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Abstract. Locally step groups at which all subgroups are or

normal, or have Chernikov’s derived subgroup are studied.

Let G be a group and ℒnorm(G) be a family of all normal subgroups
of G. Study of the influence of the family ℒnorm(G) on the structure
of the group G was begun a long time ago. R. Dedekind in his clas-
sical paper [1] described the finite groups, which subgroups are normal
(i.e. the family ℒnorm(G) consists of all subgroups). Later, R. Baer in a
paper [2] extended the description of R. Dedekind on arbitrary groups.
Let’s note that the groups, any subgroup of which is normal, were later
called Dedekind groups. O.Y. Schmidt, in his works [3] and [4], began
the study of the (finite) groups, in which the family ℒnon−norm(G) of all
non-normal subgroups satisfies certain strong enough restriction. So in
the papers [3] and [4] he studied the structure of finite groups, in which
either ℒnon−norm(G) is a conjugacy class, or is the union of two conjugacy
classes. S.N. Chernikov in a paper [5] started the study of infinite groups,
in which the family ℒnon−norm(G) satisfies certain natural finiteness con-
dition. This work caused a large cycle of works devoted to the study of
infinite groups, which family ℒnon−norm(G) satisfies certain natural re-
striction. Here we won’t write in detail about these researches, they are
examined in detail in the book of S.N. Chernikov, [6], and the review [7].
Here we will touch upon the works, directly related to this work. G.M.
Romalis and N.F. Sesekin in a paper [8-10] started to study the groups,
in which the family ℒnon−norm(G) consists of abelian subgroups. They
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called such groups metahamiltonian groups. The finite metahamiltonian
groups have also been studied in papers [11, 12]. The full description
of metahamiltonian groups have been obtained in a series of works of
N.F. Kuzennyj and N.N. Semko [13-19]. The natural continuation of
such researches is a consideration of a situation, when the subgroups of
the family ℒnon−norm(G) belong to the class of groups, which are a nat-
ural extension of the class of abelian groups. Thus in papers [20, 21]
there have been considered the groups, in which the subgroups of a fam-
ily ℒnon−norm(G) have finite derived subgroups or are FC-groups. In this
work, the researches in this area continue. Since the Chernikov groups are
a natural extension of the finite groups, then the groups with Chernikov
derived subgroups are a natural extension of the groups with finite de-
rived subgroups. In this work, we start the study of groups, in which
every subgroup is normal or has a Chernikov derived subgroup.

Lemma 1. Let G be a group whose subgroups either are normal or have
Chernikov derived subgroups. Then the following assertions hold:

1. If H is a subgroup of G then every subgroup of H either is normal
or has Chernikov derived subgroup.

2. If L is a normal subgroup of G then every subgroup of G/L either
is normal or has Chernikov derived subgroup.

3. If S is a subgroup of G such that [S, S] is not Chernikov subgroup,
then a factor-group G/S is Dedekind.

All these assertion are almost obvious.

Lemma 2. Let G be a group whose subgroups either are normal or have
Chernikov derived subgroups. Suppose that A is an abelian torsion-free
subgroup of G. If the normalizer NG(A) contains an element g of finite
order, then g ∈ CG(A).

Proof. Suppose the contrary, let g /∈ CG(A). Let m be an arbitrary posi-
tive integer and put Hm = ⟨Am, g⟩. Since Am is a characteristic subgroup
of A, Am is ⟨g⟩-invariant, so that ⟨Am, g⟩ = Am ⋋ ⟨g⟩. It implies the in-
clusion [Hm, Hm] ⩽ Am. Assume that a subgroup ⟨g,Am⟩ is abelian.
Then we have (ag)m = (am)g = am for each element a ∈ A. It follows
that (aga−1)

m
= 1. Since A is torsion-free, we obtain that aga−1 = 1

or ag = a. This shows that g ∈ CG(A), and we obtain a contradiction
with our assumption. This contradiction implies the subgroups ⟨g,Am⟩
are non-abelian for all m ∈ N . In turn, it follows that [Hm, Hm] are
non-identity for every m ∈ N . An inclusion [Hm, Hm] ⩽ Am shows
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that [Hm, Hm] is torsion-free. In particular, it is not Chernikov. In
this case a subgroup ⟨g,Am⟩ is normal for each m ∈ N . Therefore
⟨g⟩ = ∩m∈N ⟨g,Am⟩ is likewise normal. An equation ⟨g⟩∩A = ⟨1⟩ implies
that g ∈ CG(A), what proves a result.

Lemma 3. Let G be a finitely generated group. If G includes a subgroup
L of finite index such that [L,L] is a Chernikov subgroup, then G is
abelian-by-finite.

Proof. Put K = [L,L]. The finiteness of ∣G : L∣ implies that L is finitely
generated (see, for example, [22, Theorem 1.41]). Let D be a maximal
divisible subgroup (divisible part) of a Chernikov subgroup K. Then
L/D includes a normal finite subgroup K/D such that L/K is abelian
and finitely generated. In particular, L/D is polycyclic-by-finite. Then
L/D is residually finite (see, for example, [23, Chapter 1, Theorem 1]).
It follows that L/D includes a normal subgroup F/D of finite index
such that (F/D) ∩ (K/D) = ⟨1⟩. This shows that F/D is an abelian
subgroup of finite index. The finiteness of ∣G : F ∣ implies that F is finitely
generated. Being metabelian and finitely generated, F satisfies a maximal
condition on normal subgroups [24, Theorem 3]. On the other hand, if D
is non-identity, it has an ascending series of G-invariant subgroups. This
contradiction shows that D = ⟨1⟩, i.e. L ∼= L/D is abelian-by-finite. The
fact that ∣G : L∣ is finite proves that G is abelian-by-finite.

Lemma 4. Let G be a group whose subgroups either are normal or have
Chernikov derived subgroups. Suppose that every subgroup of finite in-
dex has non-Chernikov derived subgroup. Let R be an intersection of all
subgroup of finite index. Then either G/R is abelian, or G has a normal
subgroup V ⩾ R such that G/V is a quaternion group and V/R is abelian.

Proof. Since every subgroup of finite index of G has non-Chernikov de-
rived subgroup, then every subgroup H of finite index is normal in G.
By Lemma 1 G/H is Dedekind group. Let

M = {X∣X is a subgroup of finite index in G}, R = ∩M.

By a classical Remak theorem G/R is isomorphic to some subgroup
of

∏
H∈M

G/H. Suppose that G/R is non-abelian. Then G has a normal
subgroup U of finite index such that G/U is a non-abelian Dedekind
group. In this case G/U = Q/U×V/U where Q/U is a quaternion group,
V/U is a direct product of an elementary abelian 2-subgroup and periodic
abelian subgroup without the elements of order 2 (see, for example, [25,
5.3.7]). Let W be a subgroup of V having finite index. Then W has finite
index in G and hence is normal in G. A factor-group G/W is non-abelian
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and Dedekind. If we suppose that V/W is non-abelian, then V includes
a D-invariant subgroup Y such that V/Y is a quaternion group. Then
G/Y is quaternion-by-quaternion. On the other hand, G/Y is Dedekind.
This contradiction shows that V/W is abelian. Let

S = {X∣X is a subgroup of finite index in V }, T = ∩S.

Clearly S is a subfamily of M, so that T ⩾ R. Using again Remak’s, we
obtain that V/T is isomorphic to a subgroup of

∏
W∈S

V/W . Since the
last group is abelian, V/T is also abelian. Let X ∈ M, then X ∩ V has
finite index in V , that is X∩V ∈ S. It follows that S = {X∩V ∣X ∈ M}.
Then

R = R ∩ V = (∩X∈MX) ∩ V = ∩X∈M(X ∩ V ) = T.

Hence V/R is abelian.

Corollary. Let G be a finitely generated group whose subgroups either
are normal or have Chernikov derived subgroups. If G is soluble-by-finite,
then G is abelian-by-finite.

Proof. If G has a subgroup L of finite index whose derived subgroup is
Chernikov, then Lemma 3 shows that G is abelian-by-finite. Therefore we
can suppose that every subgroup of finite index of G has non-Chernikov
derived subgroup. Denote by R the intersection of all subgroup having in
G finite index. By Lemma 4 either G/R is abelian, or G includes a normal
subgroup V such that V ⩾ R, G/V is a quaternion group and V/R is
abelian. The finiteness of G/V implies that V is finitely generated. Being
finitely generated and abelian-by-finite, V has the proper subgroups of
finite index. It follows that R ∕= V . Since V/R is abelian, [V, V ] =
K ∕= V . Let S be a soluble radical of K. Clearly S is G-invariant.
Suppose that KS. Then K/S is finite and non-soluble. A factor-group
V/S is finite-by-abelian. Being finitely generated, V/S is polycyclic-by-
finite. Then V/S is residually finite (see, for example, [23, Chapter 1,
Theorem 1]). It follows that V/S has a normal subgroup E/S of finite
index such that (E/S) ∩ (K/S) = ⟨1⟩. In particular, E has finite index
in G, therefore it is normal in G. The relations

X/S ∼= (X/S)/((E/S) ∩ (X/S)) ∼= (X/S)(E/S)/(E/S) ⩽ (G/S)/(E/S)

and G/E ∼= (G/S)/(E/S) show that G/E includes a finite non-soluble
subgroup. On the other hand, we have above observed that every finite
factor-group of G is Dedekind, in particular, it is soluble. This contradic-
tion shows that K = S, i.e K is soluble. Suppose that K is non-identity.
In this case U = [K,K] ∕= K, and V/U is metabelian and non-abelian.
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Being finitely generated, V/U is residually finite [26, Theorem 1]. It fol-
lows that a subgroup U is an intersection of some subgroups of finite
index. On the other hand, R is an intersection of all subgroups hav-
ing in V finite index. Therefore R ⩽ Y . This contradiction shows that
K = ⟨1⟩, so that V is abelian. Since G/V is finite, G is abelian-by-finite,
as required.

Lemma 5. Let G be a finitely generated group whose subgroups either are
normal or have Chernikov derived subgroups. Suppose that G is torsion-
free and includes a normal abelian subgroup A such that G/A is a finite
cyclic group. Then G is abelian.

Proof. Let x be an element of G such that G/A = ⟨xA⟩. Since G is
torsion-free, 1 ∕= xm ∈ A for some m ∈ N . In particular, C = CA(x) ∕=
⟨1⟩. It is not hard to prove that C is a pure subgroup of A. If C = A,
then G is abelian, and all is proved. Therefore suppose that C ∕= A.
Clearly C is ⟨x⟩-invariant subgroup. The element xC has finite order in
a factor-group G/C. Using Lemma 2 we obtain that xC ∈ CG/C(A/C).
It follows that G/C is abelian. Since A is abelian, the choice of C shows
that C ⩽ �(G). In particular, G is nilpotent. Being torsion-free and
abelian-by-finite, G is abelian.

Corollary 1. Let G be a finitely generated group whose subgroups ei-
ther are normal or have Chernikov derived subgroups. Suppose that G is
torsion-free and soluble-by-finite. Then G is abelian.

Proof. By Corollary to Lemma 4 G has a normal abelian subgroup A
such that G/A is finite. We have G = ∪1⩽j⩽kAxj for some elements
x1, . . . , xk. Lemma 5 shows that a subgroup ⟨A, xj⟩ is abelian, 1 ⩽ j ⩽ k.
An equation G = ∪1⩽j⩽k⟨A, xj⟩ proves now that a group G has a center
of finite index (see, for example, [27, Theorem 7.4]). In particular, G is
an FC-group. We observe now that a torsion-free FC-group is abelian
(see, for example, [27, Theorem 1.6]).

Corollary 2. Let G be a locally (soluble-by-finite) group whose subgroups
either are normal or have Chernikov derived subgroups. Suppose that G
is torsion-free. Then G is abelian.

Lemma 6. Let G be a locally (soluble-by-finite) group whose subgroups
either are normal or have Chernikov derived subgroups. Then the set of
all elements of G, having finite order, is a (characteristic) subgroup of G.

Proof. Let x, y be two arbitrary elements of finite order and let F = ⟨x, y⟩.
Suppose that a subgroup F is infinite. By Corollary to Lemma 4 F
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includes a normal abelian subgroup A of finite index. Then A is also
finitely generated. In this case there exists a positive integer k such that
K = Ak is torsion-free and non-identity. Furthermore, A/Ak is finite, so
that G/K is likewise finite. Lemma 2 shows that [K,x] = ⟨1⟩ = [K, y].
An equation F = ⟨x, y⟩ shows that K ⩽ �(F ). In other words, the center
of G has a finite index, in particular, F is an FC-group. However, the
set of all elements of finite order of an FC-group is a subgroup (see,
for example, [27, Theorem 1.6]). In particular, ⟨x, y⟩ is finite. This
contradiction proves a result.

Corollary 1. Let G be a locally (soluble-by-finite) group whose sub-
groups either are normal or have Chernikov derived subgroups. Then
every finitely generated subgroup of G is central-by-finite. In particular,
G is locally FC-group.

Proof. Let F be an arbitrary finitely generated subgroup of G. Denote
by T the subset of all elements of F , having finite order. By Lemma 6
T is a characteristic subgroup of F . Corollary 1 of Lemma 5 proves that
F/T is abelian. In particular, the derived subgroup [F, F ] is finite. It
follows that F is an FC-group. However a finitely generated FC-group
is central-by-finite.

Corollary 2. Let G be a locally (soluble-by-finite) group whose subgroups
either are normal or have Chernikov derived subgroups. Then the derived
subgroup of G is periodic.

Proof. Denote by T the subset of all elements of G, having finite order.
Lemma 6 shows that T is a characteristic subgroup of G. A factor-group
G/T is torsion-free and, by Corollary 2 of Lemma 5, G/T is abelian.
Hence [G,G] ⩽ T .

Having put together everything proved above, we receive the following
main result of this work.

Theorem 1. Let G be a locally (soluble-by-finite) group whose subgroups
either are normal or have Chernikov derived subgroups. Then the follow-
ing assertions hold:

1. Every finitely generated subgroup of G is central-by-finite, in par-
ticular, G is a locally FC-group.

2. The derived subgroup of a group G is a locally finite subgroup. In
particular, if G is torsion-free, then G is abelian.
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We recall that a group G is called locally graded, if every finitely
generated subgroup of G has a proper subgroup of finite index. The class
of locally graded groups is very broad, it includes all locally residually
finite groups and all locally (soluble-by-finite) groups.

Theorem 2. Let G be a locally graded group whose subgroups either are
normal or have Chernikov derived subgroups. Then the derived subgroup
of a group G is locally finite. In particular, if G is torsion-free, then G
is abelian.

Proof. Denote If a group G includes a subgroup of finite index, having
Chernikov derived subgroup, then clearly G is soluble-by-finite. Therefore
we can assume, that every subgroup of finite index has non-Chernikov
derived subgroup. Let

M = {X∣X is a subgroup having non-Chernikov derived subgroup},

R = ∩M.

Thus, if H ∈ M, then H is normal in G and G/H is a Dedekind group
by Lemma 1. By a classical Remak theorem G/R is isomorphic to some
subgroup of

∏
X∈M

G/X. Since every Dedekind group either is abelian or
nilpotent of class 2, either G/R is abelian or nilpotent of class 2. (We can
noted, that it is possible that G = R). If H is a proper subgroup of R,
then by a construction of R, [H,H] is a Chernikov subgroup. Let H be an
arbitrary finitely generated subgroup of R. Since G is locally graded, H
includes a proper normal subgroup L of finite index. In particular, L is a
proper subgroup of R and by above L has a Chernikov derived subgroup.
It shows that L is soluble-by-finite. Corollary to Lemma 4 shows that L
is abelian-by finite. Hence and H is abelian-by-finite. If H = R, then we
obtain that R is abelian-by-finite, so that G is soluble-by-finite. Suppose
now that R has no finite set of generators. By above proved R is locally
(abelian-by-finite). By Theorem 1 a subgroup K = [R,R] is locally finite.
Then G/K is soluble. Using again Theorem 1 we obtain that a subgroup
P/K = [G/K,G/K] is locally finite. Since K and P/K is locally finite,
P is locally finite. Since G/P is abelian, [G,G] ⩽ P , in particular, [G,G]
is locally finite.

Corollary. Let G be a locally graded group whose subgroups either are
normal or have Chernikov derived subgroups. If G is periodic, then G is
locally finite.

References
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