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Abstract. One focus in group theory has been to establish

the properties of a finite group that can be written as the prod-

uct of two proper subgroups whose properties are known. The

investigation here will proceed in the other direction by establish-

ing conditions for when a finite group can be written as a product

of two proper subgroups and for when a specific proper subgroup

is part of a product of proper subgroups that equals the group.

A byproduct of this investigation is a classification of those finite

groups which cannot be written as the product of any two proper

subgroups.

Introduction

All groups are finite. A group G admits a proper factorization, or is
factorizable, if there are proper subgroups A and B of G such that G =
AB. Any factorization of G = AB into a product of proper subgroups A
and B results in a maximal factorization of G = M1M2, where A ≤ M1,
B ≤ M2 and both M1 and M2 are maximal subgroups of G. In [10],
Ore showed for solvable groups G, that if H and K are any two non-
conjugate maximal subgroups of G, then G = HK, and conversely that
any maximal factorization of G occurs this way.

Group factorizations have yielded significant results. For example, Itô
[5] showed that if G = AB with A and B abelian, then G is metabelian,
and Kegel [8] proved that if G = AB with A and B nilpotent, then
G is solvable. More recently, this approach has turned to investigating
groups which can be written as the product of two simple groups (a good
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46 Factorizations in finite groups

beginning reference is Walls [14]). An excellent reference on products of
groups is the book by Amberg, Franciosi, and de Giovanni [1].

The avenue of research described in the previous paragraphs motivates
the following two questions.

1. Given a group G, when can G be written as the product AB of two
proper subgroups A and B?

2. Given a specific proper subgroup A of G, when does there exist a
proper subgroup B of G such that G = AB?

The goal of this article is to answer these two questions. It should be
noted that question (1) reduces to the following: Which noncyclic groups
have the property that no pair of maximal subgroups are permutable?
Scott, in 13.1.5 of [12], showed that a finite solvable group has a proper
factorization if and only if it is not a cyclic p-group. A generalization of
this result is given in Section 2.

Preliminary results needed to address both questions will be presented
in Section 1. An answer to the first question will be given in Section 2
as a corollary to the classification of nonfactorizable groups. A nontriv-
ial group G is nonfactorizable if for all proper subgroups A of G there
does not exist a proper subgroup B of G such that G = AB. To begin
to answer the second question, an approach involving aS-groups will be
used. A group G is an aS-group if it has order 1 or if for every non-
trivial subgroup H of G there is a proper subgroup K of G such that
G = HK. In Section 3, it will be shown that the collection of aS-groups
forms a formation. The residual of this formation will be used to de-
termine proper factorizations. The results established through Section 3
will be applied in Section 4, where conditions for determining whether a
particular subgroup of a group is in a proper factorization for that group
will be examined.

The notation used is standard. The Frattini subgroup of a group G is
denoted by Φ(G), its commutator subgroup by G′, and its center by Z(G).
If H is a subgroup of G, the centralizer of H in G is denoted by CG(H)
and the index of H in G is denoted by [G:H]. In the situations where
the notation for writing a group G as a product of two of its subgroups A
and B causes confusion, writing G = AB will be replaced by G = A⋅B.
If A is a proper (normal) subgroup of G, it will be denoted by A < G
(A ⊲G). Finally, if two positive integers s and t are relatively prime, it
will be denoted by (s, t) = 1.
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1. Preliminary results

Consider a group G, and suppose that for a subgroup A of G there exists
a subgroup B of G such that G = AB. It is somewhat cumbersome to
only be able to refer to subgroup B using the factorization of G = AB.
To help with the terminology, the following definition is made.

Definition 1. A subgroup A of a group G has a supplement in G if
there exists a subgroup B of G such G = AB.

When a group G has a proper factorization G = AB for proper sub-
groups A and B, the subgroup B is referred to as a proper supplement
of A in G.

Lemma 1. Let N and A be proper subgroups of group G with N ⊲G and
N < A. If A/N has a proper supplement in G/N , then A has a proper
supplement in G.

Proof. Since there exist a proper subgroup B/N of G/N such that G/N =
A/N ⋅B/N , it follows that G = AB.

Lemma 2. Let A and H be subgroups of G such that A is proper in G
and A < H. If A has a proper supplement in G, then A has a proper
supplement in H.

Proof. The result follows if H = G. Assume H is a proper subgroup of
G. Since A has a proper supplement B in G, G = AB. By the Modular
Identity, H = G ∩ H = AB ∩ H = A(B ∩ H). If B ∩ H = {1}, then
A = H, a contradiction. If B ∩ H = H, then A < H ≤ B, another
contradiction. Thus A has a proper supplement in H.

The converse of Lemma 1 is not true as the group G = ⟨a, b ∣ a5 =
b4 = 1, ab = ba2⟩ indicates. Let N = ⟨a⟩ and A = ⟨a, b2⟩. The subgroup
A has a proper supplement ⟨b⟩ in G, yet A/N has no proper supplement
in G/N as it is cyclic of order 4. Likewise, the converse of Lemma 2 is also
not true as the group G = ⟨a, b ∣ a9 = b9 = 1, ab = ba⟩ indicates. Consider
the subgroups H = Φ(G) = ⟨a3, b3⟩ and A = ⟨a3⟩. The subgroup A has a
proper supplement in H as H = A×⟨b3⟩, yet A has no proper supplement
in G as A is contained in the Frattini subgroup of G.

The last lemma of the section is obvious and presented without proof.

Lemma 3. If G is a group such that G = HK for subgroups H and K,
then for any normal subgroup N of G, G/N = NH/N ⋅NK/N .

It should be noted that even if H and K are proper nontrivial sub-
groups of G, the same cannot be said for NH/N and NK/N in G/N .
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2. Nonfactorizable groups

To determine when a group G admits a proper factorization, a study of
nonfactorizable groups is essential.

Definition 2. A group G is nonfactorizable if ∣G∣ ∕= 1 and for all
proper subgroups A of G, there does not exist a proper subgroup B of G
such that G = AB.

The following proposition follows directly from Lemmas 1 and 3.

Proposition 1. Let G be a group and N be a proper normal subgroup
of G.

(i) If G is nonfactorizable, then G/N is nonfactorizable.
(ii) If G/N is nonfactorizable for N ≤ Φ(G), then G is nonfactoriz-

able.

The maximal factorizations of all of the finite simple groups have been
determined by Liebeck, Praeger, and Saxland in [9]. One of the byprod-
ucts of this investigation is that the nonfactorizable simple groups are also
known. The abelian simple groups of order greater than 1 are nonfac-
torizable, and the alternating groups An, for n ≥ 5, are all factorizable.
The nonfactorizable simple groups of Lie type and the nonfactorizable
Sporadic simple groups are listed in Table 4.1. The number q is a power
of a prime.

Theorem 1. Let G be a nonfactorizable group. Then G is one of the
following three types of groups:

(i) a cyclic p-group;
(ii) a nonabelian nonfactorizable simple group (as listed in Table 4.1);
(iii) a perfect group with Φ(G) ∕= {1} and G/Φ(G) a nonabelian non-

factorizable simple group.

Proof. Consider the commutator subgroup G′ of G. If G′ is a proper
subgroup of G, then G′ ≤ Φ(G) implies G is nilpotent. Consequently, G
is cyclic of prime power order.

Now consider the case where G′ = G or G is perfect. If G contains
no proper normal subgroups other than the trivial one, then G is a non-
abelian simple group. The nonfactorizable nonabelian simple groups are
known (as determined by Liebeck, Praeger, and Saxl [9]) and are listed
in Table 4.1.

If G contains a proper nontrivial normal subgroup, then it must each
be contained in Φ(G). Thus Φ(G) is the unique maximal normal subgroup
of G. By Proposition 1, G/Φ(G) is also nonfactorizable and must be a
type of group listed in Table 4.1.
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Groups of Lie Type

Simple Group Conditions

An(q) n = 2 and q ∕= 7, 11, 19, 23, 25, 59 or q ≡ 1 (mod 4)
n ≥ 3 when n prime and n ∣ q − 1

Un(q) n odd, except for U3(3), U3(5), U9(2)
Bn(q) n ≥ 3 and q even
G2(q) q ∕= 3t or q ∕= 4
F4(q) q ∕= 2t

E6(q)
E7(q)
E8(q)
2B2(q)
2Dn(q) n ≥ 4, n even
3D4(q)
2G2(q)
2F4(q)
2E6(q)

Sporadic Groups

M22,Mc, CO3, CO2, F i23, F i′
24
, HN, Tℎ

B,M, J1, O
′N, J3, Ly, J4

Table 4.1: Nonfactorizable nonabelian simple groups

An answer to the question concerning when a group admits a proper
factorization is an immediate consequence of this result.

Corollary 1. For a noncyclic group G, if G′ ∕= G, then G admits a
proper factorization.

Given a group G with G′ = G, Scott, in 13.1.8 of [12], showed that if
G is a finite nonsolvable group such that every non-abelian composition
factor group of G has a proper factorization, then G has a proper factor-
ization. Using Lemma 2, another corollary to Theorem 1 is obtained.

Corollary 2. Let H and K be subgroups of a group G such that H < K
and K is a cyclic p-group. Then H has no proper supplement in G.

The groups of the type mentioned in (i) and (ii) of Theorem 1 are
well-known. At this point, the groups mentioned in part (iii) of Theorem
1 will be briefly examined and will be referred to as Type III groups for
the remainder of this section. Type III groups are perfect and for more
information on perfect groups, the book by Holt and Plesken [4] is an
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excellent reference. As a reminder, a group G is quasisimple if G is
perfect and G/Z(G) is simple.

Proposition 2. Let p be a prime. If G is a Type III group with ∣Φ(G)∣ =
p, then Φ(G) = Z(G) and G is quasisimple.

Proof. Consider CG(Φ(G)), the centralizer of Φ(G) in G. Since Φ(G) is
abelian and CG(Φ(G))⊴G, it must be that CG(Φ(G)) = Φ(G) or G.

Given that p
∣

∣∣G/Φ(G)∣, there is a Sylow p-subgroup Sp of G such
that Φ(G) < Sp. Since Φ(G) ∩ Z(Sp) ∕= {1}, Φ(G) ≤ Z(Sp). As a
result, there is an element x ∈ Sp where x /∈ Φ(G) and x ∈ CG(Φ(G)).
Consequently, CG(Φ(G)) = G and Φ(G) = Z(G). Since G/Z(G) is
simple, G is quasisimple.

One collection of Type III groups that satisfy the conditions of Propo-
sition 2 are the groups SL(2, q), for q ∕= 7, 11, 19, 23, 25, 59 or q ≡ 1
(mod 4). In this case, ∣Φ(SL(2, q))∣ = 2 and SL(2, q)/Φ(SL(2, q)) =
PSL(2, q), a nonfactorizable simple group.

Let G be a Type III group. Using the fact that G is perfect and
G/Φ(G) is simple, it is easy to show that if Φ(G) is minimal normal in G
with ∣Φ(G)∣ = p� and � ≥ 2, then CG(Φ(G)) = Φ(G), and more generally
that there exists a normal subgroup N of G such that N < Φ(G), Φ(G)/N
is abelian, and CG/N (Φ(G)/N) = Φ(G)/N or G/N . However, at this
point, it is open as to whether Type III groups exist that satisfy these
conditions.

3. The aS-residual

Recall Lemma 1, which states that for a group G, if A/N < G/N has
a proper supplement in G/N , then A has a proper supplement in G.
Consequently, if every subgroup of G/N had a proper supplement in
G/N , then every subgroup H of G, such that N < H < G, would have a
proper supplement in G. This motivates the following definition.

Definition 3. A group G is an aS-group if it has order 1 or if every
nontrivial subgroup has a proper supplement.

These types of groups, which were studied and classified in by Kappe
and Kirtland in [6], are an extension of K-groups. A K-group G satisfies
the property that for each subgroup A of G there is a subgroup B of G
such that A ∩ B = {1} and G = ⟨A,B⟩. K-groups were first introduced
and studied by Suzuki in [13]. One main result from [6], concerning the
classification of aS-groups, is presented here.
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Theorem 2. A group G is an aS-group if and only if G is supersolvable
with elementary abelian Sylow subgroups.

In this section it will be shown that the collection of aS-groups forms
a formation. The search for a proper factorization of an arbitrary group
G is assisted by the existence of a proper normal subgroup N of G such
that G/N is an aS-group. This motivates the examination of the residual
of the collection of aS-groups, which will also be done in this section.

Theorem 3. The class of aS-groups, denoted by aS, forms a formation.

Proof. Let G be an aS-group, and let N ⊴ G. If N = G, then G/N is
trivially an aS-group. Assume that N ∕= G, and let P/N be a Sylow
p-subgroup of G/N . Thus there is a Sylow p-subgroup R of G such
that R is not contained in N . By Theorem 2, R is elementary abelian.
Since RN/N ∼= R/(R ∩ N), the Sylow p-subgroup RN/N of G/N is
also elementary abelian. Given that all Sylow p-subgroups are conjugate,
P/N is also elementary abelian.

Consider a chief series for G/N . Trivially, it can be extended to a
chief series for G. Since, by Theorem 2, all chief factors for G are cyclic,
all chief factors for G/N are cyclic. Thus by Theorem 2, G/N is an
aS-group.

Now let N1 and N2 be normal subgroups of G, with N1 ∩N2 = {1},
such that G/N1 and G/N2 are both are aS-groups. Since G/N1 and
G/N2 are supersolvable, G/(N1 ∩N2) ∼= G is also supersolvable.

Let P be a Sylow p-subgroup of G. Then PN1/N1 and PN2/N2

are Sylow p-subgroups of G/N1 and G/N2 respectively. Since G/N1 and
G/N2 are aS-groups, PN1/N1 and PN2/N2 are elementary abelian by
Theorem 2. Thus Φ(P ) ⊆ N1 and Φ(P ) ⊆ N2. As a result, Φ(P ) ⊆
N1 ∩ N2 = {1} and P is elementary abelian. By Theorem 2, G is an
aS-group.

Essentially, the formation aS = U ∩ E, where U is the formation
of supersolvable groups and E is the formation of groups whose Sylow
subgroups are elementary abelian. The formation aS is not saturated as
indicated by the cyclic group of order 4.

Definition 4. Let G be a group. The aS-residual, denoted by GaS or
more simply by GS , is the intersection of all of the normal subgroups N
of G such that G/N ∈ aS.

The aS-residual GS for a group G is an important subgroup with
regards to proper factorizations for G. Before this aspect is explored, a
few properties of GS are presented.
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Lemma 4. For a group G and the aS-residual GS of G, the following
properties hold:

(i) Φ(G) ≤ GS ;
(ii) G′ is a proper subgroup of G if and only if GS is a proper subgroup

of G;
(iii) If N ⊴G, then NS ≤ GS and GSN/N = (G/N)S ;
(iv) For a group L with aS-residual LS , (G× L)S = GS × LS ;
(v) GS ∩ Z(G) ≤ Φ(G);
(vi) For any subgroup H of G, Φ(H) ≤ GS .

Proof. Statement (i) follows from the fact that Φ(G)GS/GS ≤ Φ(G/GS)
= 1G/GS . The forward direction of (ii) follows from the fact that G/G′ is

abelian. The converse follows from the fact that G/GS is supersolvable.
To prove the first part of (iii) note that the result follows if N ≤ GS .

If N is not contained in GS , then GSN/GS is a nontrivial subgroup of
the aS-group G/GS . Since GSN/GS is also an aS-group (3.5 in [6]) and
GSN/GS ∼= N/(GS ∩N), NS ≤ GS .

To prove the second part of (iii), let (G/N)S = S/N . Given that
(G/N)/(S/N) ∼= G/S, which is an aS-group, GS ≤ S. Thus GSN/N ≤
S/N = (G/N)S . If GSN = G, then G/N = GSN/N ≤ (G/N)S and
GSN/N = (G/N)S . Now suppose that GSN < G. Then it follows that
(G/GS)/(GSN/GS) ∼= G/GSN . Since GS ≤ GSN < G and G/GS is
an aS-group, then G/GSN is an aS-group (see [6]). Thus (G/N)S ≤
GSN/N and GSN/N = (G/N)S .

To start the proof of (iv) note that since (G × L)/(GS × LS) ∼=
G/GS × L/LS , which is an aS-group, (G × L)S ≤ GS × LS . By (iii),
both GS and LS are contained in (G× L)S . Thus GS × LS ≤ (G× L)S

and GS × LS = (G× L)S .
For (v), assume that GS ∩ Z(G) = K ∕= {1} and that K is not

contained in Φ(G). Thus there is a maximal subgroup M of G such that
G = KM . Let g ∈ G. Then g = km, where k ∈ K and m ∈ M , and
Mg = Mkm. Since k ∈ Z(G), Mg = Mkm = Mm = M and M ⊲ G.
Since M is maximal in G, [G:M ] = p for some prime p. Given that G/M
is an aS-group and M ⊲ G, GS ≤ M , which implies that K ≤ M , a
contradiction. Thus K ≤ Φ(G).

To prove (vi), consider the case that H is not contained in GS . Then
HGS/GS is a nontrivial subgroup of G/GS . Consequently, by Theorem
2, H/(H ∩ GS) has elementary abelian Sylow p-subgroups. Thus, by
Theorem 2.3 in [2], Φ(H) ≤ GS .

There do exist groups G where Φ(G) < GS as indicted by the alter-
nating group A4. For this group, Φ(A4) = {1}, but aS-residual GS is the
Sylow 2-subgroup of A4. However, the following result can be proven.
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Theorem 4. If G is nilpotent group, then Φ(G) = GS .

Proof. By Lemma 4, all that needs to be shown is that GS ≤ Φ(G).
Since G is nilpotent, G = S1 × ⋅ ⋅ ⋅ × St, where for each i, 1 ≤ i ≤ t, Si

is a Sylow pi-subgroup of G. Given that Φ(G) = Φ(S1) × ⋅ ⋅ ⋅ × Φ(St),
it follows that G/Φ(G) ∼= S1/Φ(S1) × ⋅ ⋅ ⋅ × St/Φ(St). Since for each i,
1 ≤ i ≤ t, Si/Φ(Si) is elementary abelian, G/Φ(G) is an aS-group. As a
result, GS ≤ Φ(G).

There do exist nonnilpotent groups G where Φ(G) = GS . Consider
the group G = ⟨a, b, c ∣ a3 = b3 = c2 = 1, ab = ba, ac = cb, bc = ca⟩. Here,
Φ(G) = GS = {1}, yet G is not nilpotent. For a moment, consider the
case when Φ(G) = GS for some group G. By Lemma 4, this would imply
that Φ(P ) ≤ Φ(G) for all Sylow p-subgroups P of G. Both Bechtell in [2]
and Doerk in [3] independently studied and established numerous results
concerning groups with this Sylow p-subgroup containment property. One
additional result is mentioned here.

Lemma 5. If Φ(G) = GS , then for each Sylow p-subgroup P of G,
P ∩ Φ(G) = Φ(P ).

Proof. Since Φ(G) = GS , G is supersolvable. By Lemma 4, Φ(P ) ≤
GS = Φ(G), and thus Φ(P ) ≤ P ∩ Φ(G). Furthermore, the fact that
P ′ ≤ Φ(P ) ≤ Φ(G) results in P ′ ≤ P ∩Φ(G). Consequently, by Corollary
8 in [11], P ∩ Φ(G) ≤ Φ(P ).

Determining when GS has a proper supplement motivates results es-
tablished in Section 5. Clearly, if GS is proper and nontrivial in a group
G, then GS will have a proper supplement when GS ∕= Φ(G). The only
case that remains to examine is when GS is nilpotent.

Theorem 5. Let GS be a proper, nontrivial, and nilpotent subgroup of
a non-nilpotent group G. Then GS has a proper supplement in G if and
only if there exists a prime p where p

∣

∣∣GS ∣ such that p does not divide
[G:GS ] or GS∩P has a proper supplement in P for each Sylow p-subgroup
P of G.

Proof. Given that GS is nilpotent, G is solvable. Furthermore, since G
is non-nilpotent, there exist at least two distinct primes that divide the
order of G.

First, suppose GS has a proper supplement in G and that for all
primes pi, 1 ≤ i ≤ t, where pi

∣

∣∣GS ∣, that pi
∣

∣[G:GS ]. Since GS is nilpotent,
GS = P ∗

1
× ⋅ ⋅ ⋅×P ∗

t where for each i, P ∗
i is the Sylow pi-subgroup of GS .

If each P ∗
i ≤ Φ(G), then Φ(G) = GS , a contradiction. Thus, without loss
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of generality, P ∗
1

is not contained in Φ(G). Consequently, since P ∗
1
⊲G,

there is a proper subgroup H of G such that G = P ∗
1
H. Let P1 be a

Sylow p1-subgroup of G. Since GS ∩ P1 = P ∗
1
, GS ∩ P1 has a proper

supplement in P1 by Lemma 2.
Conversely, suppose there is a prime p such that p

∣

∣∣GS ∣, but p does not
divide [G:GS ]. In this case, Φ(G) ∕= GS and GS has a proper supplement
in G. Now suppose there is a prime p such that p

∣

∣∣GS ∣, p
∣

∣[G:GS ], and for
each Sylow p-subgroup P of G that P = (GS∩P )Hp for a proper subgroup
Hp of P . By Lemma 4, Φ(P ) ≤ GS . As a result, Φ(P ) ≤ GS ∩ P .

Suppose that GS∩P ≤ Φ(G). Given that P ′ ≤ Φ(P ), P ′ ≤ P ∩Φ(G).
By Corollary 8 in [11], this imples that P ∩ Φ(G) ≤ Φ(P ). As a result,
GS ∩ P ≤ P ∩ Φ(G) ≤ Φ(P ), a contradiction. Consequently, GS ∩ P is
not contained in Φ(G). Thus, since GS ∩ P ⊲ G, there exists a proper
subgroup H of G such that G = (GS ∩P )H. As a result, G = GSH.

4. Determining proper factorizations

The main purpose of studying the aS-residual GS of a group G is to
obtain results concerning proper factorizations.

Theorem 6. Let {1} < H < G. If GS ∩ H ∕= H, then H has a proper
supplement in G.

Proof. Since GS ∩H ∕= H, it must be that GS ∕= G. If G = HGS , then
H has a proper supplement.

Suppose that G ∕= HGS . Then HGS/GS is a nontrivial and proper
subgroup of G/GS , which is an aS-group. Thus there is a proper sub-
group K/GS of G/GS such that G/GS = HGS/GS ⋅K/GS . Conse-
quently, G = HK where K is proper in G.

A number of results are an immediate consequence of Theorem 6.

Corollary 3. Let G be a group whose order is divisible by two or more
primes. Then for each prime p, where p

∣

∣∣G/GS ∣, each Sylow p-subgroup
P has a proper supplement in G.

Corollary 4. Let G be a noncyclic group with GS ∕= G.
(i) Every maximal subgroup M of G has a proper supplement in G.
(ii) The group G admits a proper factorization where one of the proper

subgroups is cyclic.

Proof. To prove (i), consider the case that G ∕= GSM . Then M = GS

and M ⊲ G. If M = Φ(G), then G is a cyclic group. Thus M ∕= Φ(G)
and it has a proper supplement in G.
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For (ii), note that GS ∕= G implies that there exists an element g ∈
G∖GS such that g ∕= 1. Since G is noncyclic, ⟨g⟩ ∕= G and ⟨g⟩∩GS ∕= ⟨g⟩.
Thus by Theorem 6, ⟨g⟩ has a proper supplement in G.

Corollary 5. Let G be a group such that GS ∕= G. Then G is a cyclic
p-group or G admits a proper factorization G = NH where N ⊲G, H is
supersolvable, and N ∩H = GS .

Proof. Suppose G is not a p-group and GS < G. The result follows from
the fact that G/GS is supersolvable and in the formation aS.

Determining proper factorizations involving normal subgroups of a
group is more easily determined as normal subgroups are permutable.
Recall that a subgroup A of a group G is permutable if AB = BA for
all subgroups B of G. Essentially, if a normal subgroup is not contained
in the Frattini subgroup (or is non-nilpotent), it will have a proper sup-
plement. Some more detailed critrea for when a normal subgroup has a
proper supplement are given in [7]. The only difficult case is determining
when a nilpotent normal subgroup has a proper supplement. This, along
with Theorem 5, motivates the following result.

Theorem 7. Let N be a proper and nontrivial nilpotent subgroup of a
non-nilpotent group G such that N ⊲ G and N is of square-free order.
Then N has a proper supplement in G if and only if there exists a prime
p where p

∣

∣∣N ∣ such that p does not divide [G:N ] or N∩P has a proper
supplement in P for each Sylow p-subgroup P of G.

Proof. First, suppose that G = NS for some proper subgroup S of G
and that for all primes p, where p

∣

∣∣N ∣, that p
∣

∣[G:N ]. Since N is nilpotent
and normal in G, N = Np1 × ⋅ ⋅ ⋅ ×Npt , where each Npi , for 1 ≤ i ≤ t, is
a Sylow pi-subgroup of N and Npi ⊲G. If for each i, Npi ≤ Φ(G), then
N ≤ Φ(G), a contradiction. Thus, without loss of generality, Np1 is not
contain in Φ(G). Thus G = Np1H, where H is a proper subgroup of G.
Let P1 be a Sylow p1-subgroup of G. By Lemma 2, N ∩ P1 = Np1 will
have a proper supplement in P1.

Conversely, suppose there is a prime p such that p
∣

∣∣N ∣ and p does not
divide [G:N ]. In this case, N ∕= Φ(G) and N has a proper supplement
in G. Now consider the case where all primes that divide ∣N ∣ also divide
[G:N ]. Then for some prime p that divides ∣N ∣, Np = N ∩P has a proper
supplement in each Sylow p-subgroup P of G.

Suppose that Np ≤ Φ(G). Given that ∣Np∣ = p, Np ≤ Z(P ). Since
Np ⊲G and Np ≤ Φ(G) ∩ Z(P ), Theorem 5 from [11] implies that Np ≤
Φ(P ). This is a contradiction. As a result, Np is not contained in Φ(G)
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and G = NpH for some proper subgroup H of G. Consequently, G =
NH.

For both Theorems 5 and 7, the fact that, for some prime p, P ∩
Φ(G) ≤ Φ(P ) for all Sylow p-subgroups P of G was the main catalist.
This motivates the following theorem. The proof of this theroem, which
is similar to the proof of Theorem 7, is not given.

Theorem 8. Let N be a proper and nontrivial nilpotent subgroup of a
non-nilpotent group G such that N ⊲ G and P ∩ Φ(G) ≤ Φ(P ) for each
Sylow p-subgroup of G. Then N has a proper supplement in G if and only
if there exists a prime p where p

∣

∣∣N ∣ such that p does not divide [G:N ] or
N∩P has a proper supplement in P for each Sylow p-subgroup of G.

Attention will now be given to arbitray subgroups. Recall that for a
proper normal subgroup N of a group G, N will have a proper supplement
or be part of a proper factorization for G if and only if N is not contained
in the Frattini subgroup of G. While this condition can be extended
to arbitrary subgroups of nilpotent groups, it cannot be extended to
arbitrary subgroups of non-nilpotent groups. As an example, consider the
group G = ⟨a, b ∣ a5 = b4 = 1, ab = ba2⟩. For this group, Φ(G) = {1}, yet
⟨b2⟩ does not have a proper supplement. Another condition that cannot
be generalized is the one established in the Schur-Zassenhaus Theorem.

Theorem 9 (The Schur-Zassenhaus Theorem). If N is a normal sub-
group of a group G such that (∣N ∣, [G:N ]) = 1, then N has a complement
in G and all complements are conjugate.

At first glance, it does seem that the following statement could be
true: if H is a proper subgroup of a group G such that ∣H∣ is relatively
prime to its index [G:H], then H will have a proper supplement in G.
However, this is not the case. Consider the sporadic simple group M22.
It has a maximal subgroup H of order 5760 = 27325, which is relatively
prime to its index [M22:H] = 77. However, H has no proper supplement
in M22 as M22 is nonfactorizable.

However, using the aS-residual GS , one generalization can be made.

Theorem 10. Let G be a group with GS ∕= G, and let H be a nontrivial
and proper subgroup of G such that (∣H∣, [G:H]) = 1.

(i) If H is not contained in G′, then H has a proper supplement in G.
(ii) If H is abelian and H ∩ Z(G) ∕= {1}, then H has a proper sup-

plement in G.

Proof. Given that GS < G, Lemma 4 implies that G′ < G. To prove
(i), first note that if G′H = G, then H has a proper supplement in G.
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Assume that G′H ∕= G. If G′ = H, then H ⊲ G and H has a proper
supplement in G by Theorem 9.

Suppose G′ ∕= H. Since H is not contained in G′, G′H/G′ is a proper
nontrivial normal subgroup of G/G′. Let ∣G′H/G′∣ = ∣H/(H ∩G′)∣ = d.
By the Third Isomorphism Theorem, ∣(G/G′)/(G′H/G′)∣ = ∣G/G′H∣ =
∣G∣

∣G′H∣ . However, given that ∣G′H∣ = ∣G′∣∣H∣
∣H∩G′∣ > ∣H∣, ∣G∣

∣G′H∣ = l, where

(l, ∣H∣) = 1. Since d
∣

∣∣H∣, (l, d) = 1 and G′H/G′ has a supplement K/G′

by Theorem 9. Consequently, G = HK and H has a proper supplement
in G.

For (ii), let ℎ ∈ H∩Z(G), where ∣ℎ∣ = p for a prime p that divides the
order of H. Thus there is a Sylow p-subgroup P of G, P ∩ Z(G) ∕= {1}.
Given that P is a proper abelian subgroup of G, G′ ∩ Z(G) ∩ P = {1}.
Since P ∩ Z(G) ∕= {1}, P cannot be contained in G′. Thus H is not
contained in G′ and H has a supplement in G by part (i).

The next natural step would be to generalize the result established
in Theorem 5 to arbitrary subgroups. However, this is not possible as
demonstrated in Example 1.

Example 1. There do exists groups G where a proper factorization for
a Sylow p-subgroup P of G does not give rise to a proper factorization
of G. Consider the symmetric group S4, where S4 = A4⟨b⟩ with ∣b∣ = 2.
Since the Sylow 2-subgroups of S4 are isomorphic to the dihedral group
D4, there is an element a ∈ A4 such that ∣a∣ = 2 and a /∈ Φ(P2), where
P2 is a Sylow 2-subgroup of S4. Consequently, ⟨a⟩ will have a proper
supplement in P2. Suppose that S4 = ⟨a⟩K for some proper subgroup K
of S4. Since ∣a∣ = 2 and ⟨a⟩ ∩K = {1}, K is normal in S4 and has order
12. Thus K = A4, which is a contradiction as a ∈ A4.

In addition, as demonstrated in Example 2, adding the stronger con-
dition that P ∩ Φ(G) ≤ Φ(P ) for all Sylow p-subgroups of G, is not
enough to make the condition true (the condition that if H ≤ G, and
there exists a prime p such that p

∣

∣∣H∣, p
∣

∣[G:H], and P = (H ∩P )K then
H has a supplement in G).

Example 2. Let G = S4×ℤ9 with ℤ9 = ⟨z⟩. By Example 1, there exists
an element a ∈ S4 such that ∣a∣ = 2 and ⟨a⟩ has no proper supplement
in S4. Since Φ(G) = ⟨z3⟩, for each Sylow 2- or 3-subgroup P of G,
P ∩ Φ(G) ≤ Φ(P ). Consider the subgroup H = ⟨a, z3⟩ = ⟨a⟩ × ⟨z3⟩
of G and suppose that G = HK for some proper subgroup K of G.
Since ⟨z3⟩ ⊲ G, G = ⟨a⟩(⟨z3⟩K). Given that ⟨z3⟩ ≤ Φ(G), ⟨z3⟩K = G
implies G = K, a contradiction. Thus ⟨z3⟩K is a proper subgroup of G.
Consequently, S4 = G ∩ S4 = ⟨a⟩(⟨z3⟩K) ∩ S4 = ⟨a⟩(⟨z3⟩K ∩ S4). Since
⟨z3⟩K ∩ S4 ∕= S4, ⟨a⟩ has a supplement in S4, a contradiction.



58 Factorizations in finite groups

A first step at approaching this generalization to arbitray subgroups
motivates the following theorem.

Theorem 11. Let G be a group such that Φ(G) = GS and consider a
proper nontrivial subgroup H of G. Then G = HK for a proper subgroup
K of G if and only if for some prime p such that p

∣

∣∣H∣ then p does not
divide [G:H] or for each Sylow p-subgroup P of G where H ∩ P ∕= {1},
P = (H ∩ P )Kp where Kp is a proper subgroup of P .

Proof. Suppose that G = HK for some proper subgroup K of G and
that for each prime p such that p

∣

∣∣H∣ that p also divides [G:H]. Now
suppose that for all Sylow subgroups P of G where H ∩ P ∕= {1}, that
Hp = H ∩ P has no proper supplement in P . Then Hp ≤ Φ(P ), and
by Lemma 5, Hp ≤ Φ(G). As a result, each Sylow subgroup of H is
contained in Φ(G). Thus H ≤ Φ(G), a contradiction. Thus for some
prime p, where p

∣

∣∣H∣ and Hp = H ∩P ∕= {1}, P = HpKp for some proper
subgroup Kp of P .

Conversely, consider a proper nontrivial subgroup H of G. Suppose
there is a prime p such that p

∣

∣∣H∣ and p does not divide [G:H]. If H ≤
Φ(G), then p

∣

∣∣Φ(G)∣ and p does not divide [G:Φ(G)], a contradiction.
Thus H is not contained in Φ(G). Consequently, H is not contained in
GS . In this case, H has a proper supplement by Theorem 6.

Now consider the case where for some prime p, where p
∣

∣∣H∣ and
p
∣

∣[G:H], that P = (H ∩ P )Kp for some Sylow p-subgroup P of G where
H∩P ∕= {1} and Kp is proper in P . If H∩P ≤ Φ(G), then H∩P ≤ Φ(P )
by Lemma 5. This contradiction implies that H ∩ P is not contained in
Φ(G). Thus H is not contained in Φ(G) = GS . Consequently, by Theo-
rem 6, H has a proper supplement in G.
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[5] Itô, N. (1955). Über das product von zwei abelschen Gruppen. Math. Z. 62:
400-401.

[6] Kappe, L.-C., Kirtland, J. (2000). Supplementation in groups. Glasgow Math. J.

42: 37-50.

[7] Kappe, L.-C., Kirtland, J. (2003). Finite Groups with trivial Frattini subgroup.
Arch. Math. 80: 225-234.



J. Kirtland 59

[8] Kegel, O.H. (1961). Produkte nilpotenter Gruppen. Arch. Math. 12: 90-93.

[9] Liebeck, M.W., Praeger, C.E., Saxl, J. (1990). The maximal factorizations of the
finite simple groups and their automorphism groups. Mem. Amer. Math. Soc. 86:
no. 432.

[10] Ore, O. (1938). Contributions to groups of finite order. Duke Math. J. 5: 431-460.

[11] Rose, J.S. (1980). Frattini normal subgroups of finite groups. J. Reine Angew.

Math. 316:83-98.

[12] Scott. W.R. (1987). Group Theory. New York: Dover.

[13] Suzuki, M. (1956). Structure of a Group and the Structure of its Lattice of Sub-

groups. Berlin: Sprinver-Verlag.

[14] Walls, G.L., (1988) Groups which are Products of Finite Simple Groups. Arch.

Math. 50: 1-4.

Contact information

J. Kirtland Department of Mathematics
Marist College
Poughkeepsie, NY 12601
USA
E-Mail: joe.kirtland@marist.edu

URL: http://foxweb.marist.edu
/users/joe.kirtland/

Received by the editors: 28.08.2007
and in final form 08.10.2009.


