Tiled orders of width 3

Viktor Zhuravlev, Dmytro Zhuravlyov

Communicated by V. V. Kirichenko

Abstract. We consider projective cover over tiled order and calculate the kernel of epimorphism from direct sum of submodules of distributive module to their sum.

1. Tiled orders over discrete valuation rings

Recall [1] that a semimaximal ring is a semiperfect semiprime right Noetherian ring A such that for each primitive idempotent $e \in A$ the ring $e A e$ is a discrete valuation ring (not necessarily commutative).

Denote by $M_{n}(B)$ the ring of all $n \times n$ matrices over a ring B.
Theorem 1 (see [1]). Each semimaximal ring is isomorphic to a finite direct product of prime rings of the following form:

$$
\Lambda=\left(\begin{array}{cccc}
\mathcal{O} & \pi^{\alpha_{12}} \mathcal{O} & \ldots & \pi^{\alpha_{1 n}} \mathcal{O} \tag{1}\\
\pi^{\alpha_{21}} \mathcal{O} & \mathcal{O} & \ldots & \pi^{\alpha_{2 n}} \mathcal{O} \\
\ldots \ldots \ldots & \ldots \ldots \ldots & \ldots \ldots \\
\pi^{\alpha_{n 1}} \mathcal{O} & \pi^{\alpha_{n 2}} \mathcal{O} & \ldots & \mathcal{O}
\end{array}\right)
$$

where $n \geq 1, \mathcal{O}$ is a discrete valuation ring with a prime element π, and $\alpha_{i j}$ are integers such that

$$
\alpha_{i j}+\alpha_{j k} \geq \alpha_{i k}, \quad \alpha_{i i}=0
$$

for all i, j, k.

Key words and phrases: tiled order, distributive module, projective cover.

The ring \mathcal{O} is embedded into its classical division ring of fractions \mathcal{D}, and (1) is the set of all matrices $\left(a_{i j}\right) \in M_{n}(\mathcal{D})$ such that

$$
a_{i j} \in \pi^{\alpha_{i j}} \mathcal{O}=e_{i i} \Lambda e_{j j}
$$

where $e_{11}, \ldots, e_{n n}$ are the matrix units of $M_{n}(\mathcal{D})$. It is clear that $Q=$ $M_{n}(\mathcal{D})$ is the classical ring of fractions of Λ.

Obviously, the ring A is right and left Noetherian.
Definition 1. A module M is distributive if its lattice of submodules is distributive, i.e.,

$$
K \cap(L+N)=K \cap L+K \cap N
$$

for all submodules K, L, and N.
Clearly, any submodule and any factormodule of a distributive module are distributive modules.

A semidistributive module is a direct sum of distributive modules. A ring A is right (left) semidistributive if it is semidistributive as the right (left) module over itself. A ring A is semidistributive if it is both left and right semidistributive (see [7]).

Theorem 2 (see [6]). The following conditions for a semiperfect semiprime right Noetherian ring A are equivalent:

- A is semidistributive;
- A is a direct product of a semisimple artinian ring and a semimaximal ring.

By a tiled order over a discrete valuation ring, we mean a Noetherian prime semiperfect semidistributive ring Λ with nonzero Jacobson radical. In this case, $\mathcal{O}=e \Lambda e$ is a discrete valuation ring with a primitive idempotent $e \in \Lambda$.

Definition 2. An integer matrix $\mathcal{E}=\left(\alpha_{i j}\right) \in M_{n}(\mathbb{Z})$ is called

- an exponent matrix if $\alpha_{i j}+\alpha_{j k} \geq \alpha_{i k}$ and $\alpha_{i i}=0$ for all i, j, k;
- a reduced exponent matrix if $\alpha_{i j}+\alpha_{j i}>0$ for all $i, j, i \neq j$.

We use the following notation: $\Lambda=\{\mathcal{O}, \mathcal{E}(\Lambda)\}$, where $\mathcal{E}(\Lambda)=\left(\alpha_{i j}\right)$ is the exponent matrix of the ring Λ, i.e.

$$
\Lambda=\sum_{i, j=1}^{n} e_{i j} \pi^{\alpha_{i j}} \mathcal{O}
$$

in which $e_{i j}$ are the matrix units. If a tiled order is reduced, i.e., $\Lambda / R(\Lambda)$ is the direct product of division rings, then $\alpha_{i j}+\alpha_{j i}>0$ if $i \neq j$, i.e., $\mathcal{E}(\Lambda)$ is reduced.

We denote by $\mathcal{M}(\Lambda)$ the poset (ordered by inclusion) of all projective right Λ-modules that are contained in a fixed simple Q-module U. All simple Q-modules are isomorphic, so we can choice one of them. Note that the partially ordered sets $\mathcal{M}_{l}(\Lambda)$ and $\mathcal{M}_{r}(\Lambda)$ corresponding to the left and the right modules are anti-isomorphic.

The set $\mathcal{M}(\Lambda)$ is completely determined by the exponent matrix $\mathcal{E}(\Lambda)=\left(\alpha_{i j}\right)$. Namely, if Λ is reduced, then

$$
\mathcal{M}(\Lambda)=\left\{p_{i}^{z} \mid i=1, \ldots n, \text { and } z \in \mathbb{Z}\right\}
$$

where

$$
p_{i}^{z} \leq p_{j}^{z^{\prime}} \Longleftrightarrow \begin{cases}z-z^{\prime} \geq \alpha_{i j} & \text { if } \mathcal{M}(\Lambda)=\mathcal{M}_{l}(\Lambda) \\ z-z^{\prime} \geq \alpha_{j i} & \text { if } \mathcal{M}(\Lambda)=\mathcal{M}_{r}(\Lambda)\end{cases}
$$

Obviously, $\mathcal{M}(\Lambda)$ is an infinite periodic set.
Let P be an arbitrary poset. A subset of P is called a chain if any two of its elements are related. A subset of P is called a antichain if no two distinct elements of the subset are related.

Definition 3. The maximal number $w(P)$ of elements in an antichain of P is called the width of P.

The width of $\mathcal{M}_{r}(\Lambda)$ is called the width of a tiled order Λ and denotes by $w(\Lambda)$.

Definition 4. A right (resp. left) Λ-module M (resp. N) is called a right (resp. left) Λ-lattice if M (resp. N) is a finitely generated free \mathcal{O}-module.

Given a tiled order Λ we denote $\operatorname{Lat}_{r}(\Lambda)\left(\operatorname{resp} . \operatorname{Lat}_{l}(\Lambda)\right)$ the category of right (resp. left) Λ-lattices. We denote by $S_{r}(\Lambda)$ (resp. $S_{l}(\Lambda)$) the partially ordered by inclusion set, formed by all Λ-lattices contained in a fixed simple $M_{n}(\mathcal{D})$-module W (resp. in a left simple $M_{n}(\mathcal{D})$-module $V)$. Such Λ-lattices are called irreducible.

Let $\Lambda=\{\mathcal{O}, \mathcal{E}(\Lambda)\}$ be a tiled order, W (resp. V) is a simple right (resp. left) $M_{n}(\mathcal{D})$-module with \mathcal{D}-basis e_{1}, \ldots, e_{n} such that $e_{i} e_{j k}=$ $\delta_{i j} e_{k}\left(e_{i j} e_{k}=\delta_{j k} e_{i}\right)$.

Then any right (resp. left) irreducible Λ-lattice M (resp. N), lying in $W^{(}$(resp. in $\left.V\right)$ is a Λ-module with \mathcal{O}-basis $\left(\pi^{\alpha_{1}} e_{1}, \ldots, \pi^{\alpha_{n}} e_{n}\right)$, while

$$
\left\{\begin{align*}
\alpha_{i}+\alpha_{i j} \geq \alpha_{j}, \text { for the right case } \tag{2}\\
\alpha_{i j}+\alpha_{j} \geq \alpha_{i}, \text { for the left case }
\end{align*}\right.
$$

Thus, irreducible Λ-lattices M can be identified with integer-valued vector $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ satisfying (2). We shall write $\mathcal{E}(M)=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ or $M=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

The order relation on the set of such vectors and the operations on them corresponding to sum and intersection of irreducible lattices are obvious.
Remark 1. Obviously, irreducible Λ-lattices $M_{1}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $M_{2}=\left(\beta_{1}, \ldots, \beta_{n}\right)$ are isomorphic if and only if $\alpha_{i}=\beta_{i}+z$ for $i=$ $1, \ldots, n$ and $z \in \mathbb{Z}$.

2. Kernel of epimorphism from direct sum of modules to their sum

Proposition 1. Let M be an irreducible and non-projective Λ-module, X be a maximal submodule of M. Then there exists projective submodule of M, which is not submodule of X.

Proof. Let

$$
\begin{gathered}
\mathcal{E}(M)=\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}, \alpha_{i+1}, \ldots, \alpha_{n}\right) \quad \text { and } \\
\mathcal{E}(X)=\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}+1, \alpha_{i+1}, \ldots, \alpha_{n}\right)
\end{gathered}
$$

Since M is right Λ-module, $\alpha_{i}+\alpha_{i k} \geq \alpha_{k}$ for all i, k. Consider the projective module $\pi^{\alpha_{i}} P_{i}$ with
$\mathcal{E}\left(\pi^{\alpha_{i}} P_{i}\right)=\left(\alpha_{i}+\alpha_{i 1}, \ldots, \alpha_{i}+\alpha_{i, i-1}, \alpha_{i}+\alpha_{i i}, \alpha_{i}+\alpha_{i, i+1}, \ldots, \alpha_{i}+\alpha_{i n}\right)$.
Obviously, $\pi^{\alpha_{i}} P_{i} \subset M$, but $\pi^{\alpha_{i}} P_{i} \nsubseteq X$.
Since X is maximal submodule of M, then $X+\pi^{\alpha_{i}} P_{i}=M$. Besides,

$$
\begin{align*}
\mathcal{E}\left(X \cap \pi^{\alpha_{i}} P_{i}\right)=\left(\alpha_{i}+\alpha_{i 1}, \ldots,\right. & \alpha_{i}+\alpha_{i, i-1}, \alpha_{i}+1 \\
& \left.\alpha_{i}+\alpha_{i, i+1}, \ldots, \alpha_{i}+\alpha_{i n}\right)=\mathcal{E}\left(\pi^{\alpha_{i}} R_{i}\right) \tag{3}
\end{align*}
$$

i. e. $X \cap \pi^{\alpha_{i}} P_{i}=R_{i}$, where $R_{i}=\operatorname{rad} P_{i}$.

Proposition 2. Let X_{1}, \ldots, X_{s} be the set of all maximal submodules of irreducible and non-projective Λ-module M with $\mathcal{E}(M)=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\mathcal{E}\left(X_{i}\right)=\mathcal{E}(M)+e_{j_{i}}$, where $e_{k}=(\underbrace{0, \ldots, 0}_{k-1}, 1,0, \ldots, 0)$. Then

$$
P(M)=\underset{i=1}{\oplus} \pi^{\alpha_{j_{i}}} P_{j_{i}} \quad \text { and } \quad M=\sum_{i=1}^{s} \pi^{\alpha_{j_{i}}} P_{j_{i}}
$$

Proof. Since rad $M=\bigcap_{i=1}^{s} X_{i}$, we have $\mathcal{E}(\operatorname{rad} M)=\mathcal{E}(M)+\sum_{i=1}^{s} e_{j_{i}}$, $P(M)=\stackrel{s}{\oplus}{ }_{i=1} \pi^{\alpha_{j_{i}}} P_{j_{i}}$. Besides, $\pi^{\alpha_{j_{i}}} P_{j_{i}} \subset M$ for each i, whereas $\sum_{i=1}^{s} \pi^{\alpha_{j_{i}}} P_{j_{i}} \subset$ M. Suppose that $\sum_{i=1}^{s} \pi^{\alpha_{j}} P_{j_{i}} \neq M$. Then there is the maximal submodule X_{k} such that $\pi^{\alpha_{j_{i}}} P_{j_{i}} \subseteq X_{k}$. This contradicts to inclusion $\pi^{\alpha_{j_{k}}} P_{j_{k}} \nsubseteq$ X_{k}.

Lemma 1. Let M_{1}, M_{2}, M_{3} be submodules of distributive module M and $\varphi: M_{1} \oplus M_{2} \oplus M_{3} \rightarrow M_{1}+M_{2}+M_{3}$ be epimorphism of their direct sum on their sum defined by the rule $\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1}+x_{2}+x_{3}$. Then $\operatorname{ker} \varphi=\left\{\left(m_{12}-m_{31}, m_{23}-m_{12}, m_{31}-m_{23}\right) \quad \mid \quad m_{12} \in M_{1} \cap M_{2}, m_{23} \in\right.$ $\left.M_{2} \cap M_{3}, m_{31} \in M_{3} \cap M_{1}\right\}$.

Proof. Let us calculate the kernel of homomorphism φ. By definition $\operatorname{ker} \varphi=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in M_{1} \oplus M_{2} \oplus M_{3} \mid x_{1}+x_{2}+x_{3}=0\right\}$.

Hence $x_{1}=-\left(x_{2}+x_{3}\right)$ and $x_{1} \in\left(M_{2}+M_{3}\right) \cap M_{1}$. Similarly, $x_{2} \in$ $\left(M_{1}+M_{3}\right) \cap M_{2}$ and $x_{3} \in\left(M_{2}+M_{1}\right) \cap M_{3}$. Since modules M_{1}, M_{2}, M_{3} are distributive, we have $\left(M_{i}+M_{j}\right) \cap M_{k}=\left(M_{i} \cap M_{k}\right)+\left(M_{j} \cap\right.$ M_{k}). Therefore $x_{1}=x_{12}+x_{13}, x_{2}=x_{21}+x_{23}, x_{3}=x_{31}+x_{32}$, where $x_{i j} \in M_{i} \cap M_{j}$. Since $x_{1}+x_{2}=\left(x_{12}+x_{21}\right)+\left(x_{13}+x_{23}\right) \in M_{3}$ and $x_{13}+x_{23} \in M_{3}$, then $x_{12}+x_{21} \in M_{3}$. Given that $x_{12}, x_{21} \in M_{1} \cap M_{2}$, we have $x_{12}+x_{21} \in M_{1} \cap M_{2} \cap M_{3}$. Similarly $x_{23}+x_{32} \in M_{1} \cap M_{2} \cap M_{3}$, $x_{31}+x_{13} \in M_{1} \cap M_{2} \cap M_{3}$.

Therefore $x_{12}+x_{21}=t_{3} \in M_{1} \cap M_{2} \cap M_{3}, x_{23}+x_{32}=t_{1} \in M_{1} \cap M_{2} \cap$ $M_{3}, x_{31}+x_{13}=t_{2} \in M_{1} \cap M_{2} \cap M_{3}$. Hence $x_{21}=t_{3}-x_{12}, x_{32}=t_{1}-x_{23}$, $x_{13}=t_{2}-x_{31}$. Then $\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{12}+t_{2}-x_{31}, x_{23}+t_{3}-x_{12}, x_{31}+\right.$ $t_{1}-x_{23}$). From the equality $x_{1}+x_{2}+x_{3}=0$ implies that $t_{1}+t_{2}+t_{3}=0$. Therefore

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right)=\left(x_{12}+t_{2}-x_{31}, x_{23}-\left(t_{1}+t_{2}\right)-x_{12}, x_{31}+t_{1}-x_{23}\right)= \\
& \quad=\left(\left(x_{12}+t_{2}\right)-x_{31},\left(x_{23}-t_{1}\right)-\left(t_{2}+x_{12}\right), x_{31}-\left(x_{23}-t_{1}\right)\right)
\end{aligned}
$$

Denoting by $x_{12}+t_{2}=y_{12} \in M_{1} \cap M_{2}, x_{23}-t_{1}=y_{23} \in M_{2} \cap M_{3}$, $x_{31}=y_{31}$, we obtain $\operatorname{ker} \varphi=\left\{\left(y_{12}-y_{31}, y_{23}-y_{12}, y_{31}-y_{23}\right) \mid y_{12} \in\right.$ $\left.M_{1} \cap M_{2}, y_{23} \in M_{2} \cap M_{3}, y_{31} \in M_{3} \cap M_{1}\right\}$.

If $M_{1} \cap M_{2} \subset M_{3}$, then $x_{12}+x_{21} \in M_{3}$ for any $x_{1} \in M_{1}, x_{2} \in M_{2}$. Therefore $\operatorname{ker} \varphi=\left\{\left(x_{1}, x_{2},-\left(x_{1}+x_{2}\right)\right) \mid x_{1} \in\left(M_{2}+M_{3}\right) \cap M_{1}, x_{2} \in\left(M_{3}+\right.\right.$ $\left.\left.M_{1}\right) \cap M_{2}\right\}$. Hence ker $\left.\varphi \simeq\left(\left(M_{2}+M_{3}\right) \cap M_{1}\right) \oplus\left(\left(M_{3}+M_{1}\right) \cap M_{2}\right)\right\}$. Since $\left(M_{2}+M_{3}\right) \cap M_{1}=M_{2} \cap M_{1}+M_{3} \cap M_{1}=M_{3} \cap M_{1}$ and $\left(M_{3}+M_{1}\right) \cap$ $M_{2}=M_{3} \cap M_{2}+M_{1} \cap M_{2}=M_{3} \cap M_{2}$, then $\operatorname{ker} \varphi \simeq\left(M_{3} \cap M_{1}\right) \oplus\left(M_{3} \cap M_{2}\right)$.

Let us write formally the expression for the kernel of the homomorphism φ in the other way

$$
\begin{aligned}
\left(y_{12}-y_{31}, y_{23}-y_{12}, y_{31}-y_{23}\right) & = \\
& =y_{12}(1,-1,0)+y_{23}(0,1,-1)+y_{31}(-1,0,1)
\end{aligned}
$$

Note that $\left(\left(M_{1} \cap M_{2}\right)(1,-1,0)\right) \cap\left(\left(M_{2} \cap M_{3}\right)(0,1,-1)\right)=0$, but $\left(\left(\left(M_{1} \cap M_{2}\right)(1,-1,0)\right)+\left(\left(M_{2} \cap M_{3}\right)(0,1,-1)\right)\right) \cap\left(\left(M_{3} \cap M_{1}\right)(-1,0,1)\right) \neq 0$.

Therefore, the sum of modules is not direct.
Consider the epimorphism $\psi:\left(M_{1} \cap M_{2}\right) \oplus\left(M_{2} \cap M_{3}\right) \oplus\left(M_{3} \cap M_{1}\right) \rightarrow$ $\operatorname{ker} \varphi$, defined by the equality

$$
\psi\left(x_{12}, x_{23}, x_{31}\right)=\left(x_{12}-x_{31}, x_{23}-x_{12}, x_{31}-x_{23}\right)
$$

Then $\operatorname{ker} \psi=\left\{\left(x_{12}, x_{23}, x_{31}\right) \mid x_{12}-x_{31}=x_{23}-x_{12}=x_{31}-x_{23}=\right.$ $0\}=\left\{\left(x_{12}, x_{23}, x_{31}\right) \mid x_{12}=x_{23}=x_{31}\right\}$. By the fundamental theorem on homomorphism of modules we have

$$
\operatorname{ker} \varphi \simeq\left(\left(M_{1} \cap M_{2}\right) \oplus\left(M_{2} \cap M_{3}\right) \oplus\left(M_{3} \cap M_{1}\right) / \operatorname{ker} \psi\right.
$$

i. e.

$$
\operatorname{ker} \varphi \simeq\left(\left(M_{1} \cap M_{2}\right) \oplus\left(M_{2} \cap M_{3}\right) \oplus\left(M_{3} \cap M_{1}\right)\right) /\left(M_{1} \cap M_{2} \cap M_{3}\right)
$$

Note that in the general case

$$
\begin{aligned}
\operatorname{ker} \varphi \simeq\left\{\left(y_{12}-y_{31}, y_{23}-y_{12}\right) \mid y_{31}\right. & \in M_{3} \cap M_{1} \\
& \left.y_{23} \in M_{2} \cap M_{3}, y_{12} \in M_{1} \cap M_{2}\right\}
\end{aligned}
$$

or

$$
\operatorname{ker} \varphi \simeq\left(M_{3} \cap M_{1}\right) \oplus\left(M_{2} \cap M_{3}\right)+\left(M_{1} \cap M_{2}\right)(1,-1)
$$

Let M_{1}, \ldots, M_{n} be submodules of M such that $M_{i} \nsubseteq \sum_{j \neq i} M_{j}$ for all $i=1, \ldots, n$ and I_{1}, I_{2} be nonempty subsets of the set $I=\{1, \ldots, n\}$ such that $I_{1} \cup I_{2}=I, I_{1} \cap I_{2}=\emptyset$. We have the following exact sequences

$$
\begin{aligned}
& 0 \rightarrow K \rightarrow \underset{i \in I}{\oplus} M_{i} \rightarrow \sum_{i \in I} M_{i} \rightarrow 0 \\
& 0 \rightarrow K_{1} \rightarrow \underset{i \in I_{1}}{\oplus} M_{i} \rightarrow \sum_{i \in I_{1}} M_{i} \rightarrow 0 \\
& 0 \rightarrow K_{2} \rightarrow \underset{i \in I_{2}}{\oplus} M_{i} \rightarrow \sum_{i \in I_{2}} M_{i} \rightarrow 0
\end{aligned}
$$

where K, K_{1}, K_{2} are the kernels of epimorphisms from direct sum on the sum of modules. Next commutative diagram

has exact rows and two columns exact. Therefore by lemma 3×3 first column

$$
0 \rightarrow K_{I_{1}} \oplus K_{I_{2}} \rightarrow K_{I} \rightarrow\left(\sum_{j \in I_{1}} M_{j}\right) \cap\left(\sum_{j \in I_{2}} M_{j}\right) \rightarrow 0
$$

is also exact.
In particular, if $I_{2}=\{k\}, I_{1}=I \backslash\{k\}$, then $K_{I_{2}}=0$ and we have from the commutative diagram

the exact sequence

$$
0 \rightarrow K_{I_{1}} \rightarrow K_{I} \rightarrow\left(\sum_{j \in I_{1}} M_{j}\right) \cap M_{k} \rightarrow 0
$$

Theorem 3. Let M_{1}, \ldots, M_{n} be submodules of distributive module $M=\sum_{i=1}^{n} M_{i}$ and epimorphism $\varphi: \underset{i=1}{\oplus} M_{i} \mapsto M$ operates by the rule $\varphi\left(m_{1}, \ldots, m_{n}\right)=m_{1}+\ldots+m_{n}$. Then $\operatorname{ker} \varphi=\left\{\left(y_{1}, \ldots, y_{n}\right) \mid y_{i}=\right.$ $\left.\sum_{j \neq i} \operatorname{sign}(j-i) \cdot m_{i j}, m_{i j} \in M_{i} \cap M_{j}\right\}$.

Proof. We use induction by n. It is well known that the kernel of epimorphism equals to $\left\{m_{12},-m_{12}\right\}$, where $m_{12} \in M_{1} \cap M_{2}$, that implies the base of induction for $n=2$.

Suppose that the kernel of epimorphism $\varphi\left(m_{1}, \ldots, m_{n-1}\right)=m_{1}+$ $\ldots+m_{n-1}$ is $K_{n}=\left\{\left(y_{1}, \ldots, y_{n-1}\right) \mid y_{i}=\sum_{j \neq i} \operatorname{sign}(j-i) \cdot m_{i j}, m_{i j} \in\right.$ $\left.M_{i} \cap M_{j}\right\}$. Denote by $L=\left\{\left(y_{1}, \ldots, y_{n}\right) \mid y_{i}=\sum_{j \neq i} \operatorname{sign}(j-i) \cdot m_{i j}, m_{i j} \in\right.$ $\left.M_{i} \cap M_{j}\right\}$. Obviously, $K_{n} \simeq\left\{\left(y_{1}, \ldots, y_{n-1}, 0\right)\right\} \subset L$. Then

$$
\stackrel{n}{\oplus}{ }_{i=1}^{n} M_{i} / L \simeq\left(\stackrel{n}{\left.\underset{i=1}{\oplus} M_{i} / K_{n}\right) /\left(L / K_{n}\right) . . . ~ . ~}\right.
$$

By assumption we have $\underset{i=1}{\stackrel{n}{\oplus}} M_{i} / K_{n} \simeq\left(\sum_{i \neq n} M_{i}\right) \oplus M_{n}$.
Proposition 3. $L / K_{n} \simeq\left(\sum_{i \neq n} M_{i}\right) \cap M_{n}$.
Proof. Indeed,

$$
\begin{aligned}
& L / K_{n}=\left\{\left(y_{1}, \ldots, y_{n}\right)+K_{n}\right\}= \\
& \quad=\left\{\left(m_{1 n}, m_{2 n}, \ldots, m_{n-1 n},-\left(m_{1 n}+m_{2 n}+\ldots+m_{n-1 n}\right)\right)+K_{n}\right\}
\end{aligned}
$$

Consider epimorphism $\psi: L / K_{n} \mapsto\left(\sum_{i \neq n} M_{i}\right) \cap M_{n}$, for which

$$
\begin{aligned}
\psi\left(\left(m_{1 n}, m_{2 n}, \ldots, m_{n-1 n},-\left(m_{1 n}+m_{2 n}\right.\right.\right. & \left.\left.\left.+\ldots+m_{n-1 n}\right)\right)+K_{n}\right)= \\
& =m_{1 n}+m_{2 n}+\ldots+m_{n-1 n}
\end{aligned}
$$

The kernel of this epimorphism

$$
\begin{aligned}
& \operatorname{ker} \psi=\left\{\left(m_{1 n}, m_{2 n}, \ldots, m_{n-1 n}, 0\right)+K_{n},\right. \text { where } \\
& \left.\qquad m_{1 n}+m_{2 n}+\ldots+m_{n-1 n}=0\right\} \simeq K_{n}
\end{aligned}
$$

Therefore ψ is isomorphism.

$$
\text { Hence, } \stackrel{\oplus}{i=1}{ }_{i=1}^{n} M_{i} / L \simeq\left(\sum_{i \neq n} M_{i}\right) \oplus M_{n} /\left(\sum_{i \neq n} M_{i}\right) \cap M_{n} \simeq \sum_{i=1}^{n} M_{i} \text {. On }
$$

the other hand $\underset{i=1}{\oplus} M_{i} / K \simeq \sum_{i=1}^{n} M_{i}$. Therefore $K \simeq L$. Obviously, $L \subseteq$ $K=\operatorname{ker} \varphi$. Hence, $L=K$.

Corollary 1. Let M be irreducible Λ-modute and $P(M)=\stackrel{\stackrel{s}{\oplus}}{i=1} \pi^{\alpha_{j_{i}}} P_{j_{i}}$, $M=\sum_{i=1}^{s} \pi^{\alpha_{j_{i}}} P_{j_{i}}$. Then the kernel of epimorphism $\varphi: P(M) \mapsto M$ equals to $\operatorname{ker} \varphi=\left\{\left(y_{1}, \ldots, y_{n}\right) \mid y_{i}=\sum_{k \neq i} \operatorname{sign}(k-i) \cdot m_{i k}, m_{i k} \in P_{j_{i}} \cap P_{j_{k}}\right\}$.

Proof. Tiled order Λ is semidistributive ring. Therefore every irreducible Λ-module is distributive. According to preliminary theorems core epimorphism has specified above form.

The kernel K as submodule in $\underset{i=1}{\underset{\sim}{\oplus}} M_{i}$ can be formally written as вигляді

$$
K=\sum_{i<j} M_{i} \cap M_{j}\left(e_{i}-e_{j}\right), \text { where } e_{k}=(\underbrace{0, \ldots, 0}_{k-1}, 1,0, \ldots, 0) .
$$

3. Tiled order of width 3

Proposition 4. Modules $P\left(M_{i} \cap\left(\sum_{k \neq i} M_{k}\right)\right), i=1, \ldots, n$, have a common direct summand P^{\prime} if and only if the modules $P\left(M_{i} \cap M_{j}\right), i, j=1, \ldots, n$, also have common direct summand P^{\prime}.
Proof. Let modules $P\left(M_{i} \cap\left(\sum_{k \neq i} M_{k}\right)\right), i=1, \ldots, n$, have a common direct summand P^{\prime}. This is equivalent to the fact that module $M_{i} \cap\left(\sum_{k \neq i} M_{k}\right)$ has the maximal submodules X_{i} with $\mathcal{E}\left(X_{i}\right)=\mathcal{E}\left(M_{i} \cap\left(\sum_{k \neq i} M_{k}\right)\right)+e^{\prime}$. Since $M_{i} \cap M_{j}=\left(M_{i} \cap\left(\sum_{k \neq i} M_{k}\right)\right) \cap\left(M_{j} \cap\left(\sum_{k \neq j} M_{k}\right)\right)$ for $i \neq j$, then the module
$M_{i} \cap M_{j}$ also have maximal submodules $N_{i j}$ with $\mathcal{E}\left(N_{i j}\right)=\mathcal{E}\left(M_{i} \cap M_{j}\right)+e^{\prime}$. Therefore, the modules $P\left(M_{i} \cap M_{j}\right), i, j=1, \ldots, n$, have also common summand P^{\prime}.

Now let the modules $P\left(M_{i} \cap M_{j}\right), i, j=1, \ldots, n$, have a common summand P^{\prime}. This means that the module $P\left(M_{i} \cap M_{j}\right)$ has the maximal submodule $N_{i j}$ with $\mathcal{E}\left(N_{i j}\right)=\mathcal{E}\left(M_{i} \cap M_{j}\right)+e^{\prime}$. Therefore, module $M_{k} \cap$ $\left(M_{i}+M_{j}\right)=M_{i} \cap M_{k}+M_{j} \cap M_{k}$ has maximal submodule $X_{i j k}$ with $\mathcal{E}\left(X_{i j k}\right)=\mathcal{E}\left(M_{k} \cap\left(M_{i}+M_{j}\right)\right)+e^{\prime}$. Similarly we get that the module $M_{k} \cap\left(M_{i}+\cdots+M_{j}\right)=M_{i} \cap M_{k}+\cdots+M_{j} \cap M_{k}$ has maximal submodule X_{k} with $\mathcal{E}\left(X_{k}\right)=\mathcal{E}\left(M_{k} \cap\left(M_{i}+\cdots+M_{j}\right)\right)+e^{\prime}$. In particular, the module $M_{i} \cap$ $\left(\sum_{k \neq i} M_{k}\right)$ has the maximal submodule Y_{i} with $\mathcal{E}\left(Y_{i}\right)=\mathcal{E}\left(M_{i} \cap\left(\sum_{k \neq i} M_{k}\right)\right)+$ e^{\prime}. This is equivalent to the fact that modules $P\left(M_{i} \cap\left(\sum_{k \neq i} M_{k}\right)\right), i=$ $1, \ldots, n$, have a common direct summand P^{\prime}.

Let module M with $\mathcal{E}(M)=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ has a projective cover $P(M)=\pi^{\alpha_{i}} P_{i} \oplus \pi^{\alpha_{j}} P_{j} \oplus \pi^{\alpha_{k}} P_{k}$ and $M=\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}+\pi^{\alpha_{k}} P_{k}$. Then

$$
\begin{aligned}
& K=\left(\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j}\right)\left(e_{i}-e_{j}\right)+\left(\pi^{\alpha_{j}} P_{j} \cap \pi^{\alpha_{k}} P_{k}\right)\left(e_{j}-e_{k}\right)+ \\
&+\left(\pi^{\alpha_{k}} P_{k} \cap \pi^{\alpha_{i}} P_{i}\right)\left(e_{k}-e_{i}\right)
\end{aligned}
$$

Suppose that $\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j}=\pi^{\alpha_{j}} P_{j} \cap \pi^{\alpha_{k}} P_{k}$. Then

$$
\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{k}} P_{k}\right) \cap \pi^{\alpha_{j}} P_{j}=\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j}
$$

and

$$
\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}\right) \cap \pi^{\alpha_{k}} P_{k}=\left(\pi^{\alpha_{j}} P_{j}+\pi^{\alpha_{k}} P_{k}\right) \cap \pi^{\alpha_{i}} P_{i}
$$

From the equality $\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{k}} P_{k}\right) \cap \pi^{\alpha_{j}} P_{j}=\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j}$ we get

$$
\begin{aligned}
& \left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}\right) \cap \pi^{\alpha_{k}} P_{k}= \\
& \quad=\left(\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}\right) \cap \pi^{\alpha_{k}} P_{k}\right) \cap\left(\left(\pi^{\alpha_{j}} P_{j}+\pi^{\alpha_{k}} P_{k}\right) \cap \pi^{\alpha_{i}} P_{i}\right)= \\
& =\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{k}} P_{k}
\end{aligned}
$$

So we have two exact sequences

$$
\begin{aligned}
& 0 \rightarrow \pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j} \rightarrow K \rightarrow\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}\right) \cap \pi^{\alpha_{k}} P_{k} \rightarrow 0 \\
& 0 \rightarrow \pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{k}} P_{k} \rightarrow K \rightarrow\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{k}} P_{k}\right) \cap \pi^{\alpha_{j}} P_{j} \rightarrow 0
\end{aligned}
$$

Whereas $\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{k}} P_{k}\right) \cap \pi^{\alpha_{j}} P_{j}=\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j}$ and $\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}\right) \cap$ $\pi^{\alpha_{k}} P_{k}=\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{k}} P_{k}$, then the exact sequence splits:

$$
K \simeq\left(\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j}\right) \oplus\left(\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{k}} P_{k}\right)
$$

Let the width of tiled order do not exceed 3 .

Proposition 5. Let irreducible Λ-module M have exactly two maximal non-projective submodules X and Y with

$$
\begin{gathered}
\mathcal{E}(M)=\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}, \alpha_{i+1}, \ldots, \alpha_{n}\right) \\
\mathcal{E}(X)=\left(\alpha_{1}, \ldots, \alpha_{j-1}, \alpha_{j}+1, \alpha_{j+1}, \ldots, \alpha_{n}\right) \text { and } \\
\mathcal{E}(Y)=\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}+1, \alpha_{i+1}, \ldots, \alpha_{n}\right)
\end{gathered}
$$

Then $P(M)=\pi^{\alpha_{i}} P_{i} \oplus \pi^{\alpha_{j}} P_{j}$ and we have the exact sequence

$$
0 \rightarrow \pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j} \rightarrow \pi^{\alpha_{i}} P_{i} \oplus \pi^{\alpha_{j}} P_{j} \rightarrow M \rightarrow 0
$$

Proof. We have $M=X+\pi^{\alpha_{i}} P_{i}=Y+\pi^{\alpha_{j}} P_{j}, \pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j} \subseteq M$, but $\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}$ does not belong to any maximal submodule X or Y. Then $\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}=M$.

Since $M / X \simeq U_{j}$ та $M / Y \simeq U_{i}$, then $M /(\operatorname{rad} M)=M /(X \cap Y) \simeq$ $U_{i} \oplus U_{j}$. Therefore $P(M) \simeq P(M / \operatorname{rad} M) \simeq P\left(U_{i} \oplus U_{j}\right) \simeq P\left(U_{i}\right) \oplus$ $P\left(U_{j}\right) \simeq P_{i} \oplus P_{j}$. Obviously, the kernel of epimorphism $\varphi: \pi^{\alpha_{i}} P_{i} \oplus$ $\pi^{\alpha_{j}} P_{j} \rightarrow M$ coincides with $\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j}=\pi^{\alpha_{i}} R_{i} \cap \pi^{\alpha_{j}} R_{j}$.

Consider the case when the module $M=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ has exactly three maximal submodules $X=\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}+1, \alpha_{i+1}, \ldots, \alpha_{n}\right)$, $Y=\left(\alpha_{1}, \ldots, \alpha_{j-1}, \alpha_{j}+1, \alpha_{j+1}, \ldots, \alpha_{n}\right)$ and $Z=\left(\alpha_{1}, \ldots, \alpha_{k-1}, \alpha_{k}+\right.$ $\left.1, \alpha_{k+1}, \ldots, \alpha_{n}\right)$.

Let module M with $\mathcal{E}(M)=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ have a projective cover

$$
P(M)=\pi^{\alpha_{i}} P_{i} \oplus \pi^{\alpha_{j}} P_{j} \oplus \pi^{\alpha_{k}} P_{k}
$$

and $M=\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}+\pi^{\alpha_{k}} P_{k}$. Then

$$
\begin{aligned}
K=\left(\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} \bar{P}_{j}\right)\left(e_{i}-e_{j}\right)+\left(\pi^{\alpha_{j}} P_{j} \cap\right. & \left.\pi^{\alpha_{k}} P_{k}\right)\left(e_{j}-e_{k}\right)+ \\
& +\left(\pi^{\alpha_{k}} P_{k} \cap \pi^{\alpha_{i}} P_{i}\right)\left(e_{k}-e_{i}\right) .
\end{aligned}
$$

Also we have three exact sequences

$$
\begin{aligned}
& 0 \rightarrow \pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j} \rightarrow K \rightarrow\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}\right) \cap \pi^{\alpha_{k}} P_{k} \rightarrow 0 \\
& 0 \rightarrow \pi^{\alpha_{j}} P_{j} \cap \pi^{\alpha_{k}} P_{k} \rightarrow K \rightarrow\left(\pi^{\alpha_{j}} P_{j}+\pi^{\alpha_{k}} P_{k}\right) \cap \pi^{\alpha_{i}} P_{i} \rightarrow 0 \\
& 0 \rightarrow \pi^{\alpha_{k}} P_{k} \cap \pi^{\alpha_{i}} P_{i} \rightarrow K \rightarrow\left(\pi^{\alpha_{k}} P_{k}+\pi^{\alpha_{i}} P_{i}\right) \cap \pi^{\alpha_{j}} P_{j} \rightarrow 0 .
\end{aligned}
$$

Let modules $\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j}, \pi^{\alpha_{j}} P_{j} \cap \pi^{\alpha_{k}} P_{k}$ and $\pi^{\alpha_{k}} P_{k} \cap \pi^{\alpha_{i}} P_{i}$ are pairwise different.

Projective cover $P(K)$ of module K is a direct summand of each of the the direct sums $P\left(\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j}\right) \oplus P\left(\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}\right) \cap \pi^{\alpha_{k}} P_{k}\right)$, $P\left(\pi^{\alpha_{j}} P_{j} \cap \pi^{\alpha_{k}} P_{k}\right) \oplus P\left(\left(\pi^{\alpha_{j}} P_{j}+\pi^{\alpha_{k}} P_{k}\right) \cap \pi^{\alpha_{i}} P_{i}\right), P\left(\pi^{\alpha_{k}} P_{k} \cap \pi^{\alpha_{i}} P_{i}\right) \oplus$ $P\left(\left(\pi^{\alpha_{k}} P_{k}+\pi^{\alpha_{i}} P_{i}\right) \cap \pi^{\alpha_{j}} P_{j}\right)$.

Suppose that the module $P(K)$ contains 2 isomorphic direct summand P^{\prime}. Since modules $\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j}$ and $\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}\right) \cap \pi^{\alpha_{k}} P_{k}$ are irreducible, their projective coverings do not contain isomorphic direct summands. Therefore, the module P^{\prime} is a direct summand of modules $P\left(\pi^{\alpha_{i}} P_{i} \cap \pi^{\alpha_{j}} P_{j}\right), P\left(\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}\right) \cap \pi^{\alpha_{k}} P_{k}\right)$. The module P^{\prime} is a direct summand of modules $P\left(\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}\right) \cap \pi^{\alpha_{k}} P_{k}\right)$,
$P\left(\left(\pi^{\alpha_{j}} P_{j}+\pi^{\alpha_{k}} P_{k}\right) \cap \pi^{\alpha_{i}} P_{i}\right), P\left(\left(\pi^{\alpha_{k}} P_{k}+\pi^{\alpha_{i}} P_{i}\right) \cap \pi^{\alpha_{j}} P_{j}\right)$.
Module $P(K)$ contains as direct summand each of the modules $\quad P\left(\left(\pi^{\alpha_{i}} P_{i}+\pi^{\alpha_{j}} P_{j}\right) \cap \pi^{\alpha_{k}} P_{k}\right), \quad P\left(\left(\pi^{\alpha_{j}} P_{j}+\pi^{\alpha_{k}} P_{k}\right) \cap \pi^{\alpha_{i}} P_{i}\right)$, $P\left(\left(\pi^{\alpha_{k}} P_{k}+\pi^{\alpha_{i}} P_{i}\right) \cap \pi^{\alpha_{j}} P_{j}\right)$.

Hence, we obtain that $P(K)$ with a pairwise different modules $\pi^{\alpha_{i}} P_{i} \cap$ $\pi^{\alpha_{j}} P_{j}, \pi^{\alpha_{j}} P_{j} \cap \pi^{\alpha_{k}} P_{k}, \pi^{\alpha_{k}} P_{k} \cap \pi^{\alpha_{i}} P_{i}$ has at least four non-isomorphic direct summands.

Thus, $P(K)$ contains only non-isomorphic direct summands. So $P(K)=\pi^{\alpha_{a}} P_{a} \oplus \pi^{\alpha_{b}} P_{b} \oplus \pi^{\alpha_{c}} P_{c}$.

Now we have 2 exact sequences

$$
\begin{gathered}
0 \rightarrow L \rightarrow P(K) \rightarrow K \rightarrow 0 \\
0 \rightarrow K \rightarrow P(M) \rightarrow M \rightarrow 0
\end{gathered}
$$

Theorem 4. $L \simeq \pi^{\alpha_{a}} P_{a} \cap \pi^{\alpha_{b}} P_{b} \cap \pi^{\alpha_{c}} P_{c}$.
Proof. Consider the homomorphism $\varphi: P(K) \mapsto P(M)$ with the image K. For corresponding to φ matrix $[\varphi]$ we have
$[\varphi] \in\left(\begin{array}{llll}\operatorname{Hom}_{\Lambda}\left(\pi^{\alpha_{a}} P_{a}, \pi^{\alpha_{i}} P_{i}\right) & \operatorname{Hom}_{\Lambda}\left(\pi^{\alpha_{b}} P_{b}, \pi^{\alpha_{i}} P_{i}\right) & \operatorname{Hom}_{\Lambda}\left(\pi^{\alpha_{c}} P_{c}, \pi^{\alpha_{i}} P_{i}\right) \\ \operatorname{Hom}_{\Lambda}\left(\pi^{\alpha_{a}} P_{a}, \pi^{\alpha_{j}} P_{j}\right) & \operatorname{Hom}_{\Lambda}\left(\pi^{\alpha_{b}} P_{b}, \pi^{\alpha_{j}} P_{j}\right) & \operatorname{Hom}_{\Lambda}\left(\pi^{\alpha_{c}} P_{c}, \pi^{\alpha_{j}} P_{j}\right) \\ \operatorname{Hom}_{\Lambda}\left(\pi^{\alpha_{a}} P_{a}, \pi^{\alpha_{k}} P_{k}\right) & \operatorname{Hom}_{\Lambda}\left(\pi^{\alpha_{b}} P_{b}, \pi^{\alpha_{k}} P_{k}\right) & \operatorname{Hom}_{\Lambda}\left(\pi^{\alpha_{c}} P_{c}, \pi^{\alpha_{k}} P_{k}\right)\end{array}\right)$.
Since $\operatorname{Hom}_{\Lambda}\left(\pi^{\alpha_{a}} P_{a}, \pi^{\alpha_{i}} P_{i}\right) \simeq \pi^{\alpha_{i}-\alpha_{a}} e_{i} \Lambda e_{a}=\pi^{\alpha_{i}-\alpha_{a}} \cdot \pi^{\alpha_{i a}} \mathcal{O}$, then
$[\varphi]=\left(\varphi_{m l}\right) \in\left(\begin{array}{ccc}\pi^{\alpha_{i}-\alpha_{a}+\alpha_{i a}} \mathcal{O} & \pi^{\alpha_{i}-\alpha_{b}+\alpha_{i b}} \mathcal{O} & \pi^{\alpha_{i}-\alpha_{c}+\alpha_{i c}} \mathcal{O} \\ \pi^{\alpha_{j}-\alpha_{a}+\alpha_{j a}} \mathcal{O} & \pi^{\alpha_{j}-\alpha_{b}+\alpha_{j b}} \mathcal{O} & \pi^{\alpha_{j}-\alpha_{c}+\alpha_{j c}} \mathcal{O} \\ \pi^{\alpha_{k}-\alpha_{a}+\alpha_{k a}} \mathcal{O} & \pi^{\alpha_{k}-\alpha_{b}+\alpha_{k b}} \mathcal{O} & \pi^{\alpha_{k}-\alpha_{c}+\alpha_{k c}} \mathcal{O}\end{array}\right)$.
Let $m_{1} \in \pi^{\alpha_{a}} P_{a}, m_{2} \in \pi^{\alpha_{b}} P_{b}, m_{3} \in \pi^{\alpha_{c}} P_{c}$. Then

$$
\begin{aligned}
& \varphi\left(m_{1}, m_{2}, m_{3}\right)=\left(m_{1} \varphi_{11}+m_{2} \varphi_{12}+m_{3} \varphi_{13}, m_{1} \varphi_{21}+\right. \\
&\left.+m_{2} \varphi_{22}+m_{3} \varphi_{23}, m_{1} \varphi_{31}+m_{2} \varphi_{32}+m_{3} \varphi_{33}\right)
\end{aligned}
$$

Since $K=\left\{\left(y_{1}, y_{2},-\left(y_{1}+y_{2}\right)\right\}\right.$, the rank of $[\varphi]$ is 2 . So the kernel of $\operatorname{ker} \varphi$ is obtained from the system of equations
$m_{1} \varphi_{11}+m_{2} \varphi_{12}+m_{3} \varphi_{13}=0, m_{1} \varphi_{21}+m_{2} \varphi_{22}+m_{3} \varphi_{23}=0$.
Hence, m_{1}, m_{2} are expressed by m_{3}, and then $\operatorname{ker} \varphi$ is isomorphic to $\pi^{\alpha_{a}} P_{a} \cap \pi^{\alpha_{b}} P_{b} \cap \pi^{\alpha_{c}} P_{c}$.

Conclusion

The results obtained in sections 2,3 , to build a projective resolution of irreducible modules over tiled order of width 3 and calculate the global dimension of the order.

References

[1] A.G. Zavadskij and V.V. Kirichenko, Torsion-free Modules over Prime Rings, Zap. Nauch. Seminar. Leningrad. Otdel. Mat. Steklov. Inst. (LOMI) - 1976. - v. 57. - p. 100-116 (in Russian). English translation in J. of Soviet Math., v. 11, N 4, April 1979, p. 598-612.
[2] Zh. T. Chernousova, M. A. Dokuchaev, M. A. Khibina, V. V. Kirichenko, S. G. Miroshnichenko, and V. N. Zhuravlev, Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I., Algebra and Discrete Math. 1 (2002) 32-63.
[3] Zh. T. Chernousova, M. A. Dokuchaev, M. A. Khibina, V. V. Kirichenko, S. G. Miroshnichenko, and V. N. Zhuravlev, Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II. Algebra and Discrete Math. 2 (no. 2) (2003) 47-86.
[4] M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, Rings and Modules. Vol. 1, Series: Mathematics and Its Applications, 575, Kluwer Acad. Publish., 2004. xii +380 pp .
[5] M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, Rings and Modules. Vol. 2, Series: Mathematics and Its Applications, 586. Springer, Dordrecht, 2007. xii +400 pp.
[6] V. V. Kirichenko and M. A. Khibina, Semi-perfect semi-distributive rings, In: Infinite Groups and Related Algebraic Topics, Institute of Mathematics NAS Ukraine, 1993, pp. 457-480 (in Russian).
[7] A. A. Tuganbaev, Semidistributive modules and rings, Kluwer Acad. Publ., Dordrecht, 1998.

Contact information

V. Zhuravlev

Department of Mechanics and Mathematics, Kiyv National Taras Shevchenko University, Volodymyrska, 64, Kyiv 01033, Ukraine E-Mail: vshur@univ.kiev.ua
D. Zhuravlyov

Department of Mechanics and Mathematics, Kiyv National Taras Shevchenko University, Volodymyrska, 64, Kyiv 01033, Ukraine

Received by the editors: 07.04.2009
and in final form 07.04.2009.

