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ABSTRACT. We obtain a classification of the supports of ir-
reducible Ag)—modules. In particular, we get a classification of

all non-dense irreducible AéZ)—modules with at least one finite-
dimensional weight subspace.

Introduction

Let g be an affine Kac-Moody algebra with Cartan subalgebra b, root sys-
tem A and center Cc. A g-module V is called a weight if V = @/\eb* W,
Via={veV |hv=A(h)vforall h € h*}. If V is an irreducible weight
g-module then ¢ acts on V' as a scalar, called level of V. For a weight
g-module V| the support is the set supp (V) = {\ € b* | V), #0}. The
root lattice ) is the free abelian group over A. If V is irreducible then
supp (V) C A+ @ for some A € h*. An irreducible weight g-module V is
called non-dense, if supp (V) C A + Q,

This work contains the classification of irreducible non-dense mod-
ules for the Kac-Moody algebra Ag) with at least one finite-dimensional

weight subspace. The classification of non-dense irreducible Agl)—modules
with a finite-dimensional weight subspace has been done by V. Futorny
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[5]. The classification problem is also solved for all affine Kac-Moody al-
gebras for non-zero level modules with all finite-dimensional weight sub-
spaces (V. Futorny and A. Tsylke [4]). In these cases an irreducible mod-
ule is either a quotient of a classical Verma module, or of a generalized
Verma module, or of a loop module (induced from a Heisenberg subalge-
bra). That this will hold for irreducible non-dense modules of any affine
Kac-Moody algebras has been conjectured by V. Futorny [5]. With this

work we confirm the conjecture for non-dense irreducible Ag)-modules
with a finite-dimensional weight subspace.

We also obtain a classification of all possible supports for irreducible
AgQ)—modules. The proof is elementary and involves only the combina-
torics of the root system employing heavily the assumption of a ,hole”
in the weight lattice A + @, precisely the condition of non-density. This
will always result in the ,upper”, Jlower” or the ,right” half of the weight
lattice A+ @ having all (or all but one) zero weight spaces (up to equiva-
lence under the affine Weyl group). Upper and right half refer to the two
non-equivalent classes of partitions. It is well known that these are the
only ones [5].

If we omit the requirement of a finite-dimensional weight subspace
then we do not get a complete classification. In this case we have a
classification upto the classification of irreducible graded (with respect
to the natural Z-grading) modules over the Heisenberg subalgebra with
non-zero level and all infinite-dimensional components. Nevertheless the
classification of all supports provides a characterization of irreducible
Ag)—modules.

The proof is structured in form of a binary tree where each leaf cor-
responds to the construction of a so-called primitive element. This by
definition is a vector v with the following property: Let P be a parabolic
subalgebra with Levi decomposition P = Py @ P. If we take P the cor-
responding parabolics of a classical Verma module, a generalized Verma,
or a loop module then v is annihilated by one of the corresponding P,
(here P is just a Borel subalgebra in the case of a classical Verma mod-
ule). This primitive vector thus generates an irreducible quotient of a
classical Verma module, a generalized Verma module or a loop module
respectively [1, 2].

The paper is structured as follows:

In section 2 we review the realization of the twisted Kac-Moody alge-
bra Ag2) and the construction of its root system. Section 3 and 4 gives the
definition of generalized Verma modules and loop modules, respectively.
In section 5 the category O for not necessarily finite-dimensional weight
modules is introduced following V. Chari [8] and V. Futorny [3]. In sec-
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tion 6 we proof the main result and section 7 states the classification of

)

supports for irreducible AéZ -modules.

1. Preliminaries

Let Ag2) be the the Kac-Moody algebra defined by generators and rela-
: . : 2 -1
tions due to the generalized Cartan matrix (Ag;); ;o = < 4 9 >
Let II = {ap,a1} and IIY = {hg,h1} be linear independent subsets of
the 2-dimensional vector space h* and its dual b respectively, such that
a; (hi) = Ajj. Now Agz) is generated by eq, e1, fo, f1 due to the relations

lei fi] = bijhi
[he;] = a; (h)e; (1)
[hfi] = —ai (h) fi, hebh,i=0,1

As dimb* = dimbh = 2n — rk A = 3 there are elements § and d com-
pleting IT and IIV to be bases of h* and b, respectively. Furthermore Ag)
permits a nontrivial 1-dimensional ideal spanned by the central element
¢ = 2hg+h1. One can define non-degenerate symmetric invariant bilinear
C-valued form (- | -) on h which can be uniquely extended to a bilinear

form (- | -) on g. The standard invariant form on Ag) is given by

1
(ho, ho) =2, (ho, h1) = =2, (ho,d) = 3 (h1,h1) =2,

all other brackets vanishing.

Realization. Let g° a simple Lie algebra. Let o be a non-twisted
graph automorphism of the Dynkin graph of simple roots A. ¢ is also
an automorphism of g° by o : g% — gg(ﬁ), B8 € A. When o has order
2, then g" decomposes as a module as the set of fix points of o and the
eigenelements to the eigenvalue —1

o’ = (") ®(a°)_,-

The example 0 (Eqyp) = 0 ([EqEg]) = [EgE,] = —[EqEpg] illustrates,
how the eigenvalue —1 occurs.

Let g° = Ay and £ (g°) =C [t,t 7] ® g” ® Cc® Cd be the (extended)
loop algebra with extended Dynkin graph

Define 6 € h* by 0 |pogce= 0 and d(d) = 1. Denote by E; =
En, By = Eg, Iy = F,, F» = Fj the Chevalley generators of g°. Then
#0 = {a, 3,6} is a basis for the root system A of f}(go). Denote
0=a+ 0, ag =090 — 0. The o-orbits on A are given by a high and a low
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Figure 1: Extended Dynkin graph of A,.

2-element orbit (g + o, a9 + ) and («, ), respectively. The fixpoints
are (A())U = A (7%) = Zn® N A with respect to the basis 77 = {6, 5}.

The twisted graph automorphism 7 of this loop algebra is defined by
the maps t* ® By — (=1)"t* @ By, t* @ By — (=1)"t* @ B and t* @ Ey
to (—1)kJrl t* ® Eg. The generators of (90)0 are given by

Ey + B, Fy + By, Hy, Hy + Ho,

where Hy = [EpFp]. And the generators of (go) are given by

—1
EI_E27 FI_FQ') Eaa F97 HI_HQ-

g= Ag) is realized as the fixed point set £ (gO)T. Consider therefore the
bracket in £ (go) = Agl), given by

[tk®a+/\c+ud,tl ®a'+)‘lc+“,d}
_ 4k ® [a,b] —I—tl ®lua' s ®kula+k5k+l’0 <CL, a’>c

a,a’ € g°, M, N, 1 € C, k,1 € Z. The weight spaces with respect to
b are defined as Vy = {v eV I]h-v=A(h)vforal he 6} Eventually,

~ T
the all one-dimensional weight spaces of g (Ag) are generated by

el =t @ (Hy + Hy)
egi)a =t’* @ Hy + ¢
ers =t @ (Hy — Ha)
Car+2k6 =tF @ (B + Ey)
€ay+(2kinys =t @ (By — E)
€201 +(2k+1)5 =t**t @ Ey
—ayiks =tF @ (F1 + Fy)

€1+ (2k1)s =t @ (FL — Fy) .
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2k+1
€ o0 +(2k+1)s =L © Fy.

This gives us the complete root system. The set of simple roots are
the disjoint union of short real roots A", long real roots A’®! and
imaginary roots A" given by {*aj +Z6}, {+2a1 + (2Z +1)4} and
{ko | k € Z\ {0}} respectively.

—

o aq

Figure 2: Dynkin graph of A(22)

The (affine) Weyl group of g is an affine reflection group generated
by W = (tg, s), fulfilling the relations s = 1, stys™! = top) = t—g and
th = try, k € Z\ {0}, where s = s; is the fundamental reflection at as,
acting on the root lattice @ (7), m = {a1,d — a1} by

s (maj +nd) = — may + nd,

t (may + nd) =may + (n — k) 6, m, k,n € Z.

Lemma 1.1 (Relations). The commutators are given by

(4) _6;%)76%} = 2k0j+m,0C
(14) _e,(i;), e:ta+m5] = Terot(k+m)s
(l’ll) _6;?5, eia+m5i| = ieia+(2k+m)5
(iv) _egi)é, 6&2&] = 4k0p4m0C
(v) _e%, eﬁ{;} = 2k0og4m,0C
, ey +2ke) ipm=—k
(UZ) [6a+k67 e—a+m6] = (1) .
€ (kt-m)s if m# —k
§ ) esarkrmys U k even and m odd
vl Ca+kds Cat+md| =
( ) [ +ko + 5] {0 ka+m even
(eg?g + ch) if m = —k odd
(viit) [e20+k6, €—20+ms] = (2)

€ (km)s if m # —k both odd
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) 1,2
(i) {éka)veﬂwmé] = £2€20+ (m+2k)s
1
(1") |:e](€5)7 e:t2a+m6:| =0
(i [eatks: ex20+(2141)] = ~€xa+ (k1)

)
.. 1
(i1) [etatks + pd, eratis] = lpexatis + §k5k+l,007 k==40,1,2

Proof. Compute for example (i4i):

(2) .
[ezkaa etatrms| = [ [€20+@k—i) €~20a+i5] > €atms]| for an odd i
= [e2a+(2k—i)57 [6—204—}—1'57 eoz—i—m&]]

= [€2a+(2k7i)57 67a+(i+m)5] = Cat(2k+m)s-

O

Thus egi}d = eéi)(s = egys and the universal enveloping algebra U (g) is
generated by {es,e_s,€q,e_q}

2. Generalized Verma modules

Fix a = oy € A" and denote goyis = tF @ga, k € Z and g,,5 = t" @ Chy,
n € Z\{0}. If a € A™! all even or all odd graded components vanish.
Consider a subalgebra g () C g generated by g, and g_,. Then g (a) =
slo.

Consider the universal enveloping algebra U (g (a)). Its center is gen-
erated by the Casimir element z, = (hq + 1)2 + 4e_peq. Remember
h =5 @ Cc@ Cd. Define

T, =5(h) @Clz].

Fix A € b*. Consider the 1-dimensional Ti,-module Cv), , with the
action (h® 2%) vy = h(\)v*v) and define the b + g (a)-module

V(A9 =U(g(0) +b) § Cun,

It has a unique irreducible quotient, say V) ,.

Proposition 2.1 ([3]). If V is an irreducible weight H + g(a)-module
then V-2V, for some A € h* v € C.

Let A € h*, v € C. Denote

Ni= Y gipy Ef=(+g(a) Ny

veA\{o}
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Consider V), as EX-module with trivial action of V¥ and construct the
g-module

Mf()‘ﬁ) =U(g) ® Wiy
U(E)

The module M (), 7) is called a generalized Verma module following
[3]. It has a unique irreducible quotient L (X, ). Notice that V), does
not have to be finite-dimensional.

Corollary 2.2 ([3]). Let V be an irreducible weight g-module and 0 #
v € V) such that Nfv =0, then V = LE ()\,v) for some ~ € C.

3. Loop modules

Consider the Heisenberg subalgebra G = ZW#O gns @ Cc C g, where
gns = 0 for odd n. Set G4 = Zn,n>0 g+ns. Let a € C* and Cu, be
the the 1-dimensional G4+ @ Cc-module for which G4v, = 0, cv, = av,.
Consider the G-module

M*(a)=U(G) ® Cu,.
U(GLaCe)

It carries a natural Z-grading with the i-th component o (U (G+)_;) va-

Define another family of modules, so-called loop modules as in [§].
Let p: U (G) — U (G) /U (G) ¢ be the canonical projection. For r > 0,
consider the Z-graded ring L, = C[t~",t"]. Denote by P, the set of
graded ring epimorphisms A : U (G) /U (G) ¢ — L, with A (1) = 1. Define
a G-module structure on L, by:

erst™ = A (g (exs)) t° =t k€ Z\ {0}, ™ =0, s € Z.

Denote this G-module by L, r. Define Ag the trivial homomorphism
onto C with Ag (1) = 1, then Lg A, is the trivial module.

Proposition 3.1. (i) [8] Every irreducible Z-graded G-module of level
zero is isomorphic to L, n for some r > 0, A € P, up to a shifting of
gradation,

(ii) [3] Every irreducible Z-graded G-module of level a € C* with at
least one finite-dimensional component is isomorphic to M* (a) up to a
shifting of gradation.

If a € A" denote ny, = > 7 Garns and Ny = M5O icp B2a4(2i41)5-
If & € A" then there exist 3 € A™° and k € Z such that o = 26 + kd.
Denote ny = nj @ > nez 928+(2n+1)s- The definition of n, depends only
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on o € Ay or a € A_. Write ny or n_ in these cases, respectively. In
either case g =n_, ® (h + G) ® n,. Set

(h+G)dn,=b

Let V be a Z-graded G-module of level a € C and A € h* with A (¢) = a.
Define a b-module structure on V' by the action hv; = (A +1id) (h) v;,
nev; =0forallhe b, v; €V, i €Z.

Consider the g-module

Mo (A V) =U(g) @ V.
U(b)

Proposition 3.2. (i) My (A, V) is S (n_q)-free.

(73) Mq (N, V) has a unique irreducible quotient Lo (X, V).

4. The category O for Ag)

If g is a twisted affine Kac-Moody algebra, 7 a basis for its root lattice
then we define the category O = O (g) of weight g-modules as follows.

Definition 4.1 ([7]). A g-module M lies in O if and only if
(1) M is a weight module, i.e.

M = @ My, and
Aeh*

(i) there exist finitely many elements A1, ..., \x € b* such that supp (M) C
D (A)U---UD (M), where

DN)={neb* [ N—peQUA™}, Q=) Zia

acT
and supp (M) = {\ € b* | M # 0} as usually.

O is closed under the operations of taking submodules, quotients and
finite direct sums.
Let g be again AéQ) and o € m then D()\) =
{Ni+ka+nd|k<0,n€Z}and D(A\)U---UD(N\) = D(\) for j
such that (\; | a) is maximal. So V € O if and only if there exists
an N € Z such that supp(V) C {ka+né |k < N,neZ}. Asin [3],
Proposition 3.2 leads to the description of the classes of isomorphisms of
irreducible modules in O.

Proposition 4.2. [[3]] Let V be an irreducible object in O. Then there
exist X € b* and an irreducible G-module V' such that V= L, (A, V).
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Theorem 4.3 (|7]). Let V be an irreducible object in O.

(i) If V is of level zero then V. = Lo (N, Lya) for some A € b*,
A(c)=0,AeP.

(i3) If V is of level a € C* and dim f/ﬂ < oo for at least one pu €
supp(V') then then V 22 Ly (A, M™ (a)) for some X € b*, \(c) = a.

Remark 4.4. By [7] the level zero modules are the only irreducible in-
tegrable ones in O.

5. Classification of non-dense g-modules

In this section we prove the main result. The major part is the content of
a Lemma which proves the result assuming the whole in the root lattice
at A+ k6, k € Z. The proof is structured in form of a binary tree where
in each leaf we construct a vector that generates an irreducible quotient.
The result is an analog to the Agl)—case treated in [3].

Definition 5.1. An irreducible weight g-module V' is called dense if
supp(V) = A+ Q for some X € h* and non-dense otherwise.

Now we can state the main theorem.

Theorem 5.2. Iff/ is an urreducible non-dense g-module then either
VLAY or V=L, (\y) orV==Ly(\V) for some a € A",
A€ b*, A(e) =a, v €C and some irreducible G-module V.

The rest of the section is devoted to the proof the Theorem.

Definition 5.3. A subset P C A is called closed if 51,82 € P, 1+ P2 €
A imply 61 + P2 € P. It is called partition if in addition PN —P = &
and PU—P = A. Two partitions are called equivalent if they lie on the
same W x {£1} orbit.

Denote by Z>s the set {s,s+1,...} by Zy the set of positive inte-
gers. From ([5] Chapt. 2) we derive that there exist to non-equivalent
partitions of the rootsystem of g, in particular P, = Ay and Py =
{a+7Z6 | a e AY} UZL 5. They are called real (or classical) and imagi-
nary, respectively.

Lemma 5.4. Let P be a partition, P 5 6, P"* = PNA"™, PL = PN
Ay,p e AT
If [P N {B + Z>0d}| < 00 or |P"* N {—p + Z>0d}| < oo then

P ={p+Z5} U{2p + (2Z + 1) 6}

for some p € AT else P™® = Ay (7) for some basis T of A.
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Proof. Recall that there exist exactly two non-equivalent classes of par-
titions, those equivalent to A% (m) and to {a+ Zd | o € AL} U A" re-
spectively. Now with [5] Propostion 2.3 (ii) the statement follows. O

Corollary 5.5. Let I' C A be a partition containg 6. If ‘A"fﬂF‘ =
’AC@ OF‘ = oo, then there exists an n € Z such that I' = A4 (7) for
7={¢, 0 —¢'}, ¢ = p+nd, explicitely

Ay () ={p + Zon0} U{—¢ + Z>_n410} U {20 + (22> + 1) 6} U
U{—2¢+ (2Z>_n41 — 1)} UZ,6.

Proof. Recall the action of the affine Weyl group and apply it to the
Lemma. O

Definition 5.6. Let a be a subalgebra of g. A mon-zero element v of a
g-module V' is called a-primitive if av = 0. A non-zero element v of a g-
module V is called primitive iﬁ/\/;v =0, ./\/:p_v =0 ornyv =0 for some
€ AT, e iff it is Nf-primitive or N -primitive or n,-primitive.
Denote N (v) C A the set of roots 1 such that eyv = 0.

Remark 5.7. (i) Primitive vectors were originally called admissible. For
¢ € A", a ng,-primitive element v € V' is also called singular.

(#) If some v € V is N} -primitive then it is obviously already Nf-
primitive.

(77) On order to classify g-modules we have to look for primitive
elements. Each of those generate irreducible quotient in terms of V
LE (M%), or V 2 Ly (N V) as in Corollary 2.2 and the proof of Proposi-
tion 4.2, respectively.

Lemma 5.8. If the g-module V' contains a non-zero vector v € Vy such
that e,v = 0 for some p € A™ and A\+kd & supp (V') for some k € Z\ {0}
then V' contains a primitive vector.

Proof. We will assume that £ > 0. The case k¥ < 0 can be considered
analogously. We prove the Lemma by induction on k. Let k = 1.

1. In the first step assume that ¢ € A" so e v = 0.

As A+ 6 ¢ supp (V) we have esv = 0 and e, qmsv = 0 for all m >

0 (by induction on m: e i(mi1)s¥ = [€5,€prms]v = 0 by induction
assumption). If e,_p5v = 0 for all n > 0 then ngv = 0. Because of
[Cptk6s Cptms] = €2 (ktm)s, alsO niafu = > ez 920450 = 0 and v is
primitive.

1.1. If e_yynsv =0 for all n < 0 then n_,v = 0.
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1.2. Thus we can assume e_, 4,50 # 0 for some n € Z. If n < 0 then
v is already N -primitive. If n = 0 we have immediately ./\/':LQ@ v =0
as in Corollary 5.5.

1.2.1. If ejsv # 0 for some | € Z then set vis = esv for the least of
such [. By hypothesis e_g_psus € Vaps = 0 and also
Cp—ksVis = [e_(l_1)5, eso_k+(l_1)5] v = 0 for all K <1 —1 and thus for all
k € Z. We thus derived n,v = 0.

1.2.2. Thus we can assume e;sv =0 for all [ € Z .

1.2.2.1. If possible choose n > 0 the greatest number such that
€—pins¥ 7 0and set v_y 4 ns = €y nsv. By assumption e, (,_1)5V—pt+ns €
Vags = 0. Therefore {¢ +Z>_n110} U {—=p + Z>p16} C N (V—gpins)-
Thus,

{¢ +Z>20} U{—¢+Z>00} C N (v_pyns) for ¢ = o — (n+1)5. If
not already zero set vpns = €y (n41)5V—p/+(2n+1)5 (Otherwise v_ri (2n41)s
is immediately A4 -primitive). Again, if possible set vy = €,/ _psvns #
0 (otherwise vps is immediately N -primitive). But now, e, ysvy €
Vit+s = 0 by assumption and v is wa, 4 s-primitive for some ' € A"

1.2.2.2. Thus we can assume that e_, ,5v # 0 for all n € Z,.
Choose an arbitrary n out of such and set v_, 1,5 = €_,4pnsv. Then
€o(n—1)5V—p+ns € Vars = 0. Assume e, 150, 4pns # 0 for some | > n
and set
V(n—-1)§ = €p—I6V—ptnd (otherwise U_gyns 1S Ny-primitive) and we are
in a situation analougously to case 1.2.2.1.

2. In the second step choose ¢ = 2a + § € A™! ie. egqysv = 0 by
assumption and esv € V45 = 0.

2.1. If e_gqy5v = 0 then [ean46, €—204+5] v = €250 = 0 and €494+ msv =
0 for all m € Z4 thus eyv = 0 for all ¢ € Af’l. We can assume
that eqv = 0 (if 0 = eqv # 0, by assumption e_,450 = 0, hence
[€20—5€—a+5] U = eq¥ = 0, contradiction) then [eq, €—2q+5]V = €_q150 =
0 and [exs, €a] v = eqtrsv = 0 for all k € Z>o thus Myv = 0 and v is
primitive,

2.2. Otherwise, if e_9415v # 0 assume again that e,_gsv # 0 for some
k € Z and set vo—gs = €q—ksv. By assumption e, (x41)sV—a—ks = 0.

2.2.1. If ey jsv_q—ks = 0 then N (v_q_ps) U {—2¢" +8,2¢ + 6}
contains the partition Ay (7), 7 = {¢',0 — @'}, ¢’ = a + k. Note that
€25Vt = [e¢/+5, e,wuﬂg] v_y = 0. Assume both of the e4o,45v_ nOt
to be zero and e_r_j5v_, # 0 for some [ € Z (otherwise we are done).
Choose [ to be minimal in that sense and set v_o,r_j5 = e_yr_5v_r # 0,
then ey, 111)5v—y € Vags = 0 wich gives Nj2¢,+6v_2¢/_l(5 = 0 with
respect to Ay ("), ¢" = —¢' — (1 — 1) 0.

2.2.2. Else v_gy = e_yv_y # 0. By assumption eg,/4s5v_9, = 0.
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Now N (v_gy) U{¢', 8, —2¢" 4+ 0} U{—¢' + Z 6} contains the partition
Ay (r), 7 ={¢,0—¢'}, ¢ = a+ kd. Assuming successively v_, =
epV_oy # 0 (otherwise there is an [, minimal by choice, as in 2.2.1.
etc.), vg = exyU_y F# 0, vy = eyvy # 0 (NOW e_,rysvy = €50, = 0),
V_yiys = € 2y 46V # 0 we argued ey v_yrqs € Vaps = 0 down to zero
and thus proved the basis of induction.

Assume now that the Lemma is proved for all & = 1,...,k — 1 and
consider another tree of cases:

1. If there exists an n € {1,...,k — 1} such that e;suv = 0 for all
i=0,...,n—1Dbut eysv # 0. Set v,5 = e,sv and we can apply induction
hypothesis.

2. Thus assume e;sv = 0 for all ¢ = 1,..., k. Let ¢ € A" such
that e,v = 0. We can also assume that e_, ;50 # 0 for some | € Z
(otherwise n_,v = 0 and we are done). Choosing the highest of such [, we
have thus established N (v) D {¢p+Z>00}U{p+ (2Z>0+ 1)} U {—¢ +
L1410} U{—2¢ + (2Z>;41 + 1) 0} UZ, 6. Assume also ¢ — 6 ¢ N (v) as
otherwise, we reduce immediately to the case I’ =1 — 1.

2.1. If [ = 0 like in Corollary 5.5 we obtain a partition for which
+ _
/\/'_2904_61) =0.

2.2. For [ > 0 we may define v_, 5 = e_,qsv # 0. Still ejsv_p15 =
€_pi(+i)sV t €—prseisv = 0 for all ¢ = 1,...;k and
€ ptibV—ptls = €_2p4(14i)5V + e—pris€—prisv = 0 for i = [ + 2 (because
i+ [ is even in this case) and thus for all i > [ + 2.

By assumption €t (k—1)5V—p+15 € Vasks = 0. Thus if [ > k choose
the largest m < k — [ such that e, p,sv_,415 # 0 and denote this vector
VUim+n)s- 110 < m+1 < k then we are in the case of the induction
hypothesis, else m + 1 < 0. So we can assume that m < —[. But this
means €,,_(;_1)5V— 415 = 0 by choice of m. Set ¢’ = ¢ — (I — 1) ¢ and we
have N (v_<p/+5) D {¢ + Z>pd} U {¢' + (2Z>o+1)6} U {—¢' + Z>30} U
{=2¢ 4+ (2Z>3+ 1) 6} UZ,6.

2.2.1. Assume €p/ — (k—1)V—¢'+6 # 0 and set v_ps = ey _ksV_yi4s
(otherwise clear). Note that it may only happen that e;sv_js # 0 for
1 < 2, because
[ew, e—<p’+i5] V_yits = €isU_p4s = 0 for all 7+ > 3.

We proceed with a little iteration:



T. BUNKE 23

010 k' =k
020 IF e;5v_grs #0 for some i€ {1,2}
THEN set V(i—k')s = CisV—k'§ for the highest of such ¢
ELSE {PRINT’v_j"’ :
STOP}
030 IF (1 — k') >1 &&(this can actually at most be equal 1 be-
cause the previous note)
THEN {PRINT"’v(;_;s fulfills the condition of induction hy-
pothesis” :
STOP}
ELSE {set k' = —(i— k') : GOTO 020}
040 END

It is easy to see, that the iteration always terminates. Assume the
program returns v_js. Note that ¥ € {0,...,k}. Set j = k — k' €
{0,...k}. In order to annihilate the missing vector, we have to climb up.
We do this by means of the following loop:

110 WHILE —k' # —1

IF e_yrqosV_prs 7# 0
THEN set U—L,D’—(k"—?)cs = €7¢/+25U,k/5
ELSE {PRINT’v_js’ :

STOP} &&(call this ,singular case 17)

IF 6g0/_§'l},(’0/7(k/72)5 7& 0
THEN set V_(k/'—1)§ = €/ —6V—ip/ —(k'—2)5 * E=K-1
ELSE {PRINT0__(yr_g)5”

STOP} && (call this singular case I17)
WHILEEND
120 PRINT’vs fulfills the condition of induction hypothesis”

130 END

In both of the singular cases we end up in the following situation
N (wyr) D {¢+Z205}U{1/J + (2220 +1) (S}U{—LZJ—FZzQé}U{—Q?/J + (ZZZZ +1) (S}U
Z.+.6 for some 1 € A" and one of the vectors v_grs and v_r_(/_2)5. Note
that —k’ < 0. We proceed with another loop for v_j/s (singular case I).
Singular case 11 (v,¢/,(k/,2)5) goes analogously.
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210 WHILE —k' # 1 or 2
IF e sV s 7 0
THEN set Vo — (k' —1)5 = €—p/+6V—k/§
ELSE {PRINTv_ps" :
STOP} &&(call this ,singular case A”)
IF e yisV_y—(k—1)5 7 0
THEN set v_ou (k/—2)5 = €/ +6V—/—(kK'—1)8
ELSE {PRINT"v_(s_)5”"
STOP} &&(call this ,singular case B”)
IF egp— 6V 9y (k'—2)5 7 0
THEN set v_(x_1)5 = €2¢/—6V 24— (k'—2)s and K=kK-1
ELSE {PRINT”'U_Q@/_(]@/_Q)(S”
STOP} &&(call this ,singular case C”)
WHILEEND
220 PRINT "v_p/g”’
230 END

As in the previous loop, the program returns always a vector, say w.

In the singular case A and B we have —¢'+46 € N (w), thus ./\/':L2<p,+5w =
0.

In the singular case C we have 2¢' —§ € N (w), thus Nj&p”—i—éw =0
with respect to Ay ({”,d — ¢"}) for ¢" = —¢' + 6 and thus a primitive
vector, which proves the Lemma. ]

Proposition 5.9. Let V' be an irreducible non-dense g-module. Then V
contains a primitive element.

Proof. Let A € supp (V') and A+ ¢ ¢ supp (V') for some ¢ € A. Choose
a non-zero vector v € V). Consider another tree of cases in order to
construct a primitive element or provide the assumption of the Lemma
above.

1. Assume ¢ € A" ie. p =k, k € Z\ {0}.

1.1. If e,v = 0 for some o« € A" then the statement follows from
the Lemma above,

1.2. else eqv # 0.

1.2.1. If e_,v = 0 then the statement follows from the Lemma.

1.2.2. else v/ = e_ov # 0. As A\+kd ¢ supp(V) we have N +a+kd ¢
supp(V') for N = X — a. Thus eqix50" = 0. Also eqipnsv’ = 0 for all
n==k,2k 3k,....

1.2.2.1. If eq 50" = 0 for all I’ € Z then v’ is n,-primitive,

1.2.2.2. else we may define v/ = ey psv’ # 0 for some I! € Z,
' # k,2k,3k,.... Then N 4+ (k—1")0 ¢ supp(V) for N =N +a+1'5
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but still e_pypsv” = 0 for any n = k,2k,3k,.... and —a + kb € A"
what brings us in the situation of the Lemma.

2. Assume ¢ € A™ . Then we have e,v € V)4, = 0 by assumption.

2.1. If there exists v' = e,_p5v # 0 for some n € Z\ {0} then v’ € Vy/
for ' = X+ ¢ —nd and Vy,5 = 0. But these are the assumptions of
case 1 in this proof.

2.2. If e,_psv = 0 for all n € Z then v is ng-primitive. L]

Now Theorem 5.2 follows from the Proposition, Corollary 2.2 and
Proposition 4.2.

6. Classification of supports

Now we are able to classify all possible supports of irreducible g-modules.
Denote Z .7 = {Z air; #0 | a; € Zzo} for a set .

TiET

Theorem 6.1. Let 7 = {¢,d — ¢} be a basis of the root lattice. The
support of an irreducible g-module is of one (and only one) of the following
equivalence classes (w.r.t. the affine Weyl group) for some X € b*,

() Sdense =+ Q7

(u3 Sverma CA+Zym, for a highest or lowest weight module
=A+Zi7m (2 classes),

=\t Zim+ Zy (2 classes),

)

(131) S
) S

(v) S (i i =\t Zim+ Za where o =20 £ § (4 classes),
) S;
) Sx

(iv

(vi =A+Z16U{Zirp +Z6} for A(c) #0 (4 classes),
(vii —0 ={A\tZip+Z5}U{\},
for A(c) =0 and L, A = Lo ,,
(vi1) Striviar =\, if A(c) = A (h) =0.

Proof. Follows immediately from Proposition 5.9. O
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