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ABSTRACT. We consider projective cover over tiled order and
calculate the kernel of epimorphism from direct sum of submodules
of distributive module to their sum.

1. Tiled orders over discrete valuation rings

Recall [1] that a semimazimal ring is a semiperfect semiprime right

Noetherian ring A such that for each primitive idempotent e € A the

ring eAe is a discrete valuation ring (not necessarily commutative).
Denote by M, (B) the ring of all n x n matrices over a ring B.

Theorem 1 (see [1]). Each semimazimal ring is isomorphic to a finite
direct product of prime rings of the following form.:

@) T2 ... g%
A 7210 O R @) ’ (1)
T 20 O

where n > 1, O is a discrete valuation ring with a prime element 7, and
aij are integers such that

Qij + ik = Qi @i =0

for all i, j5,k.
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The ring O is embedded into its classical division ring of fractions D,
and (1) is the set of all matrices (a;;) € M, (D) such that
Qi e i) = en’Aejj,

where €11, ..., en, are the matrix units of M, (D). It is clear that Q =
M, (D) is the classical ring of fractions of A.
Obviously, the ring A is right and left Noetherian.

Definition 1. A module M is distributive if its lattice of submodules is
distributive, i.e.,

KN(L+N)=KNnL+KnNN
for all submodules K, L, and N.

Clearly, any submodule and any factormodule of a distributive module
are distributive modules.

A semidistributive module is a direct sum of distributive modules. A
ring A is right (left) semidistributive if it is semidistributive as the right
(left) module over itself. A ring A is semidistributive if it is both left and
right semidistributive (see [7]).

Theorem 2 (see [6]). The following conditions for a semiperfect semi-
prime right Noetherian ring A are equivalent:

o A is semidistributive;

o A is a direct product of a semisimple artinian ring and a semimazx-
imal Ting.

By a tiled order over a discrete valuation ring, we mean a Noetherian
prime semiperfect semidistributive ring A with nonzero Jacobson radi-
cal. In this case, O = eAe is a discrete valuation ring with a primitive
idempotent e € A.

Definition 2. An integer matriz £ = (o) € My(Z) is called
e an exponent matrix if a;; + ajr > ap and o =0 for all i, j, k;
e o reduced exponent matrix if o + oy > 0 for all i, j, i # j.

We use the following notation: A = {O,E(A)}, where £(A) = (ay;) is
the exponent matrix of the ring A, i.e.

n
A = E eijwa“(’),

ij=1
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in which e;; are the matrix units. If a tiled order is reduced, i.e., A/R(A)
is the direct product of division rings, then o;; + aj; > 0if 7 # j, i.e.,
E(A) is reduced.

We denote by M(A) the poset (ordered by inclusion) of all projective
right A-modules that are contained in a fixed simple @-module U. All
simple ()-modules are isomorphic, so we can choice one of them. Note
that the partially ordered sets M;(A) and M, (A) corresponding to the
left and the right modules are anti-isomorphic.

The set M(A) is completely determined by the exponent matrix
E(A) = (a4j). Namely, if A is reduced, then

MA)={pi|i=1,...n,and z € Z},
where

z—2' > a5 if M(A) = M(A),

< pt =
Pi = P; {z—z’ZOéji if M(A) = M, (A).

Obviously, M(A) is an infinite periodic set.

Let P be an arbitrary poset. A subset of P is called a chain if any
two of its elements are related. A subset of P is called a antichain if no
two distinct elements of the subset are related.

Definition 3. The maximal number w(P) of elements in an antichain

of P is called the width of P.

The width of M, (A) is called the width of a tiled order A and denotes
by w(A).

Definition 4. A right (resp. left) A-module M (resp. N ) is called a right
(resp. left) A-lattice if M (resp. N ) is a finitely generated free O-module.

Given a tiled order A we denote Lat,(A) (resp. Lat;(A)) the category
of right (resp. left) A-lattices. We denote by S,(A) (resp. S;(A)) the
partially ordered by inclusion set, formed by all A-lattices contained in
a fixed simple M, (D)-module W (resp. in a left simple M, (D)-module
V). Such A-lattices are called irreducible.

Let A = {O,E(A)} be a tiled order, W (resp. V) is a simple right
(resp. left) M, (D)-module with D-basis eg,...,e, such that e;e;r =
dijer (eijer = 0jke;).

Then any right (resp. left) irreducible A-lattice M (resp. N), lying
in W (resp. in V) is a A-module with O-basis (7%'ey,..., %" e,), while

(2)

a; + o > «j, for the right case;
a;; + a; >« for the left case.
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Thus, irreducible A-lattices M can be identified with integer-valued
vector (i, ...,ay,) satisfying (2). We shall write E(M) = (aq,...,an)
or M = (aq,...,ap).

The order relation on the set of such vectors and the operations on
them corresponding to sum and intersection of irreducible lattices are
obvious.

Remark 1. Obviously, irreducible A-lattices M7 = (a1,...,a,) and
My = (f1,...,0n) are isomorphic if and only if a; = B; + 2z for i =
1,...,nand z € Z.

2. Kernel of epimorphism from direct sum of modules to
their sum

Proposition 1. Let M be an irreducible and non-projective A-module,
X be a maximal submodule of M. Then there exists projective submodule
of M, which is not submodule of X.

Proof. Let
EM) = (a1,...,0i—1,Q5,Qix1, .+, 0p) and

EX) = (a1, ..,ai-1,05 + 1, a41,..., ).

Since M is right A-module, «; + ;5 > oy for all i, k. Consider the
projective module 7% P; with
E(MYP) = (q + Qty - o5 O+ Qi 1, Q4 + Qg 0+ Qg1 -, 0 + Q).
Obviously, 7% P; C M, but 7% F; Z X.

Since X is maximal submodule of M, then X + 7% P, = M. Besides,

g(X n 7Tai.Pi) = (O[Z' + OG1, e, 0 Qji—1, 0 + 1,
Qj + Q1,504+ Ozm) = g(ﬂ'aiRi), (3)
i.e. X Nn% P, = R;, where R, = rad P;. L]
Proposition 2. Let X1,..., X, be the set of all maximal submodules of
irreducible and non-projective A-module M with E(M) = (au,...,an)
and E(X;) = E(M) +ej,, where e, = (0,...,0,1,0,...,0). Then
——
k-1

s S
P(M)= & 7P, and M= > wi Py,
o i=1
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S S
Proof. Since rad M = () X;, we have E(rad M) = E(M) + 3 ej,,
i=1 i=1
S
P(M) = é 7% Pj,. Besides, 7%i P;; C M for each i, whereas ) 7% Pj, C
= =1
M. Suppose that z 7% Pj, # M. Then there is the maximal submod-

ule X} such that 7r°‘7wP C Xj,. This contradicts to inclusion 7% P, SZ
X5, O

Lemma 1. Let My, My, M3 be submodules of distributive module M
and @: My @ My & Ms — My + Mo + M3 be epimorphism of their direct
sum on their sum defined by the rule (x1,x2,23) — x1 + x2 + x3. Then
ker ¢ = {(m12 —ma1, mag —mi2, m31 —maz) | miz € My N My, maz €
Mo N Mz, ms; € M3 N Ml}

Proof. Let us calculate the kernel of homomorphism ¢. By definition
ker p = {(l‘l,l‘g,xg) € My & My ® Ms | T+ 29 + 23 = 0}.

Hence x1 = —(x2 + x3) and z1 € (My + Ms) N My. Similarly, zo €
(My + Ms) N My and x3 € (My + M) N Ms. Since modules My, Mo,
Mg are distributive, we have (M; + M;) N My = (M; N M) + (M; N
My). Therefore x1 = x19 + x13, T2 = x91 + x93, T3 = T31 + T32, Where
Tij € M; N Mj. Since x1 + 12 = (3512 + 5621) + (3313 + ZL‘23) € Mj and
13 + xog3 € Mg, then x19 + 291 € M3. Given that x1o, 291 € M7 N Mo,
we have x19 + 121 € My N MyN Ms. Similarly xo3 4+ x30 € My N MyN Ms,
r31 + x13 € My N My N Ms.

Therefore 10+ 91 = t3 € M1NMoNMs, xo3+x30 =1 € MiNMoN
M3, x31+x13 = to € MyNMoNMs. Hence x91 = t3—x19, 39 = t1 — T3,
x13 = to — x31. Then (z1,22,23) = (w12 + ta — 31, T23 + t3 — T12, 231 +
t1 —x23). From the equality x1 +z9 + 23 = 0 implies that ¢; +t2 +t3 = 0.
Therefore

(1,22, 23) = (12 + t2 — 231, T23 — (t1 + t2) — 12,31 + 11 — X23) =
= ((z12 +t2) — z31, (w23 — t1) — (t2 + x12), 231 — (223 — t1)).

Denoting by 12 4+ t2 = y12 € My N M, x93 — t1 = ya3 € My N Ms,

x31 = Y31, we obtain ker o = {(y12 — ¥31, Y23 — Y12, Y31 — ¥23) | Y12 €
My N My, yo3 € My N M3, y31 € M3z N M} O

If My N My C Ms, then x12 + 291 € M3 for any 1 € My, xo € Ms.
Therefore ker ¢ = {(z1, x2, —(z14+22)) | 1 € (Ma+M3)NMy,z9 € (Ms+
Ml) N Mg}. Hence kerp ~ ((Mz + Mg) N Ml) D ((M3 + M1) N MQ)}
Since (MQ—FMg)ﬂMl = MsoN M+ MsNM; = MsNM; and (Mg—}—Ml)ﬂ
My = MsN Mo+ MiNMy = MsNMs, then ker ¢ ~ (M3ﬂM1)@(M3ﬂM2).
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Let us write formally the expression for the kernel of the homomor-
phism ¢ in the other way

(3/12 — Y31,Y23 — Y12,Y31 — y23) =
- y12(17 717 O) + 923(07 17 7]-) + 3/31(*17 07 ]-)

Note that (M N Ma)(1, —1,0)) N ((Ms N M3)(0,1, —1)) = 0, but
(M1 N M2)(1,-1,0)) + (M2 N M3)(0,1, =1)))N((Ms N'M;)(—-1,0,1)) # 0.

Therefore, the sum of modules is not direct.
Consider the epimorphism ¢: (M;NMs) & (MaNMs) & (MzNM;) —
ker ¢, defined by the equality

¢($12,$23,$31) = (1‘12 — I31,223 — 12,231 — 3623) .

Then kerv = {(z12,223,%31) | 12 — 231 = T23 — T12 = 231 — T2z =
0} = {(x12,x23,x31) | 12 = x93 = x31}. By the fundamental theorem on
homomorphism of modules we have

ker o ~ (M1 N M) & (Ma N Ms) & (Ms N M)/ ker,
i. e.
kercp ~ ((Ml N MQ) D (MQ N Mg) D (Mg N Ml)) /(Ml N MyN Mg).

Note that in the general case

ker ¢ >~ {(y12 — y31, Y23 — y12) | Y31 € M3 N My,
Yo3 € Mo N Ms,y12 € My N M}

or
ker ¢ ~ (Mg N Ml) & (MQ N Mg) + (M1 N Mz)(l, —1).

Let My, ..., M, be submodules of M such that M; SZ > M; for all
J#i

i =1,...,n and I, Is be nonempty subsets of the set I = {1,...,n}

such that Iy Uy = I, I; NIy = (). We have the following exact sequences

0—- K o M; M; — 0,
— —)zel l—)z ’L_)
el
0—- Ky — & MZ-—>ZM1-—>O,
ieh i€ly
00— Ky — & MiHZMi—M),

el :
ez 1€ls
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where K, K1, Ko are the kernels of epimorphisms from direct sum on the
sum of modules. Next commutative diagram

0 0 0
0 K1, & Ky, K1, @ Ky, 0 0
n n
0 K; S M; > M0
i=1 i=1

00— (Z Mj) N <Z Mj) 9(2 Mj) D (Z Mj) 9iMi$0
Jjeh JjE€ j€l jely i=1

i | |

0 0 0

has exact rows and two columns exact. Therefore by lemma 3 x 3 first
column

0— K &K, — Kr— <ZMJ> N <ZMJ> — 0.
JjeEL JEL2

is also exact.
In particular, if Iy = {k}, £; = I \ {k}, then K, = 0 and we have
from the commutative diagram

0 0 0

0 Ky, Ky, 0 0

0 K, %1 M; ST M ——>
1= =1

0—><ZM1>mMjH<ZMi)@Mij)M¢HO

i#j i#] =1

l l

0 0 0




118 TILED ORDERS OF WIDTH 3

the exact sequence

0— K, — K — | Y M; | nM— 0.
Jjeh

Theorem 3. Let My,..., M, be submodules of distributive module
n

M = > M; and epimorphism : % M; — M operates by the rule
i=1 i=1

o(my,...,my) = my+ ...+ my. Then ker ¢ = {(y1,...,yn) | yi =

Z sign(j - Z) “Myj, M5 € M; N Mj}.

J#i

Proof. We use induction by n. It is well known that the kernel of epi-

morphism equals to {mi2, —mi2}, where mis € M; N M, that implies

the base of induction for n = 2.

Suppose that the kernel of epimorphism ¢(mq,...,my—1) = m; +

cootmp1is Ky = {1, Un—1) | i = > sign(j —1i) - myj, mi; €
JFi

M;NM;}. Denote by L = {(y1,...,yn) | yi = >_ sign(j — 1) - my;, mi; €
J#

M; N M;}. Obviously, K, ~ {(y1,...,Yn—1,0)} C L. Then

él M; /L ~ (iél Mi/Kn>/(L/Kn).

By assumption we have 59 MZ/Kn ~ (Z M1> © M,.
=1 i£n

Proposition 3. L/K,, ~ (Z MZ> N M,,.
i#En

Proof. Indeed,

= {(ml’m M2n, .-y Mp—1n, _(mln +mop + ...+ mn—ln)) + Kn} .

Consider epimorphism ¢: L/ K, — (Z Ml) N M, for which

7/1 ((mlnu man, ..., Mp—1n, _(mln +mop + ...+ mn—ln)) + Kn) =

=Min +M2p + ...+ Mp_1n.
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The kernel of this epimorphism

ker ¢ = {(min, man, ..., Mp—1n,0) + K,, where
Min +mop + ...+ mypy_1, =0} =~ K.

Therefore 1 is isomorphism. O

n
Hence, & M;/L ~ | ¥ M; @Mn/ S M; | AM, ~ > M. On
i=1 i#n i#n i=1

n

the other hand 6% M; / K ~ Y M,;. Therefore K ~ L. Obviously, L C
i=1 i=1

K =ker . Hence, L = K. O

Corollary 1. Let M be irreducible A-module and P(M) = & o P;,,
i=1

S
M = w%iP;,. Then the kernel of epimorphism p: P(M) — M equals
=1

1=

to ker ¢ = {(yh s ayn) | Yi = Z Sz.gn(k 7 Z) “Miky, My € le N ij}
k#i

Proof. Tiled order A is semidistributive ring. Therefore every irreducible

A-module is distributive. According to preliminary theorems core epi-

morphism has specified above form. O

The kernel K as submodule in % M; can be formally written as
i=1
BUTVISI 1

K= ZMZ N M;j(e; — ej), where e, = (0,...,0,1,0,...,0).
i<j k—1

3. Tiled order of width 3

Proposition 4. Modules P(Mm(z Mk)>, i=1,...,n, have a common
ki

direct summand P’ if and only if the modules P(M;N\M;), 4,5 =1,...,n,

also have common direct summand P’.

Proof. Let modules P(Mi N Mk)), i=1,...,n, have a common di-
kA
rect summand P’. This is equivalent to the fact that module M;N (Y M)
ki
has the maximal submodules X; with £(X;) = E(M;N(>. My))+e€'. Since
kZi

M;NM; = (M,ﬁ(z Mk)> N <Mjﬁ(z Mk)) for ¢ # j, then the module
k#i k#j
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M;NM; also have maximal submodules N;; with £(Nj;) = E(M;NM;)+¢’.
Therefore, the modules P(M; N Mj), i,j = 1,...,n, have also common
summand P’

Now let the modules P(M; N Mj), i,j = 1,...,n, have a common
summand P’. This means that the module P(M; N M;) has the maximal
submodule N;; with E(N;;) = £(M; N M;) + €’. Therefore, module M, N
(M; + M;) = M; N My, + M; N M}, has maximal submodule Xjj;, with
E(Xijr) = E(My N (M; + Mj)) + €. Similarly we get that the module
MpN(Mi+- - -+ M;) = MyNMj+- - -+M;N M}, has maximal submodule X},
with £(X}) = E(MiN(M;+- - -+M;))+€'. In particular, the module M;N
(> Mjp) has the maximal submodule Y; with £(Y;) = E(M; N (> My))+

k#i k#i

¢’. This is equivalent to the fact that modules P(Mi Ny Mk)>, i =
kAi
1,...,n, have a common direct summand P’. O

Let module M with £(M) = (ai,...,an) has a projective cover
P(M)=n%P;®&n%P;®n* P, and M = 7% P; + 7% P; + 7 Pj,. Then

K = (7P Na% P (e; — ej) + (7 Py N7 Py) (e — e)+
+ (7 P, NV PR;) (e — €;).
Suppose that 7% P; N 7% P; = ©% P; N 7% Py. Then
(7P + 1% Pp) N % Pj = nP; N w% P;
and
(m P + 7% Py) N % Py = (% P; 4+ % P,) N w1 ;.
From the equality (7% P; + 7% Py) N 7% P; = n® Py N 7% P; we get
(rY Py 4+ % Py) N Py, =
= (7 Py + 7% ) M Py) 1 (7% Py + 7% Py) N7 P,) =
= 7% P, N1 Py.
So we have two exact sequences
0—7nYPNa%P; - K — (n“P; + 7% P;) N\ m** P, — 0,
0— 7P, Na*%P, - K — (%P, + 7 P,) N 7w P; — 0.

Whereas (1% P; + 7% P,) 7% P; = 7% P;N7% Pj and (7% P; + 7% P;) N
% P, = 7% P; N m% Py, then the exact sequence splits:

K~ (TI'aiPZ‘ ﬂﬂ'ajpj) D (ﬂ'aipi ﬁﬂ'akpk).

Let the width of tiled order do not exceed 3.
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Proposition 5. Let irreducible A-module M have exactly two mazximal
non-projective submodules X and 'Y with

E(M) = (al,. ey O 1, Oy 47y - .,Ozn)7
g(X) = (al,...,aj_l,aj + 1,aj+1,. . .,Ozn) and

g(Y) =(a1,...,0-1,0; + 1, 541, .. ,,an)_
Then P(M) = 7% P; & m% P; and we have the exact sequence
0— 4P Na%P; — 7P &n% Py — M — 0.

Proof. We have M = X + 7% P, =Y + % Pj, %P, + 7% P; C M, but
7% P; + 7% P;j does not belong to any maximal submodule X or Y. Then
7% P+ 7% P; = M.

Since M/X ~ Uj ta M/Y ~ U;, then M/(radM) = M/(X NY) ~
U; @ Uj. Therefore P(M) ~ P (M/radM) ~ P(U; ® U;) ~ P(U;) ®
P(U;) ~ P; @ P;. Obviously, the kernel of epimorphism ¢: 7% P; @
7% P; — M coincides with 7% P, N 7% P; = % R; N % R;. O

Consider the case when the module M = (aq,...,q,) has exactly
three maximal submodules X = (aq,...,q;-1,0; + 1, it1,...,0p),
Y = (a1,...,aj-1,05 + L ag41, ..., 0) and Z = (aq,..., 51,0 +
1, 0gst, .y ).

Let module M with £(M) = (e, ..., ay) have a projective cover

P(M) =7Y%P @ ﬂ-Oéij O 7% Py,

and M = 7% P; + 7% P; + 7 P},. Then

K = (Waipi N Waij) (61' - ej) + (ﬂ'ajpj N ﬂ—OékPk) (ej — ek)+
+ (Wakpk N ﬂaipi) (ek — ei).

Also we have three exact sequences

0 BRI By I s (19 4 1 Py) (7 Py 0,
0= 7 PN7** P, — K — (7% P + 7% P,) N 7% P; — 0,
0— %P N7" P, — K — (%P, + 7 F;) N7 P; — 0.

Let modules 7% FP; N 7% P;, 7% P; N 7% Py and 7% P, N 7% F; are
pairwise different.

Projective cover P(K) of module K is a direct summand of each
of the the direct sums P(7®* P; N 7% P;) & P((n“P; + n% P;) N m% Py,),
P(r®i P; N w® Py) @ P((n% P + % P,) Nw® P;), P(n® P, N 1% F;) ®
P((?Ta’“Pk + ﬂ'aipi) N ﬂajpj).
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Suppose that the module P(K) contains 2 isomorphic direct sum-
mand P’. Since modules 7% P; N 7% P; and (1% P; + 7% P;) N 7 P}, are
irreducible, their projective coverings do not contain isomorphic direct
summands. Therefore, the module P’ is a direct summand of modules
P(r® P, 7% P;), P((n“P; + n% P;) N w* P;). The module P"is a di-
rect summand of modules P((7% P; + ©% P;) N 7w Py,),

P((r% P; + % Py) N w* F;), P((r® Py + 7% P;) N 1% Pj).

Module P(K) contains as direct summand each of the mod-
ules P((m® P; 4+ m% Pj) N w* Py,), P((m% P; + % Py) N 7w F;),
P((n% Py 4+ 7% P;) N 7% P;).

Hence, we obtain that P(K) with a pairwise different modules 7% P;N
T P;, w% P; N % P, %% P, N % P; has at least four non-isomorphic
direct summands.

Thus, P(K) contains only non-isomorphic direct summands.
So P(K) = %P, & n“ P, & n%P,.

Now we have 2 exact sequences

0—-L—PK)—K-—0
0—-K—>PM)—M-=0
Theorem 4. L ~ %P, Nn* P, N 1% P,.

Proof. Consider the homomorphism ¢: P(K) — P(M) with the image
K. For corresponding to ¢ matrix [¢] we have

Homp (7% P,, 7% P;) Homy (n® Py, 7* P;) Homy (7% P., 7% P;)
[¢] € | Homy (7% P,, 7% P;) Homy (7% Py, 7% P;) Homp (7% P, 7% Pj)
Homp (7% P,, 7% Py,) Homp (7% Py, 7% Py,) Homp (7% P., 7% Py,)

Since Homy (7% Py, 7% P;) ~ 1%~ %e;Ae, = 7%~ % . x%a (D then
gt Qia )  pAiTtTQp() O QctQic()

[SD] _ (mel) c 7TO¢j—Oéa+OéjaO Waj—ab'i‘ajb(’) ,n.ozj—occ—‘rocjco
Tk~ QatQka () ATk () OOtk ()

Let mq € n% P,, mo € 7* P, mg € n% P,. Then

w(mi, ma,mg) = (Mip11 + mapi2 + mapiz, mipar+
+ Moo + M3pa3, M1P31 + M3z + M3P33).

Since K = {(y1,y2, —(y1 + y2)}, the rank of [¢] is 2. So the kernel of
ker ¢ is obtained from the system of equations

myp11 + mopi2 + m3p1z = 0, mypar + maowss + mzpaz = 0.

Hence, m1, mo are expressed by ms, and then ker ¢ is isomorphic to
T P, NP, N P,. O



V. ZHURAVLEV, D. ZHURAVLYOV 123

Conclusion

The results obtained in sections 2, 3, to build a projective resolution of
irreducible modules over tiled order of width 3 and calculate the global
dimension of the order.

(1]

2]

3l

(4]

]

(6]

7]

V.

D.
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