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Abstract. In this article we show that any strongly sep-

arable extension of a commutative ring R can be embedded into

another one having primitive element whenever every boolean lo-

calization of R modulo its Jacobson radical is von Neumann regular

and locally uniform.
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Introduction

Throughout this paper by ring we mean a commutative ring with identity
element. By a connected ring we mean a ring whose unique idempotents
are 0 and 1. Furthermore, J(R) denotes the Jacobson radical of the
ring R.

Given a ring extension S ⊇ R we say that S has a primitive element

over R if there exists � ∈ S such that S = R[�]. As it is well known,
any finite separable field extension has a primitive element. Although
this assertion is not true in general, several authors has been obtained
extensions of it for strongly separable extensions S of a ring R. For
instance, in the case that:

— (R,m) is a local ring with
∣

∣

R
m

∣

∣ = ∞ [6];
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— R is a semilocal ring with
∣

∣

R
m

∣

∣ ≥ rankRS, for every maximal ideal
m of R [10];

— R is a ring with many units and such that
∣

∣

R
m

∣

∣ ≥ rankRS, for every
maximal ideal m of R [9].

An alternative and also interesting question is to know under what
conditions the following variant of the primitive element theorem holds:

(★) any strongly separable extension S of a ring R can be embedded into

another one having primitive element.

The statement (★) is true for connected strongly separable extensions
of R in the following cases: R is local [8, Theorem 1.1], R is connected and
semilocal [1, Theorem 2.1.1] and R is connected with R

J(R) von Neumann

regular and locally uniform [2, Theorem 2.1].
In this paper we show that the statement (★) is valid for any ring R,

provided that Rx

J(Rx)
is von Neumann regular and locally uniform, for all

prime ideal x in the boolean ring B(R) of all idempotents of R.

1. Preliminaries

In this paper we will be employing freely the ideas and results of [12] on
boolean spectrum and boolean localization of a ring (see also [7]). We
begin by recalling the terminology we will need.

For any ring R let B(R) denote the boolean ring of all idempotents
of R and Spec(B(R)) the boolean spectrum of R consisting of all prime
(equivalently maximal) ideals of B(R) (see [12, 2.1 and 2.2]). A base for a
topology on Spec(B(R)) is given by the family of basic open sets {Ue∣e ∈
B(R)}, where Ue = {x ∈ Spec(B(R))∣1 − e ∈ x}. This base defines a
compact, totally disconnected, Hausdorff topology on Spec(B(R)).

By localization of R at x, for each x ∈ Spec(B(R)), we mean the
quotient ring Rx = R

I(x) where I(x) denotes the ideal of R generated by

the elements of x. By [12, 2.13] Rx is a connected ring. For any R-module
M , we set Mx = M ⊗R Rx = M

I(x)M . For any element a ∈ M , ax denotes
the image of a in Mx. For every R-module homomorphism f : M → N ,
the corresponding induced Rx-homomorphism fx : Mx → Nx is given by
fx = f ⊗Rx.

Following [4] a ring R is called uniform if for each x ∈ Spec(B(R))
there exists a collection of isomorphisms (of rings) {�y : Ry → Rx∣y ∈
Spec(B(R))} such that if F is a finite subset of R there exists a neigh-
borhood V of x with �y(ay) = ax for all a ∈ F and y ∈ V .

The notion of uniform rings was generalized in [2]. A ring R is called
locally uniform if for each x ∈ Spec(B(R)) and each finite subset F of
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R there exist a neighborhood U = U(x, F ) of x and a collection of ring
isomorphisms {�y : Ry → Rx∣y ∈ U} such that �y(ay) = ax, for every
a ∈ F and y ∈ U . Consequently, if R is locally uniform then there exist
an idempotent e = e(x, F ) ∈ R and a collection of ring isomorphisms
{�y : Ry → Rx∣y ∈ Ue} such that x ∈ Ue and �y(ay) = ax, for every
a ∈ F and y ∈ Ue.

A ring R is called von Neumann regular if for every element a in R
there exists an element b in R such that a = a2b, which is equivalent to
say that each element in R is a product of an idempotent by a unit. In
particular, von Neumann regular connected rings are fields.

Examples of connected rings such that every boolean localization
modulo its Jacobson radical is von Neumann regular and locally uni-
form can be seen in [2]. In the sequel we present a ring with the above
conditions that is not connected.

Example. Let S be a connected ring and R =
∏

n≥0 Sn, where Sn =
S for all n ≥ 0. Observe that the elements in B(R) are all of the
type (an)n∈ℕ with an = 0 or 1. By [12, 2.2] one can easily see that
Spec(B(R)) = {xi∣i ∈ ℕ}, where xi denotes the set of all elements
(an)n∈ℕ ∈ B(R) such that ai = 0 and for every j ∕= i there exists an
element in xi whose jtℎ-coordinate is equal to 1. Consequently, Rx ≃ S
for all x ∈ Spec(B(R)), and in order to get the required it is enough to
take S such that S/J(S) is von Neumann regular and locally uniform.

2. Main result

A ring extension S ⊃ R is called separable if the multiplication map
mS : S ⊗R S → S is a splitting epimorphism of S-bimodules, which is
equivalent to say that there exists an element x ∈ S ⊗R S which is S-
central (i.e., xs = sx for all s ∈ S) and satisfies the condition mS(x) = 1S .
Also, we say that S is a strongly separable extension of R if S is a separable
extension of R and S is a finitely generated projective R-module.

A polynomial f(X) ∈ R[X] is said to be separable over R if it is monic

and R[X]
(f(X)) is a separable R-algebra. A monic polynomial f(X) ∈ R[X]

is defined to be indecomposable in R[X] if whenever there exist monic
polynomials g(X), ℎ(X) ∈ R[X] such that f(X) = g(X)ℎ(X) it follows
that g(X) = 1 or ℎ(X) = 1.

The purpose of this article is to prove the next theorem and its proof
will be divided in two parts: the connected and the general case.

Theorem 2.1. Let R be a ring such that Rx

J(Rx)
is von Neumann regular

and locally uniform, for every x ∈ Spec(B(R)), and S a strongly separable
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extension of R. Then, there exist a strongly separable extension T of R
and an element � in T such that T = R[�] and S ⊆ T . If, in addition,

T has constant rank over R, then there exists a separable polynomial

f(X) ∈ R[X] of degree rankRT such that f(�) = 0 and T ≃ R[X]
(f(X)) .

Connected case

Theorem 2.2. Let R be a connected ring such that R
J(R) is von Neumann

regular and locally uniform, and S a strongly separable extension of R.

Then, there exist a strongly separable extension T of R, an element � in

T and a separable polynomial f(X) ∈ R[X] such that:

(i) S ⊆ T ;

(ii) f(�) = 0 and T = R[�] ≃ R[X]
(f(X)) ;

(iii) B(S) = B(T ).

Proof. This proof is quite similar to that of [2, Theorem 2.1]. Let R′ =
R

J(R) and S′ = S
J(S) . Note that R′

x is a connected and von Neumann

regular ring, so it follows that R′
x is a field, for all x ∈ Spec(B(R′)).

Firstly assume that R′
x is infinite, for every x ∈ Spec(B(R′)). Thus

each S′
x has a primitive element over R′

x [6, Lemma 3.1] and, conse-
quently, there exist �′(x) ∈ S′ and an idempotent e(x) ∈ R′ such that
x ∈ Ue(x) and S′e(x) = R′[�′(x)]e(x) [12, 2.8 and 2.11]. By compactness
arguments we obtain elements �′

1, . . . , �
′
n ∈ S′ and orthogonal idem-

potents e1, . . . , en ∈ R′ such that
∑

1≤i≤n ei = 1 and S′ei = R′[�′
i]ei.

Taking �′ =
∑

1≤i≤n �
′
iei we have S′ = R′[�′] and by Nakayama’s lemma

S = R[�] for some � ∈ S such that �′ = �+J(S). Finally, (iii) is obvious
and (ii) follows from [6, Theorem 2.9].

Now put Y = {x ∈ Spec(B(R′))∣R′
x is finite} and assume that Y ∕= ∅.

By [11, Proposition 1.3] we can assume that S = S1 ⊕ ⋅ ⋅ ⋅ ⊕ Sn, with Si

a connected and strongly separable extension of R. Moreover, by [6,
Theorem 1.1] we may also assume that each Si is a connected Galois
extension of R in the sense of [3].

On the other hand, it follows from the proof of [2, Theorem 2.1]
that for each 1 ≤ i ≤ n there exists a connected and strongly separable
extension Ti of R such that Si ⊆ Ti and rankSi

Ti = pi, for some prime
integer pi satisfying qpi−q

pi
≥ rankRSi, where q = min{∣R′

x∣∣x ∈ Y }.
Taking T = T1 ⊕ ⋅ ⋅ ⋅ ⊕ Tn we have that T is a strongly separable

extension of R, S ⊆ T , B(S) = B(T ). It remains to show that T also
satisfies (ii).

Put T ′ = T
J(R)T = T

J(T ) . By boolean localization and Nakayama’s

lemma it is enough to prove that T ′
x has a primitive element over R′

x,
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for every x ∈ Spec(B(R′)). If x ∕∈ Y then T ′
x is an extension of R′

x with
primitive element [6, Lemma 3.1].

If x ∈ Y , then R′
x is a finite field and R′

x = R′/I(x) with I(x) =
m/J(R) for some maximal ideal m of R. Again as in the proof of

[2, Theorem 2.1] (see Claim 3), we have Ti

mTi
≃ R/m[X]

(fi(X)) , where each

fi(X) ∈ R/m[X] is separable over R/m, of degree pi(rankRSi) and every
indecomposable factor of fi(X) in R/m[X] has the same degree pidi with
di a divisor of rankRSi.

Furthermore, each pi can be chose such that pidi ∕= pjdj if i ∕= j.
Therefore, the polynomials fi(X) are pairwise coprimes and T

mT ≃ T1

mT1
⊕

⋅ ⋅ ⋅⊕ Tn

mTn
≃ R/m[X]

(f(X)) , with f(X) =
∏

1≤i≤n fi(X). Since T ′
x = T ′/I(x)T ′ =

T/J(T )
mT/J(T ) ≃ T/mT , the proof is complete.

The following example illustrates the type of construction considered
in the proof of Theorem 2.2.

Example 2.3. Let R = ℤ(2) be the localization of ℤ at 2ℤ and S =
R⊕R⊕R. Clearly, S is a strongly separable extension of R and S does not
have a primitive element over R. Take m = 2R, ℎ1(X), ℎ2(X), ℎ3(X) ∈
R/m[X] separable and indecomposable polynomials with degrees 2, 3 and
5 respectively, and fi(X) ∈ R[X] monic polynomials such that ℎi(X) =

fi(X) modulo m[X], 1 ≤ i ≤ 3. Taking Ti =
R[X]

(fi(X)) and T = T1⊕T2⊕T3

then T
mT ≃ R/m[X]

(ℎ(X)) with ℎ(X) = ℎ1(X)ℎ2(X)ℎ3(X). Therefore, S ⊆ T
and T is a strongly separable extension of R with primitive element, by
Nakayama’s lemma.

General case

It is easy to check that a strongly separable extension S ⊇ R has a
primitive element if and only if Sx ⊇ Rx has a primitive element for all
x ∈ Spec(B(R)). A similar result is valid when we consider the variant
(★) of the primitive element theorem.

Lemma 2.4. Let R be a ring. Then the following statements are equiva-

lent:

(i) (★) is true for R.

(ii) (★) is true for Rx, for all x ∈ Spec(B(R)).

Proof. (i)⇒(ii) Let x ∈ Spec(B(R)) and L be a strongly separable exten-
sion of Rx. By [7, II.24] there exists a strongly separable extension T of
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R such that Tx = L. Thus T is contained in a strongly separable exten-
sion T ′ of R having a primitive element, by assumption. Consequently
T ′
x is a strongly separable extension of Rx having a primitive element and

L ⊆ T ′
x.

(ii)⇒(i) Let S be a strongly separable extension of R and assume
that for each x ∈ Spec(B(R)) there exists a strongly separable extension
L(x) of Rx, having a primitive element over Rx, such that Sx ⊆ L(x).
Then, there exist a strongly separable extension T(x) of R and an element
�(x) ∈ T(x) such that (T(x))x = L(x) = (R[�(x)])x [7, II.24]. Consequently,
there exists an idempotent e(x) ∈ R such that x ∈ Ue(x) and T(x)e(x) =
R[�(x)]e(x) [12, 2.11].

By compactness arguments we get pairwise orthogonal idempotents
e1, . . . , en of R, strongly separable extensions T1, . . . , Tn of R and elements
�i ∈ Ti such that

∑

1≤i≤n ei = 1 and Tiei = R[�i]ei, 1 ≤ i ≤ n. Taking
T = T1e1 ⊕ ⋅ ⋅ ⋅ ⊕ Tnen and � = �1e1 + ⋅ ⋅ ⋅ + �nen we have that T is a
strongly separable extension of R and T = R[�].

It remains to prove that S ⊆ T . Take s ∈ S and x ∈ Spec(B(R)).
By construction Sx ⊆ Tx, so there exists t ∈ T such that sx = tx and
consequently s− t ∈ I(x)T ⊆ T .

Corollary 2.5. Let R be a ring. If Rx

J(Rx)
is von Neumann regular and

locally uniform for any x ∈ Spec(B(R)), then (★) is true for R.

Proof. It follows from Theorem 2.2 and Lemma 2.4.

Corollary 2.6. If the prime spectrum Spec(R) of a ring R is totally

disconnected then (★) is true for R.

Proof. Indeed, in this case Rx is semilocal for all x ∈ Spec(B(R)) [5].
Then the result follows by Corollary 2.5.

Now we are able to prove Theorem 2.1.

Proof of Theorem 2.1. The first assertion follows by Corollary
2.5. For the second assume that T = R[�] has constant rank n over
R. Then Tx = (R[�])x = Rx[�x] and by [6, Theorem 2.9] there exists a
monic polynomial f(x)(X) in R[X] of degree n, such that (f(x)(X))x is
separable over Rx and (f(x)(�))x = 0 for each x ∈ Spec(B(R)).

The separability of (f(x)(X))x implies that (�(x)d(f(x)(X)))x = 1x for
some �(x) ∈ R, where d(f(x)(X)) denotes the discriminant of f(x)(X).
By [12, 2.9] there exists an idempotent e(x) ∈ R such that x ∈ Ue(x),
f(x)(�)e(x) = 0 and (�(x)d(f(x)(X)))e(x) = e(x), which means that
f(x)(X)e(x) is separable over Re(x).
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By compactness arguments we get orthogonal idempotents e1, . . . , em
of R and monic polynomials f1(X), . . . , fm(X) ∈ R[X] of degree n such
that

∑

1≤i≤m ei = 1, fi(X)ei is separable over Rei and fi(�)ei = 0.
Put f(X) =

∑

1≤i≤m fi(X)ei. Thus, f(X) is a polynomial of degree n,
separable over R and f(�) = 0.

Finally the canonical map ' : R[X] → R[�], ℎ(X) 7→ ℎ(�), is an
epimorphism of R-algebras whose kernel contains f(X). Hence, it induces
an epimorphism from R[X]/(f(x)) onto R[�]. Since rankRR[�] = n =
rankR(R[X]/(f(X))) it follows that ' is an isomorphism.
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