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ABSTRACT. In this article we show that any strongly sep-
arable extension of a commutative ring R can be embedded into
another one having primitive element whenever every boolean lo-
calization of R modulo its Jacobson radical is von Neumann regular
and locally uniform.
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Introduction

Throughout this paper by ring we mean a commutative ring with identity
element. By a connected ring we mean a ring whose unique idempotents
are 0 and 1. Furthermore, J(R) denotes the Jacobson radical of the
ring R.

Given a ring extension S O R we say that S has a primitive element
over R if there exists a € S such that S = R[a]. As it is well known,
any finite separable field extension has a primitive element. Although
this assertion is not true in general, several authors has been obtained
extensions of it for strongly separable extensions S of a ring R. For
instance, in the case that:

— (R, m) is a local ring with |§} = 00 [6];
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— R is a semilocal ring with ’%’ > rankps, for every maximal ideal

m of R [10];

— R is a ring with many units and such that ’%’ > rankgS, for every
maximal ideal m of R [9)].

An alternative and also interesting question is to know under what
conditions the following variant of the primitive element theorem holds:

(%) any strongly separable extension S of a ring R can be embedded into
another one having primitive element.

The statement (%) is true for connected strongly separable extensions
of R in the following cases: R islocal [8, Theorem 1.1|, R is connected and
semilocal [1, Theorem 2.1.1] and R is connected with % von Neumann
regular and locally uniform [2, Theorem 2.1

In this paper we show that the statement (x) is valid for any ring R,
provided that % is von Neumann regular and locally uniform, for all
prime ideal z in the boolean ring B(R) of all idempotents of R.

1. Preliminaries

In this paper we will be employing freely the ideas and results of [12] on
boolean spectrum and boolean localization of a ring (see also [7]). We
begin by recalling the terminology we will need.

For any ring R let B(R) denote the boolean ring of all idempotents
of R and Spec(B(R)) the boolean spectrum of R consisting of all prime
(equivalently maximal) ideals of B(R) (see [12, 2.1 and 2.2]). A base for a
topology on Spec(B(R)) is given by the family of basic open sets {Ue|e €
B(R)}, where U, = {x € Spec(B(R))|1 — e € z}. This base defines a
compact, totally disconnected, Hausdorff topology on Spec(B(R)).

By localization of R at x, for each x € Spec(B(R)), we mean the
quotient ring R, = % where I(x) denotes the ideal of R generated by
the elements of x. By [12, 2.13] R, is a connected ring. For any R-module

M, we set M, =M ®pr R, = % For any element a € M, a, denotes

the image of a in M,. For ever(;/C)R—module homomorphism f: M — N,
the corresponding induced R;-homomorphism f, : M, — N, is given by
f x = f ® Ry.

Following [4] a ring R is called wuniform if for each x € Spec(B(R))
there exists a collection of isomorphisms (of rings) {¢, : R, — R.|y €
Spec(B(R))} such that if F' is a finite subset of R there exists a neigh-
borhood V' of = with ¢y(a,) = a, for alla € F and y € V.

The notion of uniform rings was generalized in [2]. A ring R is called

locally uniform if for each x € Spec(B(R)) and each finite subset F' of
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R there exist a neighborhood U = U(x, F') of z and a collection of ring
isomorphisms {¢, : R, — R|ly € U} such that ¢,(ay) = a,, for every
a € F and y € U. Consequently, if R is locally uniform then there exist
an idempotent e = e(z, F) € R and a collection of ring isomorphisms
{¢y : Ry = Ry|ly € U.} such that x € U, and ¢,(a,) = a,, for every
a € F and y € Uk,.

A ring R is called von Neumann regular if for every element a in R
there exists an element b in R such that a = a?b, which is equivalent to
say that each element in R is a product of an idempotent by a unit. In
particular, von Neumann regular connected rings are fields.

Examples of connected rings such that every boolean localization
modulo its Jacobson radical is von Neumann regular and locally uni-
form can be seen in [2]. In the sequel we present a ring with the above
conditions that is not connected.

Example. Let S be a connected ring and R = [[,,~, Sn, where S,, =
S for all n > 0. Observe that the elements in B(R) are all of the
type (an)neny with a, = 0 or 1. By [12, 2.2] one can easily see that
Spec(B(R)) = {wi|i € N}, where z; denotes the set of all elements
(an)neny € B(R) such that a; = 0 and for every j # i there exists an
element in z; whose j*-coordinate is equal to 1. Consequently, R, ~ S
for all x € Spec(B(R)), and in order to get the required it is enough to
take S such that S/J(S) is von Neumann regular and locally uniform.

2. Main result

A ring extension S DO R is called separable if the multiplication map
mg : S®r S — S is a splitting epimorphism of S-bimodules, which is
equivalent to say that there exists an element x € S ®g S which is S-
central (i.e., xs = sz for all s € S) and satisfies the condition mg(x) = 1g.
Also, we say that S is a strongly separable extension of R if S is a separable
extension of R and S is a finitely generated projective R-module.

A polynomial f(X) € R[X] is said to be separable over R if it is monic
and % is a separable R-algebra. A monic polynomial f(X) € R[X]
is defined to be indecomposable in R[X] if whenever there exist monic
polynomials ¢g(X), h(X) € R[X] such that f(X) = g(X)h(X) it follows
that g(X) =1 or h(X) = 1.

The purpose of this article is to prove the next theorem and its proof
will be divided in two parts: the connected and the general case.

Theorem 2.1. Let R be a ring such that % s von Neumann regular
and locally uniform, for every x € Spec(B(R)), and S a strongly separable
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extension of R. Then, there exist a strongly separable extension T of R
and an element o in T such that T = R[a] and S C T. If, in addition,
T has constant rank over R, then there exists a separable polynomial

f(X) € R[X] of degree rankrT such that f(a) =0 and T ~ %.

Connected case

Theorem 2.2. Let R be a connected ring such that J(LR 18 von Neumann
reqular and locally uniform, and S o strongly sepambl)e extension of R.
Then, there exist a strongly separable extension T of R, an element « in
T and a separable polynomial f(X) € R[X] such that:

(i) SCT;
(i) f(o) =0 and T = R[a] ~ 2L

(i5) B(S) = B(T).

Proof. This proof is quite similar to that of [2, Theorem 2.1]. Let R’ =
% and S = J(S) Note that R! is a connected and von Neumann
regular ring, so it follows that R/, is a field, for all = € Spec(B(R')).

Firstly assume that R/, is infinite, for every x € Spec(B(R’)). Thus
each S! has a primitive element over R/ [6, Lemma 3.1] and, conse-
quently, there exist o/(z) € S’ and an idempotent e(x) € R’ such that
x € Ug(y) and S'e(z) = R’[o/(x)]e(a:) [12, 2.8 and 2.11]. By compactness
arguments we obtain elements of,...,a), € S’ and orthogonal idem-
potents 61,.. ,en € R’ such that ZKK” e; = 1 and S'e; = R'[a]e;.
Taking o' =37, ., aje; we have S’ = ‘R'[a/] and by Nakayama’s lemma
S = R[a] for some « € S such that o/ = a+J(S). Finally, (iii) is obvious
and (ii) follows from [6, Theorem 2.9|.

Now put Y = {x € Spec(B(R’))|R,, is finite} and assume that Y # .
By [11, Proposition 1.3] we can assume that S = S, @ --- @ S, with S;
a connected and strongly separable extension of R. Moreover, by [6,
Theorem 1.1] we may also assume that each S; is a connected Galois
extension of R in the sense of [3].

On the other hand, it follows from the proof of [2, Theorem 2.1]
that for each 1 < 7 < n there exists a connected and strongly separable
extension T; of R such that S; C T; and rankgs,T; = p;, for some prime
integer p; satisfying -—1 > rankgsS;, where ¢ = min{|R.||x € Y}.

Taking T = T} 69 - @ T, we have that T is a strongly separable
extension of R, S C T, B(S) = B(T'). It remains to show that 7" also
satisfies (ii).

Put T' = ﬁ = % By boolean localization and Nakayama’s
lemma it is enough to prove that T, has a primitive element over R.,
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for every x € Spec(B(R')). If x ¢ Y then T, is an extension of R/, with
primitive element [6, Lemma 3.1].

If z € Y, then R/ is a finite field and R}, = R'/I(z) with I(z) =
m/J(R) for some maximal ideal m of R. Again as in the proof of

[2, Theorem 2.1] (see Claim 3), we have mLi o~ %)[(X))], where each

[i(X) € R/m[X] is separable over R/m, of degree p;(rankgrS;) and every
indecomposable factor of f;(X) in R/m[X] has the same degree p;d; with
d; a divisor of rankprsS;.
Furthermore, each p; can be chose such that p;d; # p;d; if i # j.
Ty

Therefore, the polynomials f;(X) are pairwise coprimes and % ~ o D

@D ~ %{%l with f(X) = [T,<;<, fi(X). Since Th = T"/I(2)T" =

mj;,//JJ((TjZ) ~ T /mT, the proof is complete. [

The following example illustrates the type of construction considered
in the proof of Theorem 2.2.

Example 2.3. Let R = Z) be the localization of Z at 2Z and S =
RARPR. Clearly, S is a strongly separable extension of R and S does not
have a primitive element over R. Take m = 2R, h;(X), ha(X), h3(X) €
R/m[X] separable and indecomposable polynomials with degrees 2,3 and
5 respectively, and f;(X) € R[X]| monic polynomials such that h;(X) =

fi(X) modulo m{X], 1 <i < 3. Taking T} = 70 and T = Ty @ Ty & T
then T ~ B with h(X) = h1(X)ha(X)hs(X). Therefore, S C T
and T is a strongly separable extension of R with primitive element, by

Nakayama’s lemma.

General case

It is easy to check that a strongly separable extension S O R has a
primitive element if and only if S, O R, has a primitive element for all
x € Spec(B(R)). A similar result is valid when we consider the variant
(%) of the primitive element theorem.

Lemma 2.4. Let R be a ring. Then the following statements are equiva-
lent:

(i) (%) is true for R.
(13) (%) is true for Ry, for all x € Spec(B(R)).

Proof. (1)=(ii) Let = € Spec(B(R)) and L be a strongly separable exten-
sion of R,. By [7, I1.24] there exists a strongly separable extension T of
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R such that T, = L. Thus T is contained in a strongly separable exten-
sion T” of R having a primitive element, by assumption. Consequently
T) is a strongly separable extension of R, having a primitive element and
LCT..

(ii)=-(i) Let S be a strongly separable extension of R and assume
that for each x € Spec(B(R)) there exists a strongly separable extension
L) of Ry, having a primitive element over R, such that Sy C L.
Then, there exist a strongly separable extension T, of R and an element
() € T(z) such that (T(y))e = L(z) = (Rlaa)])z [7, 11.24]. Consequently,
there exists an idempotent e(z) € R such that € U,y and T,e(z) =
Rlagle(r) [12, 2.11].

By compactness arguments we get pairwise orthogonal idempotents
e1, ..., en of R strongly separable extensions 17, . .., T}, of R and elements
a; € T; such that Y, .., e; =1 and Tje; = Rla;le;, 1 < i < n. Taking
T=Te & - ®The, and @ = aje; + - -+ + ape, we have that T is a
strongly separable extension of R and T' = R[a].

It remains to prove that S C T. Take s € S and = € Spec(B(R)).
By construction S, C T, so there exists t € T such that s, = ¢, and
consequently s —t € I(z)T' C T. O

Corollary 2.5. Let R be a ring. If J(}%z) 1s von Neumann regular and

locally uniform for any x € Spec(B(R)), then (x) is true for R.

Proof. Tt follows from Theorem 2.2 and Lemma 2.4. O

Corollary 2.6. If the prime spectrum Spec(R) of a ring R is totally
disconnected then (%) is true for R.

Proof. Indeed, in this case R, is semilocal for all x € Spec(B(R)) |[5].
Then the result follows by Corollary 2.5. O

Now we are able to prove Theorem 2.1.

Proof of Theorem 2.1. The first assertion follows by Corollary
2.5. For the second assume that 7' = R]a] has constant rank n over
R. Then T, = (R[a])s = Ry[ag] and by [6, Theorem 2.9| there exists a
monic polynomial f,)(X) in R[X] of degree n, such that (f)(X))s is
separable over R, and (f(;)(a)), = 0 for each z € Spec(B(R)).

The separability of (f(;) (X)), implies that (A d(fiz)(X)))e = 1, for
some A € R, where d(f(,)(X)) denotes the discriminant of f(,)(X).
By [12, 2.9] there exists an idempotent e(r) € R such that z € Uy,
fwy(@)e(x) = 0 and (Ay)d(f()(X)))e(r) = e(r), which means that
f(z)(X)e(w) is separable over Re(z).
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By compactness arguments we get orthogonal idempotents ey, ... e
of R and monic polynomials f1(X),..., fm(X) € R[X] of degree n such
that Y, ,o,,ei = 1, fi(X)e; is separable over Re; and fij(a)e; = 0.
Put f(X) = > i fi(X)ei. Thus, f(X) is a polynomial of degree n,
separable over R and f(a) = 0.

Finally the canonical map ¢ : R[X] — Rla], h(X) — h(a), is an
epimorphism of R-algebras whose kernel contains f(X). Henece, it induces
an epimorphism from R[X]/(f(z)) onto R[a]. Since rankrR[a] = n =
rankr(R[X]/(f(X))) it follows that ¢ is an isomorphism. O
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