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ABSTRACT. A t-AP is a sequence of the form a,a +d, ...,
a+(t—1)d, where a,d € Z. Given a finite set X and positive integers
d, t, aj,as,...,a;_1, define v(X,d) = |{(z,y) : z,y € X,y > «x,
y—ax =d}|, (a1,az,...,a:_1;d) = a collection X s.t. v(X,d-i) > a;
for1<i<t—1.

In this paper, we investigate the structure of sets with bounded
number of pairs with certain gaps. Let (¢t — 1,¢t — 2,...,1;d) be
called a t-AP distance-set of size at least t. A k-colouring of inte-
gers 1,2,...,nis a mapping {1,2,...,n} = {0,1,...,k — 1} where
0,1,...,k — 1 are colours. Let ww(k,t) denote the smallest posi-
tive integer n such that every k-colouring of 1,2,...,n contains a
monochromatic t-AP distance-set for some d > 0. We conjecture
that ww(2,t) > t? and prove the lower bound for most cases. We also
generalize the notion of ww(k,t) and prove several lower bounds.

1. Introduction

A t-AP is a sequence of the form a,a 4+ d,...,a + (t — 1)d, where
a,d € Z. For example, 3,7,11,15 is a 4-AP with a = 3 and d = 4.
Given a finite set X and positive integers d, t, a1, asg,...,a;_1, define

v(X,d) = {(z,y) 12,y € X,y >z,y —x=d}|,
(a1,a2,...,a¢4—1;d) = a collection X s.t. v(X,d-i) > a; for 1<i<t—1.

2010 MSC: Primary 05D10.
Key words and phrases: distance sets, colouring integers, sets and sequences.



2 ON COLOURING INTEGERS AVOIDING t-AP DISTANCE-SETS

The t-AP {z,z+d,...,x+ (t —1)d} (say T) has v(T,d-i) =t —i for
1 <i<t—1.0On the other hand, a set (t —1,t—2,...,1;d) (say Y) has
v(Y,d-i) >t —ifor 1 <i<t—1, but not necessarily contains a t-AP.

A k-colouring of integers 1,2,...,n is a mapping {1,2,...,n} —
{0,1,...,k—1} where 0,1, ...,k — 1 are colours. Let ww(k,t) denote the
smallest integer n such that every k-colouring of 1,2,...,n contains a

monochromatic set (¢t —1,t —2,...,1;d) for some d > 0. Here, (¢t —1,t —
2,...,1;d)is at-AP distance-set of size at least t. The existence of ww(k,t)
is guaranteed by van der Waerden’s theorem [1]. Given positive integers k,
t, and n, a good k-colouring of 1,2, ... n contains no monochromatic t-AP
distance set. We call such a good k-colouring, a certificate of the lower
bound ww(k,t) > n. We write a certificate as a sequence of n colours each
in {0,1,...,k — 1}, where the i-th (i € {1,2,...,n}) colour corresponds
to the colour of the integer i.

A certificate of lower bound ww(k,t) > n that avoids a monochro-
matic arithmetic progression, may still be invalid, since it may contain a
monochromatic distance set. For example, while looking for a certificate
of lower bound of ww(2,4), if the set X = {1,2,3,5,9,10} (which does
not contain a 4-AP) is monochromatic, then the colouring is “bad” as
v(X,1) =3, v(X,2) =2, and v(X,3) = 1.

In this paper, we perform computer experiements to observe the
patterns of certificates of ww(k,t) > n. We conjecture that ww(2,t) > t
and prove the lower bound for most cases. We also generalize the notion
of ww(k,t) and provide several lower bounds.

2. Some values and bounds

With a primitive computer search algorithm, we have computed the
following values and bounds of ww(k,t). Theorem 1 gives a lower bound
for ww(k,t). A computed lower bound is presented only if it improves
over the bound given by Theorem 1.

Theorem 1. Given k > 2,t > 3, if t < 2k + 1, then
ww(k,t) > k(t —1)(t —2).
Proof. Let n = k(t — 1)(t — 2) and consider the colouring
FoiL2,...nt = {0,1,... k—1}.
Let X; = {x € X : f(x) =i}. Take the certificate
(0111 (k- )2,
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TABLE 1. ww(k,t)

k/t 3 4 5 6 7 8
2 9 19 33 43 64 85
3 17 39 > 56 > 67 > 97 > 121
4 33 > 70 > 85 > 102 > 134

5 > 44 > 86 > 135 > 141 > 181 > 242
6 > 56 > 106 > 175 > 221 > 254 > 287
7 > 73 > 142 > 214 > 278 > 298 > 380
8 > 91 > 168 > 246 > 338 > 390 > 484

9 > 115 > 198 > 302 > 398 > 478 > 567
10 | > 127 > 233 > 365 > 464 > 558 > 691
11 > 146 > 275 > 417 > 581 > 672 > 806
12 | > 157 > 315 > 474 > 649 > 769 > 927
13 | > 174 > 337 > 550 > 760 > 840 > 1085
14 | > 198 > 405 > 594 > 828 > 949 > 1220
15 | > 229 > 434 > 666 >904 > 1087 > 1334
16 | > 230 > 493 > 784 > 1015 > 1236 > 1517
17 | > 270 > 525 >849 > 1082 > 1375 > 1676
18 | > 298 > 589 >932 > 1211 > 1509 > 1841
19 | > 337 > 629 > 0988 > 1338 > 1635 > 2027
20 | > 348 > 689 > 1098 > 1445 > 1850 > 2249
21 > 364 > 756 > 1179 > 1561 > 2014 > 2487
22 | > 401 > 824 >1288 > 1701 > 2153 > 2632
23 | > 422 >890 >1354 > 1868 > 2249 > 2820
24 | > 476 > 948 > 1459 > 1952 > 2563 > 3107
25 > 500 >1033 > 1592 > 2125 > 2746 > 3284

We show that for each d, there exists 7 with 1 < j < ¢ —1 such that
v(X;,d-j) <t—jforeachie {0,1,...,k— 1}. The largest difference
between two monochromatic numbers in the certificate is

n—(k—1)(t-1)—1=(t—-1)(k(t—2)—k—1)—1<k(t—1)(t—3).

Since the existence of a monochromatic set (t —1,t —2,...,1;d) in X
requires v(X;,d-(t—1)) > 1, we have d < k(t — 3). We have the following
cases:

(a) 1<d<k—1:Take z,y € {1,2,...,n} such that y = x +d(t — 1).
But by our choice of d, we have f(y) = (f(z) +d) mod k # f(x), that
is,  and y cannot be monochromatic. So, v(X;, (t —1)-d) =0 < 1 for
eachi€{0,1,...,k—1}.

(b) k<d<t—3:Take z,y € {1,2,...,n} such that y = 2+ d(t — a)
where a is such that (t —3)(t —a) < (t—1)(k—1) and k(t —a) > k, which
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gives us a bound

—(t_l)(k_l)\agt i
t—3
Such an a exists since
(t—1)(k—1) 2(k — 1) 2(k — 1)
- k14— k14— >k
t—3 + t—3 +(2k—|—1)—3

(c) d =t — 2: In each block of t — 1 colours, there is one pair of
integers at distance ¢ — 2, and there are ¢t — 2 such blocks for each colour.
So, v(X;,1-d)=v(X,t—2)=t—2<t—1foreachi € {0,1,...,k—1}.

(d) (t—1)<d< (k—1)(t—1): Take z,y € {1,2,...,n} such that
y=z+d=x+q(t—1)+r wherel <¢g<k—-1land0<r<t—2
Suppose & = ¢, (t — 1) + r, with 0 <7, <t — 2. Then

f(x) =¢q, mod k;
fy)=(f@)+q+[(r+rz)/(t—1)]) mod k.

If r > 0, then ¢ < k—2, which implies ¢+ | (r+7;)/(t—1)] < (k—2)+1 =

k—1.If r = 0, then ¢ < k — 1, which implies ¢ + [(0+7,)/(t —1)] <

(k—1)+ 0 = k — 1. Therefore, f(y) # f(z); and = and y cannot be

monochromatic. So, v(X;,d-1) =0<t—1 for each i € {0,1,...,k —1}.
Since t < 2k + 1, we have

d < k(t—3) =kt — 3k = (kt — k — 2k)
<(kt—k—(t—1)=(k—1)(t—1).

Hence, we are done and there is no monochromatic t-AP distance set
in X. ]

Conjecture 1. For t > 3, ww(2,t) > t2.
Lemma 1. Fort >3 and t # 2% with u > 2, ww(2,t) > t2.

Proof. Let t = 2% +v with 1 <v <2 —1. Let n =t — 1 and X =
{1,2,...,n}, and consider the colouring f : X — {0,1}. Let m =n—1—
(t—1)=¢q-2%+rwith0<r<2%—1.

Now, take the certificate

01t-1(02"12*)9/20r, ifg=0 (mod 2);
Olt—1(02"12“)Lq/2J02u1T, ifg=1 (mod 2).
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We need to show that for each d, there exists j with 1 < j < t—1
such that v(X,d-j) < t — j. Since the existence of a monochromatic
set (t—1,t—2,...,1;d) in X requires v(X,d - (t — 1)) > 1, we have
d(t—1)<t2—1 that is, 1 < d <t. Let X; ={z € X : f(z) =1}.

Suppose ¢ = 0 (mod 2). Then we have the following two cases:

(a) d=1 (mod 2): Take z,y € X such that y =z +d-2".

(al) v+ 1<z <y<n—r:Since f(z) € {0,1} and f(z+1-2%) =
(f(x)4+1) mod 2 # f(z), we have f(y) = f(x +d-2") # f(z). So, two
monochromatic integers cannot both be in {v+1,v+2,...,n —7r}.

(a2) 2 <z <wvandy <n—r:Since f(x) =1and f(z+1-2%) =
1 = f(z), we have f(y) = (x +d-2%) = f(x). So, there are exactly v — 1
pairs of integers with colour 1 at distance d - 2%.

(a3) x =1and y <n—r: Since f(z) =0, f(x+1-2%) =1# f(z),
and 1+ 2" > v, using case (i) we have 0 pair of integers with colour 0 at
distance d - 2*.

(a4) > land n—r+1 < y < n: Since f(y) =0 and r < 2%, we
have f(y —1-2%) = 1, which implies f(y —d-2%) =1 # f(y). That is,
adding r trailing zeros does not change the number of monochromatic
pairs at distance d - 2“.

Therefore, for each ¢ € {0,1}, we have v(X;,d-2%) <v—1< v =t-2"

(b) d = 0 (mod 2): Let d = 2" - d,, with d, being an odd num-
ber and w > 1. Then v(X;,d-2"7") = v(X;,d, - 2%) < v—-1< v =
t — 2" (by case (7)) for each i € {0,1}.

The case ¢ = 1 (mod 2) is similar. O

Lemma 2. Suppose t = 2% for some u > 2 and t — 1 is prime. Then for
each r € {1,2,...,u} and for each d, € {1,3,...,2%"" — 1}, there exists
s€{1,2,3,...,d, — 1} such that d, divides s(t —1) — 2“7 ".

Proof. Since t — 1 is prime, we have ged(t — 1,d,) = 1, and hence the
linear congruence (¢t — 1)s = 27" (mod d,) has a solution. Extended
Euclid Algorithm yields z,y € Z such that (t — 1) -2 4+ d, -y = 1. Then
s = (x-2""") mod d,. Since d, fr and d, J2“7", we have s # 0. Hence
se{l,2,...,dy—1}. O

Lemma 3. Ift = 2" for u > 2 with t — 1 prime, then ww(2,t) > t2.

Proof. Take the certificate 0(1=10*~1)*/21*=2. We have the following two
cases:
(a) d=1 (mod 2): Take z,y € X such that y =z +d- (¢t —1).
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(al) 2 <z < t?—t+1=n—(t—2): Since f(x) € {0,1} and
flx+1-(t—-1)) = (f(x) +1) mod2 # f(z), we have f(y) = f(z +
d-(t—1)) # f(x). So, two monochromatic integers cannot both be in
{2,3,...,n—(t—2)}.

(a2) x =land y < n—(t—2): Since f(z) =0, f(x+1-(t—1)) =1#
f(z), using case (i) we have 0 pair of integers with colour 0 at distance
d-(t—1).

(@a8) z > landn— (t—2)+1 <y < n: Since f(y) = 0, we have
fly—1-(t—1)) =1, which implies f(y —d-(t—1)) =1 # f(y). That is,
adding t — 2 trailing ones does not change the number of monochromatic
pairs at distance d - (t — 1).

Therefore, for each i € {0,1}, we have v(X;,d- (t—1)) =0 < 1.

(b) d=0 (mod 2): For d € {2,4,...,t} and j € {1,2,...,t — 1},

2<d-j<t(t—1)=1>—1

For a given d € {2,4,...,t}, we show that there exists (j,w) with
je{l,2,...;t—1}andw € {1,3,5,...,t—1} such that d-j = w(t—1)—1.
In that case, since d-j < t(t—1), we have w < ¢; and also since d-j is even,
w(t — 1) is odd, which implies w is odd, that is, w € {1,3,5,...,t — 1}.

Let d = 2"d, with 1 < r < v and odd number d, € {1,3,...,2*""—1}
(since d < t = 2%). For a w to exist and satisfy d-j = w(t—1) —1, we need

2"dy-j=w(t—1)—1=wt — (w+1),
that is, 2" divides w 4 1 (since 2" divides wt = w2"). Let w = s-2" — 1
with s € {1,2,...,d,—1}. The chosen s requires to satisfy that d, divides
(w(t—1)—1)/2" =s(t —1) —2"7". By Lemma 2, such an s exists.

It can be observed that for a given d € {2,4,...,t},if d-j; = wy - (t —

1) — 1 for some j; € {1,2,3,...,t — 1} and wy € {1,3,5,...,t — 1}, then
d-jo=wy-(t—1)+1,

with j1 + jo =t — 1 and wy + wy = d. We claim that v(Xy,d-t;) <t — j;

for at least one i € {1,2}. If v(X1,d - j1) < t — j1, then we are done.

Suppose

1 t w—1
V(X]"d.]:l):y(X17w1(t_1)_1):§— 12

>t_j17

which implies ¢/2 4 (w1 — 1)/2 < ji. Now,

: t wy — 1 t d—w —1
v(X1,d-jo) = (X, wa(t —1)41)=-— =~ =- =L =

2 2 2 2
t w—1 d . d ) d .
= - l—— <j1+l—= =t—1—jo+l—— < t—js.
2—1— 5 + 5 n+ 5 72+ 5 <t—)2
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Similarly, we can show that v(Xy,d-j) <t—j forsome j€{1,2,...,t — 1}.
]

3. Generalized distance-sets

Here we consider variants of ww(k,t) with different variations of
parameters in a distance set.

Let gww(k,t;a1,ag,...,a;—1) (with a; > 1) denote the smallest posi-
tive integer n such that any k-colouring of 1,2, ..., n contains monochro-
matic set (a1,as,...,a;—1;d) for some d > 0. In this definition,

guw(k,t;t —1,t —2,...,1) = ww(k,t).

Observation 1. Let us write gww(2,t; a1, as,...,a;-1) as gww(2,t,7),
where a; = r for 1 <7 <t — 1. It is trivial that gww(2,t,t—1) > ww(2,t).
Table 2 contains a few computed values of gww(2,t,r).

TABLE 2. gww(2,t,7)

t/r 1 2 3 1 5 6 7 8
3 9 13

4 13 21 29

5 33 37 41 49

6 41 45 57 65 74

7 49 53 69 85 92 >96

8 57 61 85 105 114 >118 > 123

9 129 133 137 >140 >144 >148 >152 > 156
10 145 149 153

11 161 165 169

12 177 181 185

13 193 197 > 200

14 209 213 > 216

15 225 229 > 232

16 241 245 > 248

17 513 > 516

33 | >2048 > 2052

65 | > 8192

Lemma 4. Foru>1 and 1 < v < 2%,
guw(2,2% +v,1) > (2% 4+ v —1)2T 4 1.

Proof. Considert = 2%+v (t > 5) and let n = (2¥+v—1)2¢+! = (t—1)2v+!
and X = {1,2,...,n}. Consider the colouring f : X — {0,1} and take
the certificate (0%"12")!~1.
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Let X; = {x € X : f(x) = i}. We claim that this 2-colouring of X
does not contain a monochromatic set (1,1,...,1;d) for any d > 0, that
is, for each d with 1 < d < 2%*! and for each i € {0,1}, there exists
je{1,2,...,t— 1} such that v(X;,d- j) = 0.

(a) d =1 (mod 2): Take z,y € X such that y = x + d - 2*. Since
d is odd, if f(z) = 0, then f(x + d-2") = 1 and vice-versa. Hence,
v(X;,d-2%) =0 for each i € {0,1}

(b) d =0 (mod 2): Let d = 2" - d,,, with d, being an odd number and
w > 1. Then for each i € {0, 1},

v(Xi,d-2"7") = v(X;,d, - 2") = 0 (by case (a)).

So, X does not contain a monochromatic set (1,1,...,1;d) for any d > 0.
O

Conjecture 2. For u > 1 and 1 < v < 2%,

guw (2,2 +v,1) = (2* + v — 1)2%T1 4+ 1.
Lemma 5. Foru>2 and 1 <v < 2%,

quw(2,2% 4+ v,2) > (2% + v —1)2¢T! 5.

Proof. Let t =2%4+wv (t = 5),n = (2% +v—1)2u ! 44 = (t —1)2u+ 4 4
and X = {1,2,...,n}. Consider the colouring f : X — {0,1} and
take the certificate 000(10%“~211012"~200)¢~2(10%"~211)(012"~3)011. We
show that this colouring of X does not contain a monochromatic set
(2,2,...,2;d) for any d > 0, that is, for each d with 1 < d < 2**! and for
each i € {0, 1}, there exists j € {1,2,...,t— 1} such that v(X;,d-j) < 1.

Note that the largest difference between two integers with colour 0 in
the colouring is (n —2) — 1 =n—3 = (t — 1) - 2*" + 1 = p (say); and
the largest difference between two integers with colour 1 in the colouring
isn—4=(—-1)-2¢" =p—1.

(a) d =2"*!: Note that d- (t —1) = (t —1)2"! =n -4 =p—1. The
only pair (z,y) with f(z) = f(y)=0andy=ax+d-(t—1)is (1,n —3)
and the only pair (z,y) with f(z) = f(y)=landy=z+d-(t—1) is
(4,n). Hence, we have v(X;,d- (t — 1)) =1 for each i € {0,1}.

(b) d =1 (mod 2): Write the certificate as

000A0A1 A A2t75, A2t74011,

where A; = 1027311 if i =0 (mod 2), A; = 0127300 if i = 1 (mod 2),
and C' = 012"730. Take z,y € {4,5,...,n—2%—2} such that y = 2 +d-2%
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for some odd d < 2%*! 4 1. Suppose = 3 +i - 2% + j, that is, f(z) is the
J-th (1 <j <2%) bitin A;. Then y =3+ (i +d) - 2% + 7, that is, f(y) is
the j-th bit in A; 4. If i =1 (mod 2), then (i +d) =0 (mod 2) (since d
is odd), and vice-versa. Therefore, f(z) # f(y). So, two monochromatic
integers at distance d - 2" cannot both be in {4,5,...,n — 2% — 2}.

Now, take z,y € {4,5,...,n—2} such that y = x+d-2% and y € {n—
2% —1,n—2%...,n—2}. Since |C| < 2", z must be in {4,5,...,n—2"—2}.
With similar reasoning as above, it can be shown that two monochromatic
integers at distance d - 2% cannot both be in {4,5,...,n — 2}. Following
are the remaining cases:

(b1) Ifx = 1, then x+d-2" = 3+d-2%—2 = 3+(d—1)-2"+(2"=2) =y
(say). We have f(z) = 0. Again (2% — 2)-th bit in A;_; is also zero since
dis odd and A4 = 10%“7311.

(b2) If z = 2,3 (where f(x) = 0), then with similar reasoning as
above, f(z +d-2") = 1.

(b3) If y =n — 1 (where f(y) = 1), then

y—d-2%=(t—1)2"" 3 -qd.2"
=34+ (2t —3—d)2" + 2" = x (say).
Since d is odd, 2t — 3 — d is even, that is, Ag;_3_4 = 102“7311. The 2¥-th
element in Ag;_3_4 is one, that is f(x) = 1.
(b4) If y = n (where f(y) = 1), then
y—d-2%=(t—1)2"" 442"
=3+ (2t —2—d)2" + 1=z (say).
Since d is odd, 2t — 2 — d is odd, that is, Ag_o_q = 012“7300. The 1-st
element in Ag;_o_g4 is zero, that is f(z) = 0.
Hence v(X;,d-2%) <1 for each i € {0,1}.

(c) Otherwise (d # 2“™! and d = 0 (mod 2)): Let d = 2% - d,,, with
d, being an odd number and w > 1. Then for each i € {0,1},

v(Xi,d-2""") =v(X;,d, - 2%) < 1 (by case (b)).

Therefore, X does not contain a monochromatic set (2,2,...,2;d) for
any d > 0. O

Conjecture 3. Forr > 2 and t > 2" + 1,

gquww(2,t,7) = (t — 1)2U082 C=1I+1 L or 4 1
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Observation 2. We observe the following experimental results:
(a) Primitive search gives gww(2,10,9) > 186;
(b) Using the certificate

01t+1(0t—11t—1)t/2+1’ ift=0 (mod 2);
01t+1 (Ot—llt—l)ttﬂﬁlot—l, ift=1 (mod 2)7

we obtain the following lower bounds with 12 < ¢ < 48:

gww(2,12,11) > 168, gww(2,14,13) > 224, gww(2,17,16) > 323,
gww(2,18,17) > 360, gww(2,20,19) > 440, gww(2,24,23) > 624,
guww(2.30,29) > 960, gww(2,32,31) > 1088, gww(2,33,32) > 1155,

gqww(2,38,37) > 1520, guww(2,42,41) > 1848, gww(2,44,43) > 2024.
(c) 035(11801%)2120017(119018)511901712001014 proves gww(2, 19, 18) > 399.
(d) 0%1121021(122021) 10115 proves gww(2,22,21) > 528.

Conjecture 4. For t > 4, gww(2,t,t — 1) > (¢t + 1)

Conjecture 5. For t > 5, gww(2,t,t — 1) < 2t+L,

We do not have enough data to make stronger upper bound conjecture
for gww(2,t,t — 1), but it may be possible that gww(2,t,t — 1) < t3.
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