n-1) =
S wiat € F O, is an ideal.
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More generally, a group code over I, is, by definition, an ideal of the
group algebra F,G of a finite group G (see, for example, [1], |2, section
4.8)).

We recall that the support of an element o = deG agg in the
group algebra F'G of a group G over a field F' is the set supp(a) =
{9 € Glag # 0}. The Hamming distance between two elements o =

dec agg and 5 = deg Bgg in FG is
d(a76) = ‘{g|ag a /Bgvg € G}’

and the weight of an element « is w(a) = d(«, 0) = |supp(a)|.
The weight or minimum distance of an ideal I C F'G is the number

w(I) = min{w(a)|a € FG,a # 0} = min{|supp(a)||a € FG,a # 0}.

If char(FFq) Jn, then this group algebra is semisimple and thus every
ideal is generated by an idempotent element. If H is a subgroup of G,
then the element

h
=

heH

is an idempotent and it is central if and only if H is normal in G.

In the case of the rational group algebra of a finite abelian group G,
it is known that the set of primitive idempotents of QG is the set of all
elements of the form -

e=H-H *
where H, H* are pairs of subgroups of G such that H C H* and the
quotient H*/H is cyclic, together with the element G which is called the
principal idempotent of QG |8, Theorem VII.1.4].

In 7] we gave necessary and sufficient conditions for this same formu-
las to describe the set of primitive idempotents of the group algebra of a
finite abelian group over a finite field.

In section §2 we study ideals generated by idempotents of the form

= H - o * and by products of idempotents of this form, in group
algebras of ﬁnlte groups G over arbitrary fields F' such that char(F) }|G].
As an application, in the following section we give necessary and sufficient
conditions for the semisimple group algebras of dihedral groups over a
finite field to have a minimal number of simple components and in section
84 we describe the minimal central dihedral codes in this case. In section
§5 we give necessary and sufficient conditions for the group algebras of
dihedral and quaternion codes over finite fields to be isomorphic and thus
obtain information on quaternion codes. In the final section, we describe
decoding procedures for these kind of codes.
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Our interest is mainly theoretical, since we wish to determine minimal
codes. These turn out not to be efficient code as their minimal distance
is comparatively small.

2. Ideals of Group Algebras

In what follows, we shall always assume that G is a finite group and [F, a
finite field such that char(F,) J|G|. As mentioned above, if H is a normal

subgroup of G then
~ 1
H=— h
]

heH
is a central idempotent of IF,G.
It is well-known [11, Proposition 3.6.7| that

(FQG) -H = Fq[G/H]v
SO R
dime, ((IFqG) - H) — (G H].
Also, it is easy to see that if 7 is a transversal of H in G, ie. a
complete set of representatives of cosets of H in (G, then
{tH|t € 7}

is a basis of (F,G) - H over F,.

Hence, an element in such an ideal is of the form a = ), . aitH
which means that, when written in the basis G of IF,G, it has the same
coefficient along all the elements of the form th for a fixed t € 7 and any
h € H. Thus, this kind of ideals define repetition codes, which are not
particularly interesting.

Now, we turn our attention to other kind of idempotents that will
define more significant codes.

Proposition 2.1. Let G be a finite group and F' a field such that char(F')
does not divide |G|. Let H and H* be normal subgroups of G such that
H C H* and set e = H — H*. Then:

(i) dimp(FG)e = |G/H| - |G/H"|
(ii) w((FG)e) = 2|H|.

(11i) If A is a transversal of H* in G and T a transversal of H in H*
containing 1, then

B={a(l-t)H|lac A ter\{1}}

is a basis of (FgG)e over Fy.
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Proof. Notice that H = e + H* and eH* = 0 so (FG)H = (FQ)e ®
(FG)H*; thus

dimp(FG)H = dimp(FG)e + dimp(FG)H*

As H < G we have that (FG)H G/H) (see [11, Proposi-
tion 3.6.7]) so dimp(FG)H = |G/H]|, dsz(FG) H* = |G/H*| and the
first result follows.

As eH = (H — H*)H = H — H*, it follows that (FQ)e C (FG)H
Let T be a transversal of H C GG. An arbitrary element o« € F'G can be
written in the form o = ), 7 ayt with oy € F'H so elements in the code
are of the form (>, 1 oet)H with a; € F.

Notice that, if only one coeflicient a; were different from 0, we would
have that H € (FG)e, a contradiction. This shows that w((FG)e) >
2|H|.

On the other hand, if h € H* \ H, we have that

(1—h)e=(1—h)(H=H*)=(1-h)H.

As supp(H) N supp(hH) = ), we have that w((1 — h)e) = 2|H|. Hence,
w((FG)e) = 2|H].

To prove (7ii) we shall show first that the elements of B do belong to
(F¢G)e. In fact, since (1 — t)fI\* = 0, we have that

a(l—t)H = a(l — )H(H — H*) = a(1 — t)He € (F,G)e.

Now, we shall show that the elements in B are linearly independent.
So, assume that we have a linear combination over IFg:

0= Z zar(a(l = t)H Z (Z a:at) aH — Z zqratH.

Notice that, for a fixed pair a € A,t € 7 the element atH has a support
that is disjoint with the support of every other element in this linear
combination; hence, x,+ = 0, for all a € A,t € 7.

On the other hand, we have that the cardinality of B is

(%)

= dimg,(FG)e,

|B]

[A[(I7] = 1) =

H*

il

and the proof is complete. O
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We wish to extend the results of Proposition 2.1 to an ideal generated
by a product of idempotents of the type under consideration. For the
applications we have in mind, it will suffice to do so for a product of two
idempotents, but the result extends easily, by induction.

Lemma 2.2. Let H; C H, be normal subgroups of a group G,i = 1,2,
such that Hf N Hy = {1}. Set e = (Hy — HY)(H2 — H3). Then:

(i) dimp(FGe = % (1- 1) (1= )

(1it) If A is a transversal of H* in G and 1; a transversal of H; in H}
contatning 1, i = 1,2. Then

B={a(l—t)(1—to)H|a € A t; € 75,t; £ 1,i = 1,2}
is a basis of (F,G)e over Fy.

Proof. We compute

—

¢ = (H, — H})(H, — H) = H H, — H Hj — H{H, + H{ Hj.

If we set f; :@—E@, fQZI?fFQ—IT@ and Z = (FQG)e,
we see that e = f; — fy and that e and f5 are orthogonal, so

dimFI = dsz(FG)fl 2 dZmF(FG)fQ

Also
dimp(FG)f1 = |G/H Hy| — |G /Hy Hj|

and
dimp(FG)fy = |G/Hi Ho| — |G/H{ Hj|,

: ¢ ( !Hﬂ) ( |H2|>
dimpl = 1— 1— .
RV AR 73]
To compute the weight of this code we consider elements v € H{ \ H;

and § € Hj \ Hya. We claim that o = (1 —7)(1 — 5)@ € Z. In fact,
we have

SO

aeres = (1—7v)(1 - 5)H1H2(H1 ﬁ\f)(ﬁ;_%)
(1—7)(Hy — H})(1 — §)(Hy — Hj)
= ( ’yHl(l—(S)HQ_Oé
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so a = aejep € Z. Since w(a) = 4|H; Ho| it follows that w(Z) < 4|H; Ha|.

Let 7 be a transversal of HyH in GG. Since e = eHy Hs, any element
x € T can be written in the form

x = Z att@,
teT

where a; € F. We claim that such an element x # 0 cannot be written
as a sum with less than four terms. As in Lemma 2.1, it is easy to see
that x cannot have only one coefficient different from 0. Assume, by way
of contradiction, that we have in Z an element of the form

xr = (a1t; + a2t2)@7
with 1 £ ty. Asx = a:(f,/[\l — I/{\f) we have
(a1t1 + agtg).H/fE = 0.

Since t1H{H> and toHHy are cosets of H{Hy they are either equal
or disjoint. Hence, we must have ¢ H{Hy = toH{H> and there exist
elements h] € H] and hy € Hj such that ¢; = t3hlhe. In a similar
way, multiplying by H\g — ]/'{\5‘ we see that there exist elements h; € H;
and h} € Hj such that t; = tohihj. This clearly implies that hihy! =
h2_1h§ S Hf ﬂH; = {1} So hT S H1, h; € Hy and t1H1Hy = tQHlHQ, a
contradiction. -

Finally, if © = (a1t; + asts +ast3) H1 Hy, multiplying by I/J\l — I/{\f and
by I/f\g — IfI\; we get (a1t; + aste + agtg)@ = 0 and (a1t; + asts +
agtg)@‘ = 0 respectively. Then, it is easy to conclude, as before, that
t1H1Hy = toH1Hy = t3H1 Ho, a contradiction.

The proof of (¢i7) is very similar to that of part (i) in Proposition 2.3.
As Y
]Z(Hl — Hli\)(HQ:\HS) =
H(1 —t1)(Hy — HY)(1 —to)(Hy — H3) =
H(l - tl)Hl(l - tg)HQ = a(l - tl)(l - tz)H,
it follows that B C (F,G)e.

To prove that the elements of B are linearly independent assume, as
before, that there exists a linear combination

0 = Z xatltza(l — tl)(l — tg)ﬁ =
a,t1,t
a t1to ta a,ty
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o Z Z Latyty atgﬁ + Z Latqts atltzﬁ.

t1 a,tz a,t1,t2

Clearly, the support of the elements of the form atito H are disjoint
with the support of every other element in this sum, so we get that
Zatty =0 foralla e A, t; € 13,1 =1,2.

Finally, notice that the number of elements in B is

[Hy Hs| \ |H | Hy|

C (Y ()
Ll ' a) \

= dimy, (F,G)e. H

An easy induction now proves the first two statements of the following.

Proposition 2.3. Let H; C H}, be normal subgroups of a group G,1 <
i <k, such that H' NN} = {1}, where N; denotes the subgroup generated
by all HY with j #i. Set e = (Hy — H{)(Hz — H3) - (Hy — H}). Then,

(i) dimp(FG)e = il (1 - f%) (1 . "5235) . (1 - ;g:l,)
(ii) w((FG)e) = 2F|H Hy - - - Hy|.

(1it) If A is a transversal of H* in G and 7; a transversal of H; in H}
containing 1, 1 < i < k. Then, the set B =

{a(1 —t1)(1 —ta) -+~ (1 = tp)Hla € Aty € 75, t; £ 1}
is a basis of (FyG)e over Fy.

If e1,...,e, are central idempotents in a ring R and we set e =
€1 - ek, it is easy to see that Re = Re; N --- N Reg. Since A(G : H*) =
(F,G)(1 —ff*) (see |11, Proposition 3.6.7]) and H(1 —I/{\*) —H-H*=e
we see immediately that

(F,G)e = (F,G)H N A(G : H*).

Also, if H; C H;, are normal subgroups of a group G,1 <+¢ < k, and
we set e = Hle(Hi — H), it follows easily, by induction, that:

(F,G)e = (N1 (FG)H:) 1 (NELA(G : H))).
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3. Semisimple dihedral group algebras

Let I, be a finite field with ¢ elements and let D,, be the dihedral group
of order 2n, i.e.

D, = {(a,bla™ = b* = 1,bab = a™ ).

We shall assume throughout that char(F,) does not divide 2n. It was
shown in [7] that, for an arbitrary semisimple group algebra F'G of a finite
group G, the number of simple components of F'G is greater or equal to
the number of simple components of QG, where Q denotes the field of
rational numbers. We shall determine conditions on ¢ and n for F;D,
to have minimum number of simple components, i.e., to have precisely
the same number of simple components as QG. To do so, we will first
determine the structure of QD,,.

We begin by exhibiting the primitive central idempotents of the al-
gebra Q(a). Let n = pi* ---p;"*. According to [8, Theorem VII.1.4| these
are elements of the form

€1€2 . .. €,

with either

o —

€ = <a"/p?i> or € =K; — H,, (1)

where K; and H; are all the p;-subgroups of (a) such that K; C H; and
’Hz/Kl’ = Di for 1 S ) S t.

Let L; = supp(€;), 1 <i <t. Then (L; x---x L) = (a™), a subgroup
of (a) and it is easy to see that every such subgroup correspondes to
exactly one of the idempotents above. So, each idempotents corresponds
to precisely one divisor d of n and shall be denoted by eg.

Since every subgroup of (a) is normal in D,,, it follows that the idem-
potents eq, d|n, are central in QD,,.

We can write the idempotent e; = (a) as the sum of the idempotents:

14+ 1-0
+ er and e = 5 ¢l (2)

and, when n is even, we also write the idempotent es as the sum of:

€11 =

1+ b62 and ego = 1 g b62. (3)
A straightforward computation shows that {e11,e12} U {eq|d|n,d #
1} and {e11, €12, €21, €20} U {eq|d # 1,2} are sets of pairwise orthogonal
central idempotents whose sums are equal to 1.
To prove that these are the sets of primitive central idempotents, we
shall compute the number of simple components of QD,,.

€21 =
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Let G be a group, F' any field such that char(F) } |G| and e the
exponent of G. Let ¢ be a primitive e root of unity. For each element 6
in Gal(F(¢), F) we have that ¢? = ¢" for some positive integer r, and we
define an action of # on G by ¢ = ¢", for all ¢ € G. We note that, if Iy is
the class sum of the class of an element g, then Fg =I'ge. Two conjugacy
classes of G are said to be F-conjugate if they correspond under this
action.

The Theorem of Witt-Berman [4, Theorems 21.5 and 21.25] shows
that the number of simple components of the group algebra FD,, equals
the number of F-conjugate classes of D,, (for a proof in purely group ring
theoretical terms, see [5]).

The conjugacy classes of D,, are:

n

{1}, {a,a”},.. {a"T ,a™ "}, {b,ab,...;a" 1B},

if n is odd, and

n+2

{1} {a,a},. . {a" 0™ F }i{a?)
{b,a®b,...,a" b}, {ab,a®b,...,a" b},

if n is even, so we set

. . _1 n-l
Apg =1, Ai:a’—i—a_z,lgign , B:Za]b,
=0

and
B={Ap,A1,...,An1,B}
2

if n is odd and

: - —2 .
Aozl, Ai:az+a_z,1§i§n2 , A%:af
and
2 n—2
2 ) 2 .
By=) da*b, Bi=Y_ a’",
§=0 =0
and
B = {AO,Al,...,AL_z,A%,BO,Bl}
2
if n is even.

With this notation, the number of simple components of F'D,, is the
number of orbits of elements in B under the action of Gal(F(¢), F).
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Let e be the exponent of D,; i.e., e = 2n if n is odd and e = n if
n is even. The group Gal(Q(¢), Q) is isomorphic to the group of units
U(Z,) = U(Z.). Hence, two elements of the form a’ and o’ are Q-
conjugates if and only if there exists an integer r, such that ged(r,n) =1
and j = ir (mod n); i.e., if and only if ged(i,n) = ged(j,n). So, the
conjugacy class of an element A; in B is

Ai = {Ajlged(i,n) = ged(j,n)}-

In particular, if ged(i,n) = d we have that A; = Ay and the number
of Q-classes containing elements of this form is equal to the number of
divisors of n, which we shall denote by d(n).

Consequently, the number of Q-classes, and thus of simple compo-
nents of QD,, is d(n) + 1 if n is odd and d(n) + 2 if n is even. Since
this number coincides with the number of orthogonal central idempotents
found above, we have shown the following, which is implicit in |9, p. 230].

Theorem 3.1. The set of primitive central idempotents of the group
algebra QD,, is

{e11,e12} U{eqldn,d # 1} if n is odd,

and
{e11, €12, €21, €20} U{eqld # 1,2} if n is even.

Notice that expressions on equations (1), (2) and (3) also define idem-
potents over a finite field F,, which are pairwise orthogonal and add up to
1. To decide whether these are, in fact, the primitive central idempotents
of FyD,, we must determine when they are as many as the number of
simple components of this algebra. In view of Theorem 3.1, this is equiv-
alent to decide when QD,, and F,D,, have the same number of simple
components. We shall determine conditions on n for this to happen.

Lemma 3.2. Let Fy be a finite field and let ¢ be an eth-root of unity,
where e is the exponent of D,,. Then, the number of simple components
of FyDy, equals the number of simple components of QD,, if and only if,
denoting by q the residue class of q in Zy,, we have that either (q) = U(Zy,)
or (q) is a subgroup of index 2 in U(Zy) and —1 & (g).

Proof. Set ¢ = |F;|. We recall that Gal(F,(¢),F,) is a cyclic group,
generated by the Frobenius automorphism ¢ — (9.

Assume first that n is odd. Clearly, Ag and B are fixed under the
action of Gal(F4(¢),Fy). The orbit of A; is

. s . i 42 7.2 . i
Si={a+a"ad"+a T +a .. a0 4+a
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where s is the least positive integer such that o’ = a’.
Set

A; = {A;|ged(r,n) = ged(i,n)}.

Clearly, S; C A;. So, the number of simple components of F,D,
equals the number of simple components of QD,, if and only if S; = A;
for all indexes ¢. A similar argument holds if n is even.

Assume now that S; C A; for all indeces i. Hence, in particular

S1 C Ay = {Ay|ged(r,n) = 1}.

So, for each r coprime with n we have that a” +a7" = a? +a4 for
some positive integer t. This means that either a" = a? or a” = a" 7.
This shows that, given any element 7 € Z,, we have that either 7 € (g) or
—7 € (q); thus [U(Z,) : (q)] < 2, as stated. We still need to prove that
—1 ¢ (q) when (q) # U(Z,). Since for each 7 coprime with n either 7
or —7 is in (g), if —1 were in this group, we would have (q) = U(Z,), a
contradiction.

Conversely, first we notice that if (g) = U(Z,,), then clearly S; = A;.
So, assume that (g) is a subgroup of index 2 in U(Z,) and —1 & (q).

Since —1 ¢ () we have that either 7 € () or —7 € (q) for each r such
that ged(r,n) = 1, which shows that §; = A;.

If d is a divisor of n, we shall denote by ¢* the congruence class of
q in U(Zyq). Since U(Zyp) = (q) U (—q), the natural projection shows
that U(Zy,/q4) = (¢")U(—¢"). Hence, for every positive integer r such that
ged(r,n) = d we have that (r/d)* € U(Z,/4) so one of +r/d is in (¢*) and
there exist integers ¢, j such that r/d = ¢/ +t(n/d) so a™/? = a*® .q!("/9)
and taking d-powers, we obtain that a” = a*%’. This shows that also
Sqg = Aqy. ]

Theorem 3.3. The number of simple components of FyD,, and QD,, are
equal if and only if one of the following conditions holds:

(i) n=2 or4 and q is odd.
(i) n = 2", with m > 3 and q is congruent to either 3 or 5, modulo 8.
(11i) n = p™ with p an odd prime and the class G is a generator of the
group U(Zym).

(iv) n = p™ with p an odd prime, the class q is a generator of the group
U (Zym) = {2?|x € U(Zpm} and —1 is not a square modulo p™.
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(v) n =2p™ with p an odd prime and the class G is a generator of the
group U(Zapm).

(vi) n = 2p™ with p an odd prime, the class G is a generator of the group
U (Zym) = {2%|x € U(Zgpm}) and —1 is not a square modulo 2p™.

(vii) n = 4p™ with p an odd prime and both q and —q have order p(p™)
modulo 4p™.

(viti) n = p"py"? with p1,pa2 odd primes, (p(py"'), p(py?)) = 2 and both

miy 1m2

q and —q have order p(pi"*)e(py'?)/2 modulo p|**p;

(iz) n = 2p]"py'* with p1,p2 odd primes, (¢(py™), (py?)) = 2 and both
q and —q have order p(p|"*)e(py?)/2 modulo "' py™?.

Proof. Assume that the number of simple components of F,D,, and QD,,
are equal. Then, according to the previous lemma, the order of g in U(Z,,)
must be equal to either p(n) or ¢(n)/2, where ¢ denotes Euler’s Totient
function and, in the second case, we must also have that —1 & (q).

Let n = 2"p" - p"*, be the decomposition of n into prime factors,
with m > 0. Then

anZZW@Zpinl @"'@Zp;nt

and
U(Zn) 2 U(Zym) X ULy ) % -+ X U(Zyn).

The group U(Zgm) is cyclic if and only if m < 2 and, in the case when
m > 2, then it is isomorphic to Com-2 x Cy [10, Theorem 2.43]. Each
direct factor U(Z,mi) is cyclic if and only if p; is odd [10, Theorem 2.41].

We shall divide our proof in several cases.

(a) The order of q in U(Zy,) is equal to ¢(n). In this case, U(Zy,) is
cyclic and thus contains only one subgroup of order 2. Since ¢(p;") is
even any factor of the form U(Zp}?) contains a subgroup of order 2. So
either n is of the form n = 2™ with m =1 or 2, or then t = 1 with m =0
or 1;i.e. n=2,4,p™ or 2p™ . In these cases, either (i), (i7i) or (v) holds.
Notice that, in the case when n = 4 we must have ¢ = 3 (mod 4).

(b) The order of G in U(Zy,) is equal to o(n)/2 and U(Zy) is cyclic.
Since the only subgroup of index 2 in a cyclic group is the subgroup of
all squares, we see that (iv) or (vi) follows and also (i) in the case when
n=4and ¢ =1 (mod 4).
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(¢) The order of g in U(Zy,) is equal to p(n)/2 and U(Zy,) is not cyelic.
Notice that, in this case, the exponent of U(Z,) is precisely ¢(n)/2, so
this group contains a direct cyclic factor of that order and as ¢(n)/2 =
|U(Zn)|/2 then U(Zy) = Cyny/2 x Ca. Hence, the maximal elementary
abelian 2-groups are of the form Cy x Cj.

Since every factor of the form U(me), with p; odd, has even order,
the decomposition of U(Z,,) above can flave at most two of these factors,
so either n = 2™, n = 4p™, n = p{"'py*?, or n = 2p|"'py*?. We shall study
separately these cases.

(¢ = (i)) n = 2™. Notice that [10, Theorem 2.43] actually gives a
decomposition of U(Zgm) as

U(Zgm) = (—1) x (5).

In this group, there are only two cyclic subgroups of index 2, namely
(5) and (—5), so g is congruent to £5" (mod 2™), for some odd positive
integer r, with m > 2, and hence also to 5" (mod 8). Writing r = 2k+1
we have:

= (4£5)%%(45) = £5 (mod 8).

Hence, ¢ = 3 or 5 (mod 8) and (4i) follows.

(c— (i1)) n = 4p™. As o(4p™) = 2¢p(p") we have that (vii) follows
immediately.

(c—(i11)) n = p{"'pg*2. Since |U(Zy)| = (01" )e(py?) we readily see
that the order of g modulo pm1 52 1s o(p" )e(py'?)/2 and, as —1 & (q),
it is also the order of q, SO (vzzz) follows.

(¢ — (iv) n = 2p"'py™. In this case, (iz) follows, as above.

Now, we note that 1f () holds and ¢ = 3 (mod 4) holds, the consider-
ations in (a) show that the converse holds in this case. If ¢ =1 (mod 4),
the arguments in (b) show that the converse holds also in this case.

Assume that (i7) holds. Since, as mentioned in (¢ — (7)), for m > 3
we have that U(Zgm) = (5) x (—1) and thus also U(Zam) = (—5) x (—1),
we have that 0(5) = 0(—5) = 2™~ 2 and hence every element in U(Zam)

is of the form 5° 5QZ+1 ~5 or —52i+1, for some positive integer i. Also,
we have

521: =1 (mod 8), 52%“ =5 (mod 8),

5% =7 (mod 8), 5 =3 (mod 8).

So,if g =3 or 5 (mod 8) we have that ¢ =5 2l o 5 (mod 2™)
and thus (g) = (5) or (g) = (—5). Then clearly —1 ¢ < ) and the converse
holds.
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If one of (i), (iv), (v) or (vi) holds, then the converse follows directly
from Lemma 3.2.

Assume (vii) holds. If n = 4p™ with p an odd prime then U(Z,) =
Cz X Cypmy- Since in (vii) we assume that o(gq) = ¢(p™) it is clear that
this element generates a subgroup of index 2. We must show that —1 ¢
(q). Assume, by way of contradiction, that —1 € (g). Since this group is
cyclic, of order (p™) and o(—1) = 2 we must have —1 = g#?")/2,

If the exponent were odd, we would have

(—g)#P™)/2 = (TPl 2gel2 _ T,

contradicting the fact that o(—q) = ¢(p™). So, ¢(p")/2 is even and, since
q is odd, we have ¢#?(")/2 = 1 (mod 4), so ¢*?")/2 is not congruent to
—1 (mod 4p™), as desired.

Assume now that either (viii) or (iz) holds. In both cases, U(Z,) =

C@(p;nl) x Cyp m2y SO (g) is a subgroup of index 2 (notice that
CSO( 1y X x C o(PT?) contains a cyclic group of index 2 if and only if
gcd( "), p(p 72"2)) = 2, so this condition is implicit in our hypothe-
ses).

As in the previous case, it suffices to show that —1 ¢ (g) and the proof
is the same as above, taking into account that, in this case, if —1 € (q)
7”2

we would have —1 = q" with r = M' =

4. Dihedral codes

We recall that a dihedral (central) code over a finite field F is any
ideal I in the group algebra F'D,, of a dihedral group D,. A minimal
dihedral code is an ideal I which is minimal in the set of all ideals of
FyDy; ie., generated by a primitive central idempotent.

In this section, we shall determine the dimensions and weights of
minimal dihedral codes in the cases described in Theorem 3.3.

We recall that, according to Theorems 3.1 and 3.3, the idempotents
determining these codes are

{e11,e12} U{eqld|n,d # 1} if n is odd,
and
{e11, €12, €21, €20} U {eqld|n,d # 1,2} if n is even.
where the idempotents of the form ey, d|n are as described in formula (1).
Lemma 4.1. Let F a field such that char(F') J|Dy|. For1 <i,j <2 we

have

dimF(FDn>6ij =1
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and

Proof. Notice that

FDyi = F(b) = (F<b>)1T+b & (F<b>)17_b ~FaF

So,
1+b. 1—-0b_

(dimp(FDy,) a = (dimp(FD,,) a=1.

If n is even, if we denote by @ and b the images of a and b in D,, /(a?),
we have that

(FDR)@2 = F((B) x (@) X FOFOFOF® F.

The principal idempotents of F((b) x (a)) are

14b 1+a 1-b 1+a
T2 2 T2 2
1+b 1—-a 1-b 1—-a
T2 2 T2 2

The corresponding idempotents in F'D,, are

(l—I-b 1—|—a>/\2 <1—b 1—|—a>/\2
—_ . Qa :611 _— Qa :612

2 2

14b 1—a)~ 1—b 1—a\ 5
2 5 )T 2 g )T

and the result follows.

Since the code generated by one of the idempotents e;;,1 < 7,5 < 2
is of dimension 1, elements of the code differ in a scalar multiple of e;;
and, as supp(e;;) = Dy, so our claim follows. O

In what follows, we shall compute the parameters of the minimal
ideals generated by all the other principal idempotents, different from
the ones given above.

In Table 1.1, we describe the dimensions and weights of minimal cen-
tral codes in the case when n involves only one prime.

In the case when n is of the form n = p{"* - - - p{"* the cyclic group (a) of
order n is a direct product of cyclic groups C; of orders p;**,1 < i < ¢, and
the primitive idempotents e of F'{a) are products of the form e = e ---¢;
where each e; is a primitive idempotent of F'C;, 1 < ¢ < . Taking this fact
into account, there is an easy way to compute weights and dimensions in
some of the cases under consideration.
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[ n ] e | dim[FDy)e] | w[(FDy)e] ||
4 1—a? 4 2
2™ | ey = Cyi — Oyt gm~—i 9i+1
P | ey =Cp = Cpn | 20(p™ ) 2p'
Table 1.1.

Lemma 4.2/.\Asil\tme that n = p{"* py'* where py, py are different primes.
Let e;(1) = Hy—H{ be an idempotent of F (aP2 2), the algebra of the group

of order pi"* corresponding to the subgroup Hy of order pzi and, similarly,

let €;(2) = Hy — ff\é‘ be an idempotent of F(ap;m) corresponding to a
subgroup Hy of order ph. Then

dim [F Dnlei(1)e;(2) = 200" ™) (05 7).
w ([F'Dyle(1)e(2)) = 4|Hy Ha|.
Proof. We know, from Lemma 2.2 that:

dimg[FDyle;(1)e;(

)
[H Ho| \™ T [H| EH
my1—i, _ma—j 1

= 2p7" TP} L) (-t
b1 D2

= 20(p1" ) (ph2 7).

The value of the weight follows directly from Lemma 2.1. O

Using the information above we give, in Table 1.2, the idempotents
and corresponding dimensions and weights of the ideals they generate in
the case when n involves two different primes. To simplify notations, we
shall denote by Cj the cyclic subgroup of (a) of order k.

Finally, in Table 1.3 we consider the case when n = 2p|"!'pg*

5. Quaternion codes

In this section, we shall consider group algebras of generalized quaternion
groups Q,, with n even; i.e, groups given by the presentation:

Qn = (o, Bla" =18° =a™? B af = a")
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H n [ [ dim/|Z] [ w(Z] ﬂ
2p™ es = Cs epi = 5; = Cpit1 2p(p™ %) 4p’
ea =1—0C2 ep = Cpm 2 2p*
ea=1—Cy epi = Cpi = Clitr 2p(p™ %) 4p’
4p™ e=Cy ; =Cpi —China 20(p™ %) 8p*
egi = Oy — Chita ep = Cpm <p(2i) _ 2-21?7_”
egi =Coi —Chit1 | epi =CLi —Chin 2¢(2")(p?) 4.2'p7
2 €p1 = CP;"'I Cpd T i T Cpé“ 2¢(py*77) 2p1"' ph
i = Cpi =~ Cpint epy = Cpma 2¢(py"" ") 2pipy'
epi = Cpi — szfrl €pl = ijz' - Cp‘g+1 20(py" ey 277) | Apiph
Table 1.2
H e [ e1 [ es [ dim[(F Dy, )eeqea] Lw[(FDn)eeleg] ”
Co Cpit Cpg — Cpgz'+1 20(py2"7) 4pi" p})
G2 | Cp —Cin Cp3® 20(p1 ) 4pipy™?
O, m - mo—j my,j
1 ?f /\C’p1 1 Cp'é Cp%.u 2¢(p5 ) 4pi**p)
_ R S m my—1 7,12
1-C2 | Cp = C i Cpma 2™ PPy
Co Cpqi — CPJI.H, Cpé - Cpg-ﬂ 2‘»9(p71n1714p(pg”27J) 8p11p§
1-0Cs Cp’i - Cpgl+i Cp%‘ - Cp.;'-H 20(pT" oy ) 8piph
Table 1.3.

with n > 2. Then |Q,,| = 2n and this group can be explicitely described
as

9, =1{1,aq, a? e B, ap, a?B, ..., oz”_lﬁ}.
We begin with the following.

Theorem 5.1. The group algebras FyD,, and F,Q,, are isomorphic if
and only if 4n or ¢ =1 (mod 4).

Proof. We shall first describe the structure of F,Q,,. Write:

FoQn = Fq(Qn/Qp) & A(Qn, Q).

If 4|n then Q,,/Q), is the Klein group of order 4 and it is clear that
Fe(Q,/9Q,) =F, &F, @ F, ® F,. Notice that, if 4 j n then Q,/Q] is a
cyclic group of order 4 so, if ¢ =1 (mod 4), then F, is a splitting field
for Q,/Q;, and again F,(Q,/Q;,) =F, & F, & F, & F, whereas, if ¢ = 3
(mod 4), then Fy (9, /Q)) = F, ®F, ® E, where [E;F,| = 2.

Write A(Q,,, Q) = B1®---® By a sum of simple algebras and recall
that these are all the non-commutative simple components of F,Q,, [11,
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Prop 3.6.11]. We claim that they are 2 x 2 matrix algebras over their
respective centers.

The class sums of this algebra form a basis for its center, which we
denote Z(F;Q,,); they are:

Ao =1, A1:Oé1—|-041_1, ceey

n__

An g=az  +a GD Aw=a3,
2 2

90:/8+a25+.__+an—257 Ql :a5+a3ﬁ+...+an—16.
So, dimp,Z(F,Q,) = n/2 + 3.
Write
Z(FyQn) = Fq(Qn/ Q) ® Z(A(Qn, 7))
and
Z(A(Qn, Q) = Z(B1) - @ Z(By),
so dimp,A(Qn, Q) = 2n — 4 and dimy, Z(A(Qn, Q;,)) = n/2 — 1. Since
dimg,Fq(Q,/Q;,) = 4 and dimzp,)B; > 4,1 <i < t, we have that

2n — 4 = dimg, A(Qn, Q)
t t
= dimg,B; >4 dimg, Z(B;)
=1 =1

— ddimg, Z(A(Q,, Q) = 4(% 1) =2n-4.

Hence, dimz(p,)B; = 4, for 1 <i <, as claimed.
We also have that

FyDn & Fy(Dn/D;,) & A(D, D),

where Fy(D,/D;) = F,®&F,®F,®F, and a similar argument shows that
all simple components of A(D,,, D)) are 2 x 2 matrix algebras over their
respective centers (this fact is well-known and also follows from [3, §47]
or [9, p. 229|).

By comparing the sum of commutative simple components, it is clear
that F,D,, and F;Q,, are isomorphic only if 4|n or ¢ = 1 (mod 4). To
show that these conditions are also sufficient write

FoDn =Fg @ Fq ®Fq ®Fq ® My(Er) © - @ Ma(Ey)

and
FeQn 2F 0 F, @F, @ F, & Mo(K1) @ - -+ @ Ma(K)
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where Fj;, K; denote the centers of the respective noncommutative sim-
ple components. Clearly, it will be enough to show that Z(F,D,) =
Z(F,Qn);ie, that By - B, =K & - @ K.

We recall, once again that, for a group G, if  : G — G denotes the
map given by ¢’ = ¢%,Vg € G then the number of simple components
of F,G and hence also of Z(F,G) is equal to the number of orbits of
class sums under this action. Moreover, if {F1,... Fy} is the set of simple
components of Z(F,G), there is a bijection between this set and the set
{S1,..., Sk} of orbits, such that dimg F; = |S;|,1 < i < k [6, Theorem
1.3].

Since (a) and () are both cyclic groups of order n, the classes A; and
A, 0 < i < n/2, define the same number of orbits, with corresponding
equal cardinality.

Also, it is easy to show that Bg = By and Bf = Bj.

Since o(8) = 4 and q is odd, we have that 3% = 3 or 8% = B3, If 4|n
then 83 = ﬁa% € )y so, in both cases we have Qg =y and Q? =0y If

=1 (mod 4), then 8% = 3. Hence, in all possible cases the set of orbits
of class sums in both group algebras are esentially equal and we obtain
the desired isomorphism. O

As an immediate consequence of the result above and Theorem 3.3
we obtain the following.

Theorem 5.2. The number of simple components of F;Q,, and QQ,, are
equal if and only if one of the following conditions holds:

(i) n =4 and q is odd.

(i1) n=2", with m > 3 and q is congruent to either 3 or 5, modulo 8.

(11i) n = 4p™ with p an odd prime and both q and —q have order ¢(p™)
modulo 4p™.

Proof. First, notice that if 4 } n, then Q,/Q/ is cyclic of order 4, so
the abelian part of the rational quaternion group algebra in this case is
Q9,/9, =2 Qa Q® Qi) (even when ¢ = 1 (mod 4)). Hence, in this
case, IF;Q,, has more simple components than QQ,,.

On the other hand, if 4|n the result follows immediately from Theo-
rem 3.3. O

In the cases of Theorem 5.2 above, due to the isomorphism between
F,D,, and F,;Q, it is clear that both algebras have the same number of
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simple components. As the elements of the form

{e11,e12, €21, €22} U{eq|d # 1,2}

described in section §3 are also a set of orthogonal idempotents which
add up to 1 for F,;Q,, and their number is equal to the number of simple
components, it follows that they are the primitive idempotents of this
algebra.

The results of section §2 then apply and show that the minimal codes

have the same dimensions and weights as the corresponding ones in the
dihedral case.
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