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Abstract. We develop a Frattini Theory for n-Lie alge-

bras by extending theorems of Barnes’ to the n-Lie algebra setting.

Specifically, we show some sufficient conditions for the Frattini sub-

algebra to be an ideal and find an example where the Frattini sub-

algebra fails to be an ideal.

1. Introduction

Frattini theory has been studied extensively and has a rich history both
in group theory and later in Lie algebras. The Frattini subalgebra is
the intersection of all proper maximal subalgebras and we shall denote
it �(A). In 1967, Barnes proved the following theorem for the Frattini
subalgebra: if B,C ⊲ A where C ⊂ �(A)

∩
B and B/C is nilpotent, then

B is nilpotent [4 p.348 Theorem 5]. A corollary to this is the following:
if �(A) ⊲ A, then �(A) is nilpotent. This theorem raises an obvious
question: when is �(A) ⊲ A? For groups it is known that �(A) ⊲ A
always holds because all automorphisms permute maximal subgroups.
Barnes and Chao [5 p.233 Theorem 3] proved that A is a nilpotent Lie
algebra if and only if �(A) = A2. If A is nilpotent, clearly �(A) = A2

⊲

A. In 1968, Barnes strengthened this statement and proved that if A is
a solvable Lie algebra, then �(A) ⊲ A [2 p.348 Lemma 3.4]. One might
believe �(A) ⊲ A is true in general for Lie algebras, but over F2 = {0, 1}
if A is the cross product Lie algebra, then �(A)⋪A.
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The purpose of this paper is to develop a Frattini theory for n-Lie
algebras. Where an n-Lie algebra, as introduced by Filipov [6], is an
algebra equiped with an n-linear, skew symmetric n-ary bracket that
satisfies the following Jacobi-like identity:

[[x1, . . . , xn], y2, . . . , yn] =
n∑

i=1

[x1, . . . , xi−1, [xi, y2, . . . yn], xi+1, . . . , xn]

We also recall the following definitions given by Filipov for A an n-Lie
algebra:

Derivations

If � is a linear transformation such that

([a1, . . . , an])� =

n∑

i=1

[a1, . . . , (ai)�, . . . , an]

for all aj ∈ A then � is a derivation of A.

Right Multiplications

R(y) = [__, y2, . . . , yn] where (y) will always denote the set y2, . . . , yn
of n − 1 vectors right justified in the n-bracket. Example: xR(y) =
[x, y2, . . . , yn].

R(A)

R(A) is the vector space generated by all right multiplications of A.

In [7 Theorem 2.2] we proved for A an n-Lie algebra, A is nilpotent
if and only if �(A) = A2 which coresponds to Barnes’ and Chao’s work.
In this paper we will prove the n-Lie algebra version of Barnes’ Frattini
theorem and continue to examine when �(A) ⊲ A for n-Lie algebras. We
will do so by proving the following three theorems:

Theorem 1. Let A be an n-Lie algebra. If B,C ⊲ A where C ⊂
�(A)

∩
B and B/C is nilpotent, then B is nilpotent.

Theorem 2. If A is a solvable n-Lie algebra, then �(A) ⊲ A.

Theorem 3. If A is the n-Lie cross product over F2, then �(A)⋪A.
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2. Proof of Theorem 1

We will prove the theorem by contradiction. Assume that the hypothesis
holds but B is not nilpotent. By Engel’s theorem there exists an R ∈
R(B) such that BRs ∕= 0 for all s. We apply Fitting’s lemma. Let I
be the final image and K be the Fitting null component. Recall that
A = I

⊕
K and K is a subalgebra of A. Since B ⊲ A, we observe that

I ⊂ B. Furthermore, since B/C is nilpotent, I ⊂ C ⊂ �(A). Now since
A = I

⊕
K we see that A = �(A) + K. Since K is a subalgebra it is

contained in some maximal subalgebra M and A = �(A)+M . Since M is
a maximal subalgebra, �(A) ⊂ M and M = A but this is a contradiction
as M is a maximal subalgebra. This proves Theorem 1.

Corollary 1. If D ⊲ A and D ⊂ �(A), then D is nilpotent.

Corollary 2. If �(A) ⊲ A, then A/�(A) is nilpotent if and only if A is

nilpotent.

The proof of these corollaries follow from standard Lie algebra argu-
ments using Theorem 1.

3. Proof of Theorem 2

We begin the proof of the Theorem 2 with the following lemmas:

Lemma 1. If I is a minimal ideal of A a solvable n-Lie algebra, then

1) [I, I, A . . . , A] = 0

2) I
∩
M = 0 or I

∩
M = I for all M maximal subalgebras of A.

Proof. First we show 1. We observe

[[I, I, A, . . . , A], A, . . . , A] =

= [[I, A,A, . . . , A], I, . . . , A] + [I, [I, A, . . . , A]A, . . . , A]+

+ [I, I, [A, . . . , A], A, . . . , A] ⊂ [[I, I, A, . . . , A]A, . . . , A]

and [I, I, A, . . . , A] ⊲ A. Since A is solvable, [I, I, A, . . . , A] is prop-
erly contained in I. Indeed, if I = [I, I, A, . . . , A], we can prove that
I = [I, I, A, . . . , A] ⊂ A(n) for all n. We do so inductively. Obviously
[I, I, A, . . . , A] ⊂ A(2) and taking the inductive step, we assume that I =
[I, I, A, . . . , A] ⊂ A(n). Then I = [I, I, A, . . . , A] ⊂ [A(n), A(n), A, . . . , A] =
A(n+1) and as a result I = [I, I, A, . . . , A] ⊂ A(n) for all n. Since A is
solvable, I must be 0 contradicting the minimality condition of I. Hence,



M. P. Williams 111

[I, I, A, . . . , A] is properly contained in I. But the only way this can
happen is if [I, I, A, . . . , A] = 0 otherwise we will again contradict the
minimality condition of I. This proves 1.

Now we show 2. Assume that I
∩
M is properly contained in I. Since

I is not contained in M we observe M is properly contained in I+M and
I +M is a subalgebra. The only way this can happen is if I +M = A.
Now using 1 we observe that

[I
∩

M,A, . . . , A] = [I
∩

M,M + I, . . . ,M + I] =

= [I
∩

M,M, . . . ,M ] + 0 + . . . ,+0 ∈ I
∩

M

hence I
∩
M ⊲ A. As a result I

∩
M = 0, otherwise we contradict the

minimality of I. This proves the lemma.

Lemma 2. Let D be a nilpotent derivation of A, an n-Lie algebra over

a field F and Dm+1 = 0. Then exp(D) =
∑m

i=0
Di

i! is an automorphism

of A under the following field considerations: either cℎar(F) = 0 or, if

cℎar(F) = p ∕= 0 and Dk = 0 for some minimal k, then k < p−1
2 .

Proof. By Leibnitz’s rule for n-Lie algebras we see that

(∗)

[
x1, x2, . . . , xn

]
Dk

k!
=

=
1

k!

∑

i1+...+in=k

(
k

i1, i2, . . . , in

)
[x1D

i1 , x2D
i2 , . . . , xnD

in ] =

=
∑

i1+...+in=k

[
x1D

i1

i1!
,
x2D

i2

i2!
, . . . ,

xnD
in

in!

]
.

Hence

[expD(x1), expD(x2), . . . , expD(xn)] =

=

[ m∑

i1=1

x1D
i1

i1!
,

m∑

i2=1

x2D
i2

i2!
, . . . ,

m∑

in=1

xnD
in

in!

]
=

=
m∑

i1,...,in=0

[
x1D

i1

i1!
,
x2D

i2

i2!
, . . . ,

xnD
in

in!

]
=

=
nm∑

k=1

∑

i1+...+in=k

[
x1D

i1

i1!
,
x2D

i2

i2!
, . . . ,

xnD
in

in!

]
=

=
nm∑

k=1

[x1, x2, . . . , xn]D
k

k!
=

m∑

k=1

[x1, x2, . . . , xn]D
k

k!
=
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= expD([x1, x2, . . . , xn])

Hence exp(D) is an n-Lie algebra homomorphism. Furthermore

(exp(D))(exp(−D)) = (exp(D))

( m∑

i=0

(−D)i

i!

)
=

=
m∑

i,j=0

Dj(−D)i

j!i!
=

2m∑

k=0

1

k!

k∑

i=0

(
k

i

)
Di(−D)k−i =

=
2m∑

k=0

1

k!
(D −D)k = I

Similarly, (exp(−D))(exp(D) = I. Hence exp(−D) = (exp(D))−1 and
exp(D) is an automorphism. This proves Lemma 2.

Proof of Theorem 2

The proof follows closely that of Barnes’ [2 p.348 Lemma 3.4] analogous
proof for Lie Algebras. We induct on dim(A). Let I be a minimal ideal
of A and let �I denote the intersection of all maximal subalgebras M
such that I ⊂ M .

Then

�I/I = (
∩

M ∣I⊂M

M)/I =
∩

M ∣I⊂M

M/I = �(A/I).

By the induction hypothesis we have that �I/I ⊲ A/I and hence �I ⊲ A.
If I ⊂ �(A), then �(A) = �I ⊲ A and we’re done.
From here the proof can be broken up and conducted in two cases:

1) I is not a subset of �(A) and CA(I) ∕= I.
2) I is not a subset of �(A) and CA(I) = I.
We define CA(I) = {x ∈ A∣[x, I, A, . . . , A] = 0} and call it the cen-

tralizer of I in A.
Note that since I ⊲ A, then CA(I) ⊲ A. Indeed, for x ∈ CI(A) we

see by using the Jacobian property of n-Lie algebras that

[[x,A, . . . , A], I, . . . , A] = [[x, I, A . . . , A], A, . . . , A]+

+ [x, [A, I, . . . , A], A . . . , A] = 0 + [x, I, A . . . , A] = 0 + 0.

Hence CA(I) ⊲ A. We now resume the proof.
Case 1
Suppose I is not a subset of �(A) and CA(I) ∕= I. Due to this assumption
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there exists M , a maximal subalgebra of A such that I
∩
M is a proper

subset of I. By our Lemma 1 I
∩

M = 0. Recall that CA(I) = {x ∈
A∣[x, I, A, . . . , A] = 0}. Recall also that if I ⊲ A, then CA(I) ⊲ A.
Suppose I ⊂ CA(I), then CA(I)

∩
M ∕= 0 and

[CA(I)
∩

M,A, . . . , A] = [CA(I)
∩

M,M + I, . . . ,M + I] =

= [CA(I)
∩

M,M, . . . ,M ] + 0 + . . . ,+0 ⊂ CA(I)
∩

M

because CA(I) ⊲ A and M is a subalgebra. Hence CA(I)
∩

M ⊲ A. As
a result for each M a maximal subalgebra there exists J ⊂ M where J
is a minimal ideal of A.

We see that

�(A) =
∩

M =
∩

J⊂M

�J ⊲ A.

Case 2
Suppose CA(I) = I and I is not contained in �(A). We will show that
�(A) = 0. As in Case 1, due to this assumption and Lemma 1 there exists
M , a maximal subalgebra of A such that I

∩
M = 0. For all m ∈ M we

prove that m /∈ �(A). Since m /∈ I = CA(I) there exists i ∈ I and a′is ∈ A
such that [m, i, a3, a4, . . . , an] = mRa ∕= 0. Note that Ra is a derivation
on I. Since [I, I, A . . . , A] = 0 we see that R2

a = 0 and by Lemma 2,
expRa = 1 + Ra is an automorphism of A . Set N = expRa(M) a
maximal subalgebra. If m ∈ N then m = n(1 + Ra) = n + nRa for
some n ∈ M . Since n,m ∈ M we see that m − n = nRa ∈ M . Hence
nRa ∈ I

∩
M = 0 and m = n. But this means that mRa = nRa = 0

which contradicts the fact that mRa ∕= 0. This implies that M
∩
N = 0

and in turn that �(A) = 0 ⊲ A. This proves the theorem.

4. Proof of Theorem 3

As A is simple, it is enough to show that �(A) ∕= 0 and �(A) ∕= A. This
is due to the following fact: a subspace S ⊂ A of codimension 1 is a
subalgebra if and only if

v =

n+1∑

i=1

xi ∈ S.

Let’s prove this fact. Note that S has a basis of the form

{xi + �ixn+1∣�i ∈ F2}
n
i=1
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and x1, . . . , xn is the standard basis. This can be easily shown by induc-
tion on n.

Indeed if n = 2 and {v1, v2} = {v1, x1+x2+x3} is a basis for S, then
{v1, v1 + x1 + x2 + x3} is as well and since 0 ∕= v1 ∕= x1 + x2 + x3, we see
that v1 + v2 =

∑3
i=1 �ixi where at least one �i is zero.

Now we induct on n. We consider An−1 the (n−1)-Lie algebra defined
by

[vi1 , . . . , v̂ij , . . . , vin−1
]n−1 = [vi1 , . . . , v̂ij , . . . , vin−1

, vn] = vij

where ik ∕= n for all k. By the induction hypothesis, {xi + �ixn+1}
n+1
i=1,∕=n

is a basis for An−1 and in turn, {xi + �ixn+1, vn}
n+1
i=1,∕=n is a basis for A.

We note that

vn =
n+1∑

i=1,∕=n

tixi + xn,

otherwise we do not have a basis. We observe

vn −

n+1∑

i=1,∕=n

ti(xi + �ixn+1) = xn +

n+1∑

i=1,∕=n

ti�ixn+1.

Replacing vn with the right hand side above, we obtain {xi+�ixn+1}
n
i=1

as a basis for A where �n =
∑n+1

i=1,∕=n ti�i. Using this basis, we note the
only non-zero product is

w = [x1 + �1xn+1, . . . , xn + �nxn+1] = xn+1 +
n∑

i=1

�ixi.

But w ∈ S if and only if w =
∑n

i=1 ti(xi + �ixn+1) if and only if
�i = ti, for all i and

∑n
i=1 ti�i = 1. As a result

n∑

i=1

ti�i =

n∑

i=1

�2
i =

∑
�i = 1.

Hence w ∈ S if and only if
∑

i �i = 1.
On the other hand, v =

∑n+1
i=1 xi ∈ S if and only if v =

∑n
i=1(xi +

�ixn+1) which is equivalent to the fact that
∑

i �i = 1. This completes
the proof and the paper.

Acknowledgement

The author would like to thank: Ernie Stitzinger for guidance and pa-
tience, Ellison Anne Williams for love and support, Ellijah Williams



M. P. Williams 115

for dancing, the referee for giving remarkable insight in simplifying the
proofs, Vyacheslav Futorny for accepting this paper and God for either
doing or making all of the above happen.

References

[1] Bela Bollobas, Graph Theory : An Introductory Course, Springer Verlag, New
York (1979).

[2] Donald W. Barnes; Humphrey M. Gastineau-Hills, On the Cohomology of Soluble
Lie Algebras, Math. Zeitsch. 101 (1967) 343–349.

[3] Donald W. Barnes; Humphrey M. Gastineau-Hills, On the Theory of Soluble Lie
Algebras, Math. Zeitschr. 106 (1968) 343–354.

[4] Donald W. Barnes; Martin L. Newell, Some Theorems on Saturated Homomorphs
of Soluble Lie Algebras, Math. Zeitschr. 115 (1970) 179–187.

[5] Chao, Chong-Yun, A nonimbedding theorem of nilpotent Lie algebras. Pacific J.
Math. 22 (1967), 231–234.

[6] V. T. Filippov, n-Lie Algebras, (Russian) Sibirskii Mathimaticheskii Zhurnal 26
(1985), no. 6, 126–140.

[7] Michael Peretzian Williams, Nilpotent N-Lie Algebras, Pending Publication.

Contact information

M. P. Williams Department of Mathematics, Box 8205, NC
State University, Raleigh, NC 27695-8205
E-Mail: skew1823@yahoo.com

Received by the editors: 22.02.2005
and in final form 12.10.2009.


