Rings of functions on non-abelian groups

C. J. Maxson

Communicated by V. I. Sushchansky

Abstract. For several classes of finite nonabelian groups we investigate the structure of the ring of functions, $\mathcal{R}(C)$, determined by the cover C of maximal abelian subgroups. We determine the Jacobson radical $J(\mathcal{R}(C))$ and the semisimple quotient ring $\mathcal{R}(C) / J(\mathcal{R}(C))$.

1. Introduction

Let $G=\langle G,+\rangle$ be a group written additively but not necessarily abelian, with identity element 0 , and/let $C:=\left\{A_{1}, A_{2}, \ldots, A_{N}\right\}$ be a cover of G by abelian subgroups, i.e., each A_{i} is an abelian subgroup of G and $\bigcup_{i=1}^{N} A_{i}=G$. Define $\mathcal{R}(C):=\left\{\sigma: G \rightarrow G \mid \sigma_{\mid A_{i}} \in \operatorname{End}\left(A_{i}\right)\right.$, for all $\left.i\right\}$. Then $\mathcal{R}(C)$ is a ring of functions on G called the ring determined by the cover C. Note that the identity function, $i d$. , and the zero function, 0 , are in $\mathcal{R}(C)$ and we require them to be in all of our rings of functions.

On the other hand, suppose R is a ring of functions on G. Define $\mathcal{C}(R):=\left\{B \subseteq G \mid B\right.$ is an abelian subgroup of G and $\left.R_{\mid B} \subseteq \operatorname{End}(B)\right\}$. Then $\mathcal{C}(R)$ is a cover of G by abelian subgroups. These correspondences were initiated in [2] and were shown to form a Galois correspondence. One of the goals of this investigation is to determine structural properties of the ring $\mathcal{R}(C)$ in terms of the cover C. For additional background and results, we refer the reader to [2].

Suppose $C:=\left\{A_{1}, \ldots, A_{N}\right\}$ is a cover of the finite group G by abelian subgroups. Define $\psi: \mathcal{R}(C) \longrightarrow \bigoplus_{i=1}^{N} \operatorname{End}\left(A_{i}\right)$ by $\psi(\sigma)=\left(\sigma_{1}, \ldots, \sigma_{N}\right)$
where $\sigma \in \mathcal{R}(C)$ and $\sigma_{i}=\sigma_{\mid A_{i}}$. Then ψ is a monomorphism and one wishes to identify $\operatorname{Im} \psi$ in $\bigoplus_{i=1}^{N} \operatorname{End}\left(A_{i}\right)$. We note if C is a partition then ψ is surjective and $\mathcal{R}(C) \cong \bigoplus_{i=1}^{N} \operatorname{End}\left(A_{i}\right)$. However, when there are nontrivial intersections among the cells of C, the identification of $\operatorname{Im} \psi$ becomes more difficult.

As in [2], let $\mathcal{J}(C)$ denote the intersection semilattice determined by the cells of C, including the cells of C, so $\mathcal{J}(C)$ is a cover by abelian subgroups. For $A_{i} \in C$, let $\mathcal{J}\left(A_{i}\right)=\left\{A_{i} \cap B \mid\right.$ for each $\left.B \in \mathcal{J}(C)\right\}$. Then $\mathcal{J}\left(A_{i} \cap A_{j}\right)=\mathcal{J}\left(A_{i}\right) \cap \mathcal{J}\left(A_{j}\right)$.
Theorem A. With the notation as above, $\operatorname{Im} \psi=\left\{\left(\sigma_{1}, \ldots, \sigma_{N}\right) \mid \sigma_{i \mid W}=\right.$ $\sigma_{j \mid W}$ for each $\left.W \in \mathcal{J}\left(A_{i} \cap A_{j}\right), 1 \leq i, j \leq N\right\}$.

Proof. Let $T:=\left\{\left(\sigma_{1}, \ldots, \sigma_{N} \mid \sigma_{i \mid W}=\sigma_{j \mid W}\right.\right.$, for each $W \in \mathcal{J}\left(A_{i} \cap A_{j}\right), 1 \leq$ $i, j \leq N\}$. For $\sigma \in \mathcal{R}(C), \psi(\sigma)=\left(\sigma_{1}, \ldots, \sigma_{N}\right)$ and $\sigma_{i \mid W}=\sigma_{j \mid W}, W \in$ $\mathcal{J}\left(A_{i} \cap A_{j}\right)$. Thus $\sigma \in T$. For the reverse inclusion, take $\left(\rho_{1}, \ldots, \rho_{N}\right) \in T$ and define $\rho: G \rightarrow G$ by $\rho(x)=\rho_{i}(x)$ if $x \in A_{i}$. By the definition of T, ρ is a well-defined function in $\mathcal{R}(C)$ and we note that $\psi(\rho)=\left(\rho_{1}, \ldots, \rho_{N}\right)$. Hence $T \subseteq \operatorname{Im} \psi$ as desired.

We note that, using the above theorem, we again see that when C is a partition, ψ is surjective since in this case $\mathcal{J}\left(A_{i} \cap A_{j}\right)=\{0\}$ for $i \neq j$.

In this paper we continue the work of [2]. We restrict our attention to a particular type of cover, namely the cover, C, by maximal abelian subgroups and, for the most part, to special classes of finite nonabelian groups. We then investigate the image $\psi(\mathcal{R}(C))$ or more specifically the associated semisimple ring, $\mathcal{R}(C) / J(\mathcal{R}(C))$.

Conventions: All groups, G, in this paper will be finite and, unless stated otherwise C will always denote the cover of G by its maximal abelian subgroups. By maximal we always mean proper. If the order of the group G, denoted by $|G|$, is at most 3 then G has no cover by maximal abelian subgroups, so we take $|G| \geq 4$.

2. The symmetric group S_{n}

We note first that we take $n \geq 4$. For if $n=2, S_{2} \cong \mathbb{Z}_{2}$ which has no cover by maximal abelian subgroups. For S_{3} we see from [2] that $\mathcal{R}(C) \cong$ $\mathbb{Z}_{3} \oplus\left(\mathbb{Z}_{2}\right)^{3}$ and thus $J(\mathcal{R}(C))=\{0\}$. The main tool for our investigation of the symmetric group is the characterization of the maximal abelian
subgroups of S_{n} given by Reinhard Winkler in [4]. We summarize his results which are relevant to our work.

Let $M=\{1,2, \ldots, n\}$ and let S_{n} be the symmetric group on M. Let \mathcal{P} be any partition of M and for every $K \in \mathcal{P}$, let $+_{K}$ be an abelian group operation on K. For every choice $a=\left(a_{K}\right)_{K \in \mathcal{P}}, a_{K} \in K$, put $f_{a}(b)=a_{K}+_{K} b$ for $b \in K$. Define

$$
J_{\mathcal{P},\left(+_{K}\right)_{K \in \mathcal{P}}}:=\left\{f_{a} \mid a=\left(a_{K}\right)_{K \in \mathcal{P}}, a_{K} \in K\right\} .
$$

Theorem 2.1 ([4]). (i) $H=H_{\mathcal{P},\left(+_{K}\right)_{K \in \mathcal{P}}}$ is an abelian subgroup of S_{n} and is maximal with respect to this property if and only if \mathcal{P} does not contain more than one singleton class.
(ii) Every maximal abelian subgroup H of S_{n} is of this form, i.e., there is a partition \mathcal{P} of M containing not more than one singleton class and a family $\left(+_{K}\right)$ of abelian group operations $+_{K}$ on K for every $K \in \mathcal{P}$ such that $H=H_{\mathcal{P},\left(+_{K}\right)_{K \in \mathcal{P}}}$.
We remark that we use the cycle notation for the elements in S_{n} and denote the operation (composition) with the addition symbol "+." Before going into the general situation we consider the specific example S_{4} which will illustrate some of the techniques.

Example 2.2. For $n=4$ we have the partitions $4+0,3+1,2+2$ in which there is at most one singleton. For the partition $\{1,2,3,4\}$ we have the cyclic groups $\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{lll}1 & 2 & 4\end{array}\right)\right\rangle$ and $\left\langle\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\rangle$. There are other abelian group structures on $\{1,2,3,4\}$ but these are "picked up" in the $2+2$ cases. For $3+1$ we get the cyclic groups $\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{lll}1 & 2 & 4\end{array}\right)\right\rangle$, $\left\langle\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)\right\rangle$ and for $2+2$ we get $\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}3 & 4\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}2 & 4\end{array}\right)\right\rangle$, $\left\langle\left(\begin{array}{ll}1 & 4\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right)\right\rangle$ so we have groups generated by 4 -cycles, 3 -cycles and 2 cycles. If c is a 4 -cycle or a 3 -cycle we get for $\sigma \in \mathcal{R}(C), \sigma(c) \in\langle c\rangle$. Suppose $\sigma\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)=k\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$. Then $2 \sigma\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)=k 2\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$ or $\sigma\left(\left(\begin{array}{ll}1 & 3\end{array}\right)+\left(\begin{array}{ll}2 & 4\end{array}\right)\right)=k\left(\begin{array}{ll}1 & 3\end{array}\right)+k\left(\begin{array}{ll}2 & 4\end{array}\right)$. On the other hand, $\sigma\left(\begin{array}{ll}1 & 3\end{array}\right)=$ $x_{1}\left(\begin{array}{ll}1 & 3\end{array}\right)+x_{2}\left(\begin{array}{ll}2 & 4\end{array}\right)$ and $\sigma\left(\begin{array}{ll}2 & 4\end{array}\right)=y_{1}\left(\begin{array}{ll}1 & 3\end{array}\right)+y_{2}\left(\begin{array}{ll}2 & 4\end{array}\right)$. From this we find $x_{1}+y_{1} \equiv k \equiv x_{2}+y_{2} \bmod 2$. If $k \equiv 0 \bmod 2$ then $x_{1}=y_{1}$ and $x_{2}=y_{2}$ so $\sigma(13)=\sigma(24)$ and conversely if $\sigma(13)=\sigma\left(\begin{array}{ll}24) & \text { then } k \equiv 0 \bmod 2 \text {. } \text {. } 130\end{array}\right.$ A similar argument holds for the other 4-cycles. Define

$$
I:=\{\rho \in \mathcal{R}(C) \mid \rho(d)=0
$$

for each 3-cycle d and $\rho(c) \in\langle 2 c\rangle$ for each 4-cycle $c\}$.
We note that I is a nil ideal in $\mathcal{R}(C)$.
Now suppose $c=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ and $\sigma(c) \in\{c, 3 c\}$. Then $x_{1}+y_{1} \equiv 1 \equiv$ $x_{2}+y_{2} \bmod 2$ and σ has the matrix representation $\left[\begin{array}{ll}x_{1} & y_{1} \\ x_{2} & y_{2}\end{array}\right]$ on $\left\langle\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}2 & 4\end{array}\right)\right\rangle$.

If $x_{1}=1$ and $x_{2}=1$ then $y_{1}=y_{2}=0$. Note $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$ and the second matrix in the sum represents a function in I restricted to $\left\langle\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}2 & 4\end{array}\right)\right\rangle$. Hence modulo I, each 4 -cycle determines a copy of \mathbb{Z}_{2}. Thus we have $\mathcal{R}(C) / I \cong\left(\mathbb{Z}_{3}\right)^{4} \oplus\left(\mathbb{Z}_{2}\right)^{3}$. Since I is a nil ideal and $J(\mathcal{R}(C) / I)=\{0\}$ we have $I=J(\mathcal{R}(C))$. (See [1], Corollary 15.12.)

Since we make use of this result from [1] several times in the/sequel we state it for reference.

Theorem 2.3 ([1], Corollary 15.12). Let I be an ideal of the ring R. If I is nil and if $J(R / I)=\{0\}$, then $I=J(R)$.

We return to the general case and take $n \geq 5$. Let H be a maximal abelian subgroup of S_{n}. Then H is a direct sum of finite cyclic groups and each generator of these cyclic subgroups is of prime power order. We focus on cycles. However we should mention that the generators of H need not be cycles of prime power order, but can be sums of such cycles. For example in S_{6}, the subgroup, H, generated by the cycle $\sigma=\left(\begin{array}{ll}1 & 2\end{array} 456\right)$ is a maximal abelian subgroup and H has generators $\sigma_{1}=\left(\begin{array}{ll}1 & 4\end{array}\right)+\left(\begin{array}{l}2\end{array}\right)+\left(\begin{array}{ll}3 & 6\end{array}\right)$ of order 2 and $\sigma_{2}=\left(\begin{array}{lll}1 & 5 & 3\end{array}\right)+\left(\begin{array}{lll}2 & 6 & 4\end{array}\right)$. (Note $\sigma_{1}+\sigma_{2}=\sigma$.)

Theorem 2.4. Let c be a cycle in S_{n} of order $|c|$, i.e., $|c| c=0$ in S_{n}. Let $\sigma \in \mathcal{R}(C)$. Then $\sigma(c) \in\langle c\rangle$ unless $|c|=2^{m}, m \geq 2$ and $n=|c|+2$.

Proof. If $|c|=n$ or $|c|=n-1$ then $\langle c\rangle$ is the unique maximal abelian subgroup containing c so by definition, $\sigma(c) \in\langle c\rangle$. If $n-|c| \geq 3$ then one can find suitable partitions \mathcal{P}_{1} and \mathcal{P}_{2} of those elements in $M=$ $\{1,2, \ldots, n\}$ not in c to determine maximal abelian subgroups H_{1} and H_{2} such that $H_{1} \cap H_{2}=\langle c\rangle$. Hence $\sigma(c) \in\langle c\rangle$.

It remains to consider $n-|c|=2$. If $|c|$ is odd, let t be the 2 -cycle determined by the elements in M not in c. From this we get that $\langle c, t\rangle$ is a maximal abelian subgroup and $\sigma(c)=x c+y t$. But then $0=\sigma(|c| c)=$ $|c| \sigma(c)=|c| y t$, so $y=0$ and $\sigma(c) \in\langle c\rangle$. Next suppose that $|c|=2^{m} \ell, \ell$ odd, $\ell \geq 3$ and $m \geq 1$. Again let t be the 2 -cycle associated with c and so, as above, $\sigma(c)=x c+y t$ for each $\sigma \in \mathcal{R}(C)$. We note that ℓc is the sum of ℓ disjoint 2^{m}-cycles, say $\ell c=b_{1}+b_{2}+\cdots+b_{\ell}$. Using an appropriate partition, $\left\langle b_{1}, b_{2}, \ldots, b_{\ell}\right\rangle$ is a subgroup of a maximal abelian subgroup and also one finds $\sigma\left(b_{i}\right) \in\left\langle b_{i}\right\rangle$ for $\sigma \in \mathcal{R}(C)$. We take $\sigma\left(b_{i}\right)=k_{i} b_{i}$. Thus $\sigma(\ell c)=\ell \sigma(c)=\ell x c+\ell y t=x b_{1}+x b_{2}+\cdots+x b_{\ell}+\ell y t$. But also $\sigma(\ell c)=\sigma\left(b_{1}+\cdots+b_{\ell}\right)=\bigoplus_{i=1}^{\ell} \sigma\left(b_{i}\right)=k_{1} b_{1}+\cdots+k_{\ell} b_{\ell}$. From this we get $y=0$ and $\sigma(c) \in\langle c\rangle$.

Now let $n=2^{m}+2$ and let c be a cycle in S_{n}. If $|c|$ is odd then $n=|c|+2 k+1$. For $\sigma \in \mathcal{R}(C), \sigma(c)=s x c+y_{1} t_{1}+\cdots+y_{k} t_{k}$ where
the t_{k} are 2-cycles. Then $0=|c| \sigma(c)=y_{1}|c| t_{1}+\cdots+y_{k}|c| t_{k}$ which implies $y_{i}=0, i=1,2, \ldots, k$ so $\sigma(c) \in\langle c\rangle$. If $|c|$ is even and $|c|<2^{m}$ then $n=|c|+2 h$ and $n=|c|+(2 h-1)+1$. From suitable partitions we get two maximal abelian subgroups whose intersection is $\langle c\rangle$. Again we obtain $\sigma(c) \in\langle c\rangle$ for $\sigma \in \mathcal{R}(C)$. When $|c|=2^{m}$ we get a unique 2 -cycle, t_{c} associated with c and $\left\langle c, t_{c}\right\rangle$ is a maximal abelian subgroup so $\sigma(c)=x c+y t_{c}, \sigma \in \mathcal{R}(C)$.

Let b be an element in S_{n} of prime power order, say $|b|=p^{m_{1}}$ where, if $n=2^{m_{1}}+2,|b| \neq 2^{m_{1}}$. If b is a cycle, then from the above theorem $\sigma(b) \in\langle b\rangle, \sigma \in \mathcal{R}(C)$, say $\sigma(b)=k b$. Now $k=q p+r, 0 \leq r<p$ so $\sigma(b)=r b+q p b, r \in \mathbb{Z}_{p}$. If b is not a cycle then we first take b as the sum of disjoint cycles of order $p^{m_{1}}, b=b_{1}+\cdots+b_{t}$. Then there is a cycle c of order $t p^{m_{1}}$ such that $t c \equiv b$. We know $\sigma(c)=k c$ so $\sigma(b)=\sigma(t c)=t \sigma(c)=t k c=k b$ and again we get $\sigma(b)=s b+\hat{q} p b$, $s \in \mathbb{Z}_{p}$. Note also that $\sigma\left(b_{i}\right)=k_{i} b_{i}$ so $\sigma(b)=\bigoplus_{i=1}^{t} k_{i} b_{i}$. This implies that $k \equiv k_{i}, \bmod p$, for each i.

For the general case we take b to be the sum of elements of order $p^{m_{i}}, m_{1} \geq \cdots \geq m_{t}$. Let b_{i} be the sum of the summands of order $p^{m_{i}}$. We have just shown that $\sigma\left(b_{i}\right)=r_{i} b_{i}+q_{i} p b_{i}$. Using a suitable partition, $\left\langle b_{1}, \ldots, b_{t}\right\rangle$ is a subgroup of a maximal abelian subgroup so $\sigma(b)=\sigma\left(b_{1}\right)+\cdots+\sigma\left(b_{t}\right)=r_{1} b_{1}+r_{2} b_{2}+\cdots+r_{t} b_{t}+p \hat{b}$ where $r_{i} \in \mathbb{Z}_{p}$ and \hat{b} is an element of prime power order. We want to show $r_{i}=r_{j}$ in \mathbb{Z}_{p}. Note that each $p^{m_{i}-1} b_{i}$ is a sum of p-cycles, $b_{i 1}+\cdots+b_{i N_{i}}$. Using these p-cycles we can form a cycle c of order $\left(N_{1}+\cdots+N_{t}\right) p$ and we know $\sigma(c)=r c$. Then $\sigma\left(\left(N_{1}+\cdots+N_{t}\right) c\right)=r\left(N_{1}+\cdots+N_{t}\right) c$ and from this we find $r_{i} \equiv r \equiv r_{j} \bmod p$.

We summarize the above.
Lemma 2.5. If b is an element in S_{n} of prime power order p^{m} where $|b| \neq 2^{m}$ if $n=2^{m}+2$, then for $\sigma \in \mathcal{R}(C), \sigma(b)=r_{\sigma} b+p \hat{b}$ where \hat{b} is an element of prime power order and $r_{\sigma} \in \mathbb{Z}_{p}$.

We now turn to one of our main results.
Theorem 2.6. Let $C=\left\{A_{1}, \ldots, A_{N}\right\}$ be the cover of S_{n} by maximal abelian subgroups and let $P:=\left\{p_{i} \mid p_{i}\right.$ is a prime integer, $\left.p_{i} \leq n\right\}$. Then $\mathcal{R}(C) / J(\mathcal{R}(C)) \cong \bigoplus_{p_{i} \in P}\left(\mathbb{Z}_{p_{i}}\right)^{n_{i}}, n_{i} \geq 1$.

Proof. From abelian group theory each A_{i} decomposes into its primary components and each endomorphism of A_{i} decomposes into endomorphisms of these primary components. From Section 1 we have $\mathcal{R}(C) \cong$
$\operatorname{Im} \psi$ where $\psi(\sigma)=\left(\sigma_{1}, \ldots, \sigma_{N}\right), \sigma \in \mathcal{R}(C)$. From the decomposition into primary components we get $\sigma_{i}=\left(\sigma_{i 1}, \sigma_{i 2}, \ldots, \sigma_{i \ell_{i}}\right)$. The primary components decompose further into cyclic groups in which each generator is an element of prime power order.

We first take $n \neq 2^{m}+2, m \geq 2$. Define

$$
\begin{aligned}
I:= & \left\{\sigma \in \mathcal{R}(C) \mid \sigma(b) \in\left\langle p_{i} \hat{b}\right\rangle \text { for any element } b\right. \text { of prime power order } \\
& \left.p_{i} \in P, p_{i}^{n_{i}}, \text { and } \hat{b} \text { has order a power of } p_{i}\right\} .
\end{aligned}
$$

One verifies that I is an ideal of $\mathcal{R}(C)$, moreover a nil ideal.
As we noted above we only have to consider elements, b, of prime power order and so from Lemma 2.5, for $\sigma \in \mathcal{R}(C), \sigma(b)=r_{\sigma} b+p \hat{b}$, $r_{\sigma} \in \mathbb{Z}_{p}$. Thus we obtain an embedding $\mathcal{R}(C) \hookrightarrow\left(\bigoplus_{p_{i} \in P} \mathbb{Z}_{p_{i}} b\right) \oplus I, b$ an element of order a power of p_{i}. This leads to an embedding of $\mathcal{R}(C) / I$ into $\left.\bigoplus_{(\mathbb{Z}}^{p_{i}}\right)^{m_{i}}$ and thus we have $\left.\mathcal{R}(C) / I \cong \bigoplus_{\left(\mathbb{Z}_{p_{i}}\right.}\right)^{n_{i}}, n_{i} \geq 1$.
$p_{i} \in P \quad p_{i} \in P$
Now take $n=2^{m}+2, m \geq 2$. We modify the definition of I. The difference here is when c is a cycle of order 2^{m}. Then there is a unique 2 -cycle, t_{c}, associated with c and $\sigma(c)=x_{c} c+y_{c} t_{c}$. Define $I:=\{\sigma \in$ $\mathcal{R}(C) \mid \sigma(c) \in\left\langle 2 c, t_{c}\right\rangle$ if c is a cycle of order 2^{m} and $\sigma(c) \in\langle p \hat{c}\rangle$ if c is any element of prime power order, not 2^{m} and \hat{c} is an element of order a power of 2$\}$.

Again one finds that I is a nil ideal. For example if $\sigma \in I$ and $|c|=2^{m}$ then $\sigma(c)=k \cdot 2 c+y t_{c}$ and $\sigma^{2^{m-1}}(c)=0$. Now as in the previous case, for $\sigma \in \mathcal{R}(C), \sigma(c)=x_{\sigma} c+y_{\sigma} t_{c}$ and $x_{\sigma}=q \cdot 2+r$, so $\sigma(c)=r c+q 2 c+y_{c} t_{c}$ so $\mathcal{R}(C) / I \cong \bigoplus_{p_{i} \in P}\left(\mathbb{Z}_{p_{i}}\right)^{n_{i}}, n_{i} \geq 1$.

From Theorem 2.3, $I=J(\mathcal{R}(C))$.
The above result is not very precise. One would like to specify the exponents n_{i} for a given n. We now turn to this specification. As we have seen above, each element b of prime power order p^{m} gives rise to a copy of \mathbb{Z}_{p} in the decomposition of $\mathcal{R}(C) / J(\mathcal{R}(C))$. We wish to find how many distinct copies of \mathbb{Z}_{p} appear in this decomposition. We know, for $\sigma \in \mathcal{R}(C), \sigma(b)=k b$ modulo $J(\mathcal{R}(C))$. Further, $p^{m-1} b$ is a sum of p-cycles $p^{m-1} b=b_{1}+\cdots+b_{\ell}$ and $\sigma\left(b_{i}\right)=k_{i} b_{i}, i=1,2, \ldots, t$. Just as we did in the discussion prior to Lemma 2.5 we find that $k_{i} \equiv k \bmod p$. Thus we can restrict to cycles of prime order, i.e., p-cycles. So when c_{1} and c_{2} are p-cycles and $\sigma \in \mathcal{R}(C)$ we have $\sigma\left(c_{1}\right)=k_{1} c_{1}$ and $\sigma\left(c_{2}\right)=k_{2} c_{2}$. We want to determine when $k_{1} \equiv k_{2} \bmod p$, that is when the same copy of \mathbb{Z}_{p} is associated with any element of prime power p^{m} which contains either c_{1} or c_{2} as one of its disjoint summands.

If $k_{1} \equiv k_{2} \bmod p$ we say c_{1} and c_{2} are p-equivalent and write $c_{1} \sim_{p} c_{2}$. In fact we note that $h c_{1} \sim_{p} c_{1}$ for any nonzero element $h c_{1}$ in $\left\langle c_{1}\right\rangle$ so \sim_{p} is an equivalence relation on the subgroups of order p in S_{n}. We denote the number of equivalence classes by n_{p}. Thus the number of summands of \mathbb{Z}_{p} in $\mathcal{R}(C) / J(\mathcal{R}(C))$ is n_{p}.

Lemma 2.7. Disjoint p-cycles in S_{n} are p-equivalent.
Proof. Let c_{1} and c_{2} be disjoint p-cycles in S_{n} so we must have $n \geq 2 p$. Let $c_{1}=\left(x_{1}, \ldots, x_{p}\right)$ and $c_{2}=\left(y_{1}, \ldots, y_{p}\right)$. Form $c_{3}=\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots\right.$, $\left.x_{n}, y_{n}\right)$, a cycle of order $2 p$. If $n=2 p$ or $n=2 p+1$ there is a unique maximal abelian subgroup containing c_{3} and for $\sigma \in \mathcal{R}(C), \sigma\left(c_{3}\right)=$ $k_{3} c_{3}$. We also have $\sigma\left(c_{1}\right)=k_{1} c_{1}$ and $\sigma\left(c_{2}\right)=k_{2} c_{2}$. Therefore $\sigma\left(2 c_{3}\right)=$ $k_{3}\left(2 c_{3}\right)=k_{3}\left(c_{1}+c_{2}\right)$. But c_{1} and c_{2} are in a maximal abelian subgroup so $\sigma\left(2 c_{3}\right)=\sigma\left(c_{1}+c_{2}\right)=k_{1} c_{1}+k_{2} c_{2}$ and we see $k_{1} \equiv k_{3} \equiv k_{2} \bmod p$.

Next suppose $n=2 p+2$. Let t denote the unique 2 -cycle on the elements of M not in c_{3}. Then $\left\langle c_{3}, t\right\rangle$ is a maximal abelian subgroup and $\sigma\left(c_{3}\right)=x c_{3}+y t$ so $\sigma\left(2 c_{3}\right)=x 2 c_{3}$ and the result follows as above. If $n=2 p+n_{1}, n_{1} \geq 3$ we get $\sigma\left(c_{3}\right) \in\left\langle c_{3}\right\rangle$ and obtain $c_{1} \sim_{p} c_{2}$.

Lemma 2.8. For $n \geq 5$ all 2-cycles are 2-equivalent.
Proof. Let $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$ be 2-cycles and $\sigma \in \mathcal{R}(C)$. Then $\sigma(a)=k_{1} a$ and $\sigma(b)=k_{2} b$. If a and b are disjoint, the result follows from the previous lemma. Otherwise we suppose $a_{1}=b_{1}$. Since $n \geq 5$, there exist elements a_{3}, b_{3} in M different from a_{1}, a_{2}, b_{2}. Thus $c=\left(a_{3}, b_{3}\right)$ is disjoint from a and b. Hence $a \sim_{p} c \sim_{p} b$ as desired.

We note that, from the above lemma, when $n \geq 5$ only one copy of \mathbb{Z}_{2} appears in the decomposition of $\mathcal{R}(C) / J(\mathcal{R}(C))$. We now take p to be an odd prime.
Theorem 2.9. Let p be an odd prime and let x and y be p-cycles in S_{n} on $X=\left\{x_{1}, \ldots, x_{p}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{p}\right\}$ respectively, where $X \subseteq M$, $Y \subseteq M$. Let $n_{12}=|X \cap Y|$. If $n \geq 2 p+\min \left\{n_{12}, p-n_{12}\right\}$ then $x \sim_{p} y$.

Proof. Without loss of generality we let $\left\{x_{1}, \ldots, x_{12}\right\}=\left\{y_{1}, \ldots, y_{12}\right\}$ so we have $n_{12}+2\left(p-n_{12}\right)=2 p-n_{12}$ elements listed in $X \cup Y$. Note that $p-n_{12} \neq n_{12}$ since p is an odd prime.
Case (i). $p-n_{12}<n_{12}$.
We have $n \geq 2 p+\left(p-n_{12}\right)$ so we have at least $2 p+\left(p-n_{12}\right)-(2 p-$ $\left.n_{12}\right)=p$ elements from $M=\{1,2, \ldots, n\}$ not yet listed in x and y. We use these p elements to obtain a p-cycle, w, disjoint from x and y. Thus $x \sim_{p} w \sim_{p} y$.

Case (ii). $p-n_{12}>n_{12}$.
In this case $n \geq 2 p+n_{12}$ and so there are at least $2 p+n_{12}-$ $\left(2 p-n_{12}\right)=2 n_{12}$ elements from M not yet listed. Note in this case $2 n_{12}<p$. Let $w_{1}, w_{2}, \ldots, w_{n_{12}}$ and $v_{1}, v_{2}, \ldots, v_{n_{12}}$ be $2 n_{12}$ elements not listed in x and y. Let $\bar{X}=\left\{w_{1}, w_{2}, \ldots, w_{n_{12}}, x_{n_{12}+1}, \ldots, x_{p}\right\}$ and $\bar{Y}=\left\{v_{1}, v_{2}, \ldots, v_{n_{12}}, y_{n_{12}+1}, \ldots, y_{p}\right\}$ and let \bar{x} be a p-cycle from the elements of \bar{X}, \bar{y} a p-cycle from the elements of \bar{Y}. Then $y \sim_{p} \bar{x} \sim_{p} \bar{y} \sim_{p} x$ giving the result.

Corollary 2.10. If $n \geq 2 p+1$ then all p-cycles in S_{n} are p-equivalent, i.e., $n_{p}=1$.

Proof. Suppose $x=\left(x_{1}, \ldots, x_{p}\right)$ and $y=\left(y_{1}, \ldots, y_{p}\right)$ are arbitrary p cycles in S_{n} with $X=\left\{x_{1}, \ldots, x_{p}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{p}\right\}$. If $X=Y$ then $n_{12}-p=0$ while if $X \cap Y=\emptyset$ then $n_{12}=0$. Thus by the above theorem, $x \sim_{p} y$. We take $|X \cap Y| \geq 1$. Let $y_{i} \in Y-(X \cap Y)$ and $x_{j} \in X-(X \cap Y)$. Replace x_{j} in x by y_{i} to obtain x^{\prime}. From the above theorem, $x \sim_{p} x^{\prime}$ since the intersection number $n_{12}=p-1$ and by hypothesis, $n \geq 2 p+\{p-1, p-(p-1)\}$. Continuing by replacing one element at a time we get $x \sim_{p} y$.

We classify the primes in $P=\{p \mid p$ is a prime, $p \leq n\}$ into three subsets. Define $P_{1}=\{p \in P \mid 2 p+1 \leq n\}, P_{2}=\{p \in P \mid 2 p=n<2 p+1\}$ and $P_{3}=\{p \in P \mid p \leq n<2 p\}$. As we have just seen, for primes $p \in P_{1}$, all p-cycles are p-equivalent, so $n_{p}=1$ for $p \in P_{1}$.

To investigate the primes in P_{3} we first indicate how many distinct subgroups of order p are in S_{n}. We choose p of the n elements in M and recall that each choice determines $(p-1)$! p-cycles. But each subgroup of order p contains $p-1$ of these cycles, so we have $\binom{n}{p}(p-2)$! distinct subgroups of order p in S_{n}.

Suppose now $p \in P_{2}$ and $x=\left(x_{1}, \ldots, x_{p}\right)$ is a p-cycle. As noted above there are $(p-2)$! subgroups using $\left\{x_{1}, \ldots, x_{p}\right\}$ and $(p-2)$! for the $n-p=p$ other elements in M. Since these sets are disjoint we have $2(p-2)$! subgroups in a class so in this case $n_{p}=\frac{\binom{n}{p}(p-2)!}{2(p-2)!}=\frac{1}{2}\binom{n}{p}$.

We summarize this section in the following result.

Theorem 2.11. Let C be the cover of S_{n}, by maximal abelian subgroups and let P_{1}, P_{2}, P_{3} be the sets of prime numbers defined above. Then

$$
\begin{array}{r}
\mathcal{R}(C) / J(\mathcal{R}(C)) \cong \bigoplus_{p \in P}\left(\mathbb{Z}_{p}\right)^{n_{p}} \text { where } P=P_{1} \cup P_{2} \cup P_{3} \text { and } \\
n_{p}= \begin{cases}1, & p \in P_{1} \\
\frac{1}{2}\binom{n}{p}, & p \in P_{2} \\
\binom{n}{p}(p-2)!, & p \in P_{3} .\end{cases}
\end{array}
$$

We close this section with some examples for small n.
Example 2.12. C is the cover of S_{n} by maximal abelian subgroups.
(i) $n=4 ; P_{1}=\emptyset, P_{2}=\{2\}, P_{3}=\{3\}, n_{2}=\frac{1}{2}\binom{4}{2}=3, n_{3}=\binom{4}{3}(3-$ $2)!=4$ so $\mathcal{R}(C) / J(\mathcal{R}(C)) \cong\left(\mathbb{Z}_{3}\right)^{4} \oplus\left(\mathbb{Z}_{2}\right)^{3}$ as found in Example 2.2.
(ii) $n=5 ; P_{1}=\{2\}, P_{2}=\emptyset, P_{3}=\{3,5\}, n_{2}=1, n_{3}=\binom{5}{3}(3-2)!=10$, $n_{5}=\binom{5}{2}(5-5)!=6$ so $\mathcal{R}(C) / J(\mathcal{R}(C)) \cong \mathbb{Z}_{2} \oplus\left(\mathbb{Z}_{3}\right)^{10} \oplus\left(\mathbb{Z}_{5}\right)^{6}$.
(iii) $n=10 ; P_{1}=\{2,3\}, P_{2}=\{5\}, P_{3}=\{7\}, n_{2}=n_{3}=1, n_{5}=$ $\frac{1}{2}\binom{10}{5} 3!, n_{7}=\binom{10}{7} 5$! so $\mathcal{R}(C) / J(\mathcal{R}(C)) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus\left(\mathbb{Z}_{5}\right)^{n_{5}} \oplus\left(\mathbb{Z}_{7}\right)^{n_{7}}$.
(iv) $n=11 ; P_{1}=\{2,3,5\}, P_{2}=\emptyset, P_{3}=\{7,11\}$ and $\mathcal{R}(C) / J(\mathcal{R}(C)) \cong$ $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \oplus\left(\mathbb{Z}_{7}\right)^{n_{7}} \oplus\left(\mathbb{Z}_{11}\right)^{n_{11}}$.

3. p-groups with a cyclic maximal subgroup

Let G be a finite p-group having a cyclic subgroup which is also a maximal subgroup. The structure of groups with this property is well-known.

Theorem 3.1 ([3, 5.3.4]). A group of order p^{n} has a cyclic maximal subgroup if and only if it is one of the following types:
(i) a cyclic group of order p^{n};
(ii) the direct product of a cyclic group of order p^{n-1} and one of order p, i.e., $\mathbb{Z}_{p^{n-1}} \oplus \mathbb{Z}_{p}$;
(iii) the dihedral group $D_{2^{n-1}}=\langle x, y| 2^{n-1} x=2 y=0, y+x=\left(2^{n-1}-\right.$ 1) $x+y\rangle, n \geq 3$;
(iv) the group $M_{n}(p):=\langle x, y| p^{n-1} x=p y=0,-y+x+y=(1+$ $\left.\left.p^{n-2}\right) x\right\rangle, n \geq 3 ;$
(v) $S D_{n}:=\left\langle x, y \mid 2^{n-1} x=2 y=0,-y+x+y=\left(2^{n-2}-1\right) x\right\rangle, n \geq 3$;
(vi) $G Q:=\left\langle x, y \mid 2^{n-1} x=0,2 y=2^{n-2} x,-y+x+y=\left(2^{n-1}-1\right) x\right\rangle, n \geq$ 3.

We consider the nonabelian cases separately in the following subsections. The cyclic group of order p^{n} has no cover by maximal abelian subgroups. The abelian case, i.e. part (ii) will be handled in the next section.

3.1. Dihedral group D_{n}

We consider here the collection of all dihedral groups rather than just dihedral p-groups. So we let $D_{n}:=\langle x, y| n x=0=2 y, y+x=(n-1) x+$ $y\rangle$.

Case A.1. n odd.
The maximal abelian subgroups are the cyclic subgroups

$$
C=\{\langle x\rangle,\langle y\rangle,\langle x+y\rangle,\langle 2 x+y\rangle, \ldots,\langle(n-1) x+y\rangle\}
$$

Note that C is a partition so we have $\mathcal{R}(C) \cong \mathbb{Z}_{n} \oplus\left(\mathbb{Z}_{2}\right)^{n}$. If $n=$ $p_{1}^{\alpha_{1}} \ldots p_{t}^{\alpha_{t}}, p_{i}$ an odd prime, then $J(\mathcal{R}(C)) \cong J\left(\mathbb{Z}_{n}\right) \oplus\{0\}=\left(\bigoplus_{i=1}^{t} p_{i} \mathbb{Z}_{p_{i}}\right) \oplus$ $\{0\}$ so $\mathcal{R}(C) / J(\mathcal{R}(C)) \cong\left(\bigoplus_{i=1}^{t} \mathbb{Z}_{p_{i}}\right) \oplus\left(\mathbb{Z}_{2}\right)^{n}$.
Case A.2. n even.
Let $C=\left\{\langle x\rangle,\left\langle\frac{n}{2} x, y\right\rangle,\left\langle\frac{n}{2} x, x+y\right\rangle, \ldots,\left\langle\frac{n}{2} x,\left(\frac{n}{2}-1\right) x+y\right\rangle\right\}$. Note that C is a cover of D_{n} and each cell is abelian since the center of $D_{n}, Z\left(D_{n}\right)$, is $\left\langle\frac{n}{2} x\right\rangle$. We show each cell is a maximal abelian subgroup. Since $|\langle x\rangle|=n$, $\langle x\rangle$ is a maximal subgroup. Suppose H is an abelian subgroup, $H \supseteq$ $\left\langle\frac{n}{2} x, r x+y\right\rangle$. For $w \in H, w=h x+y$ and we have $h x+y+r x+y=$ $r x+y+h x+y$ so $h x+(n-1) r x=r x+(n-1) h x$ or $2 h x=2 r x$. Thus $2 h-2 r=q n$ or $h=r+q \cdot \frac{n}{2}$. Hence $w=h x+y=q \cdot \frac{n}{2} x+r x+y$ which is in $\left\langle\frac{n}{2} x, r x+y\right\rangle$. Hence $H=\left\langle\frac{n}{2} x, r x+y\right\rangle$ giving the result.

For notational convenience we let $A:=\langle x\rangle$ and $A_{i}:=\left\langle\frac{n}{2} x, i x+y\right\rangle$, $i=0,1, \ldots, \frac{n}{2}-1$ and take $\sigma \in \mathcal{R}(C)$ where as we have shown above, C is the cover of D_{n} by maximal abelian subgroups. On $A, \sigma(x)=k x$. If we use the basis $\left\{\frac{n}{2} x, i x+b\right\}$ on A_{i} then σ has the representation $\left[\begin{array}{cc}\bar{k} & b_{i 1} \\ 0 & b_{i 2}\end{array}\right]$ on A_{i} where $\bar{k} \equiv k \bmod 2$. Thus $\sigma \mapsto \psi(\sigma)=\left(k,\left[\begin{array}{cc}\bar{k} & b_{01} \\ 0 & b_{02}\end{array}\right], \ldots,\left[\begin{array}{ccc}\bar{k} & r_{n}-1 & 1 \\ 0 & b_{\frac{n}{2}}^{2}-1 & 2\end{array}\right]\right)$. From this we see $|\mathcal{R}(C)|=n 4^{\frac{n}{2}}=n \cdot 2^{n}$. Suppose $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t}^{\alpha_{t}}$ where the p_{i} are primes and we have $p_{1}=2, \alpha_{1} \geq 1$. Define $I:=$ $\left\{\sigma \in \mathcal{R}(C) \mid \sigma(x)=\left(p_{1} \ldots p_{t}\right) x\right.$ and $\left.\sigma(i x+b) \in\left\langle\frac{n}{2} x\right\rangle\right\}$. Calculations show that I is an ideal. Moreover for $\sigma \in I, \sigma^{2}(i x+y)=\sigma\left(h \cdot \frac{n}{2} x\right)=0$
while $\sigma^{2}(x)=p_{1}^{2} p_{2}^{2} \ldots p_{t}^{2} \psi$. Thus I is a nil ideal of $\mathcal{R}(C)$ and we find $\mathcal{R}(C) / I \cong \frac{\operatorname{Im} \psi}{\psi(I)} \cong \frac{\mathbb{Z}_{n}}{p_{1} \ldots p_{t} \mathbb{Z}_{n}} \oplus\left(\mathbb{Z}_{2}\right)^{\frac{n}{2}} \cong \mathbb{Z}_{p_{1}} \oplus \cdots \oplus \mathbb{Z}_{p_{t}} \oplus\left(\mathbb{Z}_{2}\right)^{\frac{n}{2}}$. Again, applying Theorem 2.3 we see that $I=J(\mathcal{R}(C))$.

Theorem 3.2. Let D_{n} be the dihedral group of order $2 n$ and let C be the cover of D_{n} by maximal abelian subgroups. If $n=2^{\alpha_{0}} p_{1}^{\alpha_{1}} \ldots p_{t}^{\alpha_{t}}, p_{i}$ an odd prime, then

$$
\mathcal{R}(C) / J(\mathcal{R}(C)) \cong \begin{cases}\mathbb{Z}_{p_{1}} \oplus \cdots \oplus \mathbb{Z}_{p_{t}} \oplus\left(\mathbb{Z}_{2}\right)^{n} & \text { if } \alpha_{0}=0 \\ \mathbb{Z}_{p_{1}} \oplus \cdots \oplus \mathbb{Z}_{p_{t}} \oplus\left(\mathbb{Z}_{2}\right)^{\frac{n}{2}+1} & \text { if } \alpha_{0}>0\end{cases}
$$

3.2. The group

$$
M_{n}(p):=\left\langle x, y \mid p^{n-1} x=p y=0 ;-y+x+y=\left(1+p^{n-2}\right) x\right\rangle
$$

The group $M_{n}(p)$ has p^{n} elements and its center $Z\left(M_{n}(p)\right)=\langle p x\rangle$. One finds that

$$
C:=\{\langle x\rangle,\langle x+y\rangle, \ldots,\langle x+(p-1) y\rangle,\langle y, p x\rangle\}
$$

is the cover by maximal abelian subgroups. Let $A_{i}:=\langle x+i y\rangle, i=$ $0,1, \ldots, p-1$ and $A:=\langle y, p x\rangle$. For $\sigma \in \mathcal{R}(C)$, let $\sigma(x)=k x$ and $\sigma(x+i y)=k_{i}(x+i y)$. Since $\langle p x\rangle$ is contained in each of the cells of C, there exist h_{i} such that $h_{i}(x+i y)=p x$. Thus $\sigma(p x)=h_{i} \sigma(x+$ $i y)=h_{i} k_{i}(x+i y)=k_{i} p x$. But also $\sigma(p x)=p \sigma(x)=k p x$. Thus we find $k \equiv k_{i}, i=0,1,2, \ldots, p-1$. On the cell A, with respect to the bases $\{y, p x\}, \sigma$ has representation $\left[\begin{array}{cc}y_{1} & 0 \\ y_{2} & k\end{array}\right]=\left[\begin{array}{cc}y_{1} & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{cc}0 & 0 \\ y_{2} & k\end{array}\right]$. If we let $I:=\left\{\sigma \in \mathcal{R}(C) \mid \sigma(w) \in p M_{n}(p)\right.$ for each w in $\left.M_{n}(p)\right\}$ then I is a nil ideal with $\mathcal{R}(C) / I \cong \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}=\left(\mathbb{Z}_{p}\right)^{2}$. Applying Theorem 2.3 gives $I=J(\mathcal{R}(C))$.

3.3. Semidihedral group

$$
S D_{n}:=\left\langle x, y \mid 2^{n-1} x=0=2 y ;-y+x+y=\left(2^{n-2}-1\right) x\right\rangle
$$

Since $2 y=0$, from $-y+x+y=\left(2^{n-2}-1\right) x$ we get $y+x=\left(2^{n-2}-1\right) x+y$. Using this we see if a is odd, $\langle a x+y\rangle=\left\{0, a x+y, 2^{n-2} x,\left(2^{n-2}+a\right) x+\right.$ $y\}$ while if a is even, $2(a x+y)=0$ and $\left\langle a x+y, 2^{n-2} x\right\rangle=\{0, a x+$ $\left.y, 2^{n-2} x,\left(2^{n-2} x+a\right) x+y\right\}$. Since the center $Z\left(S D_{n}\right)=\left\{0,2^{n-2} x\right\}$ we find that the cover by maximal abelian subgroups is

$$
C=\left\{\langle x\rangle,\langle x+y\rangle\left\langle 2 x+y, 2^{n-2} x\right\rangle,\langle 3 x+y\rangle, \ldots,\left\langle\left(2^{n-2}-1\right) x+y\right\rangle,\left\langle 2^{n-2} x, y\right\rangle\right\} .
$$

Let $A:=\langle x\rangle$ and $A_{i}:= \begin{cases}\langle i x+y\rangle & \text { if } i \text { is odd } \\ \left\langle i x+y, 2^{n-2} x\right\rangle, & \text { if } i \text { is even. }\end{cases}$
For $\sigma \in \mathcal{R}(C), \sigma(x)=k x$ and $\sigma(i x+y)=k_{i}(i x+y)$ if i is odd. But then $\sigma\left(2^{n-2} x\right)=k 2^{n-2} x$ and $2 \sigma(i x+y)=\sigma\left(2^{n-2} x\right)=k_{i} 2^{n-2} x$ which gives $k \equiv k_{i} \bmod 2$ when i is odd. For i even, using the basis $\left\{2^{n-2} x, i x+y\right\}, \sigma$ has the representation $\left[\begin{array}{cc}k & b_{i 1} \\ 0 & b_{i 2}\end{array}\right]$ on A_{i}. If we/define $I:=\left\{\sigma \in \mathcal{R}(C) \mid \sigma(x) \in\langle 2 x\rangle\right.$ and $\sigma(i x+y) \in\left\langle 2^{n-2} x\right\rangle$ for i even $\}$ then calculations show that I is a nil ideal of $\mathcal{R}(C)$ and $\mathcal{R}(C) / I \cong$ $\mathbb{Z}_{2} \oplus\left(\mathbb{Z}_{2}\right)^{2^{n-3}}$ where the second summand arises from the 2^{n-3} subgroups containing $i x+y, i$ even. Hence from Theorem 2.3, $I=J(\mathcal{R}(C))$ and $\mathcal{R}(C) / J(\mathcal{R}(C)) \cong\left(\mathbb{Z}_{2}\right)^{2^{n-3}+1}$.

3.4. Generalized quaternion groups

$$
G Q:=\left\langle x, y \mid 2^{n-1} x=0,2 y=2^{n-2} x,-y+x+y=\left(2^{n-1}-1\right) x\right\rangle
$$

Since $\left(2^{n-1}-1\right) x=-x$ we find $y+x=-x+y=\left(2^{n-1}-1\right) x+y$. Using this we find the cover by maximal abelian subgroups is

$$
C=\left\{\langle x\rangle,\langle x+y\rangle,\langle 2 x+y\rangle, \ldots,\left\langle 2^{n-2} x+y\right\rangle=\langle y\rangle\right\} .
$$

For $\sigma \in \mathcal{R}(C), \sigma(x)=k x$ and $\sigma(i x+y)=k_{i}(i x+y), i=1,2, \ldots, 2^{n-2}$. Since $2(i x+y)=2^{n-2} x$ we find $\sigma\left(2^{n-2} x\right)=2 \sigma(i x+y)=k_{i} 2^{n-2}$ and $\sigma\left(2^{n-2} x\right)=k 2^{n-2} x$ so $k \equiv k_{i} \bmod 2, i=1,2, \ldots, 2^{n-2}$. Let $I:=\{\sigma \in$ $\mathcal{R}(C) \mid \sigma(x) \in\langle 2 x\rangle\}$. (Note $\sigma(x) \in\langle 2 x\rangle$ implies $\sigma(w) \in\langle 2 x\rangle$ for all $w \in G Q$.) Again I is a nil ideal and $\mathcal{R}(C) / I \cong \mathbb{Z}_{2}$. Thus $I=J(\mathcal{R}(C))$ (using Theorem 2.3) and we see $\mathcal{R}(C)$ is a local ring.

4. Finite abelian p-groups

As in the above section we let p be an arbitrary but fixed prime integer and let A be a finite abelian p-group. Thus we have $A \cong \bigoplus_{i=1}^{t} \mathbb{Z}_{p^{n_{i}}}$, so without loss of generality, we take $A=\bigoplus_{i=1}^{t} \mathbb{Z}_{p^{n_{i}}}$ with the natural basis $\left\{e_{1}, e_{2}, \ldots, e_{t}\right\}$. As usual C is the cover by maximal abelian subgroups, which in this case, is the cover by maximal subgroups. As is well known the intersection of all maximal subgroups of A is $p A=\left\langle p e_{1}, \ldots, p e_{t}\right\rangle$.

Case (i). $t=2, A=\mathbb{Z}_{p^{n}} \oplus \mathbb{Z}_{p^{m}}, n \geq m$.
First we consider $n \geq m \geq 2$. Let $C=\left\{\left\langle e_{1}, p e_{2}\right\rangle,\left\langle e_{1}+e_{2}, p e_{2}\right\rangle, \ldots,\left\langle e_{1}+\right.\right.$ $\left.\left.(p-1) e_{2}, p e_{2}\right\rangle,\left\langle p e_{1}, e_{2}\right\rangle\right\}$ and let $w=a e_{1}+b e_{2}$ be arbitrary in A. If $p \mid a$
then $w \in\left\langle p e_{1}, e_{2}\right\rangle$ or if $p \mid b$ then $w \in\left\langle e_{1}, p e_{2}\right\rangle$. Otherwise we have a is invertible $\bmod p^{n}$ and $a^{-1} w=e_{1}+a^{-1} b e_{2}$ and $a^{-1} b \not \equiv 0 \bmod p$ so $a^{-1} b=q p+r, 0<r<p$. Thus $a^{-1} w=e_{1}+r e_{2}+q p e_{2} \in\left\langle e_{1}+r e_{2}, p e_{2}\right\rangle$. Thus we see C is a cover and since the order of each cell is p^{n+m-1}, each cell is a maximal subgroup, i.e. C is the cover by maximal abelian subgroups. Let $A_{i}:=\left\langle e_{1}+i e_{2}, p e_{2}\right\rangle, i=0,1, \ldots, p-1$ and let $A_{p}:=\left\langle p e_{1}, e_{2}\right\rangle$. Let $\sigma \in \mathcal{R}(C)$. Then on $A_{i}, i=0,1, \ldots, p-1, \sigma$ has representation $\left[\begin{array}{cc}k_{i 1} & h_{i 1} \\ k_{i 2} & h_{i 2}\end{array}\right]$ using the generating set $\left\{e_{1}+i e_{2}, p e_{2}\right\}$ and on A_{p}, using $\left\{p e_{1}, e_{2}\right\}, \sigma$ has representation $\left[\begin{array}{cc}a & c \\ b & d\end{array}\right]$. We then have $\sigma\left(e_{1}+i e_{2}\right)=$ $k_{i 1}\left(e_{1}+i e_{2}\right)+k_{i 2} p e_{2}$ so $\sigma\left(p e_{1}+i p e_{2}\right)=k_{i 1} p e_{1}+k_{i 1} i p e_{2}+k_{i 2} p^{2} e_{2}$. But $\sigma\left(p e_{1}+i p e_{2}\right)=p a e_{1}+b e_{2}+i p\left(c p e_{1}+d e_{2}\right)$. Hence $p a+i c p^{2} \equiv k_{i 1} p \bmod p^{m}$ or $k_{i 1} \equiv a \bmod p$.

Also, we get $b \equiv 0 \bmod p$. For, $\sigma\left(p e_{1}\right)=a p e_{1}+b e_{2}$ and $\sigma\left(p e_{1}\right)=$ $p k_{01} e_{1}+p k_{02} p e_{2}$ so $b \equiv k_{02} p^{2} \bmod p^{n}$ giving the result. Further, $\sigma\left(p e_{2}\right)=$ $h_{i 1}\left(e_{1}+i e_{2}\right)+h_{i 2} p e_{2}, i=0,1,2, \ldots, p-1$ and also from $\sigma\left(e_{2}\right)=c p e_{1}+d e_{2}$ one gets $\sigma\left(p e_{2}\right)=c p^{2} e_{1}+p d e_{2}$. Hence $\left(i h_{i 1}+h_{i 2}\right) p \equiv p d \bmod p^{n}$ and $h_{i 1} \equiv c p^{2} \bmod p^{m}$. From this $h_{i 1} \equiv 0 \bmod p^{2}$ which in turn gives $h_{i 2} \equiv$ $d \bmod p$. Therefore on $A_{i}, i=0,1,2, \ldots, p-1, \sigma$ has representation $\left[\begin{array}{ll}k_{i 1} & h_{i 1} \\ k_{i 2} & h_{i 2}\end{array}\right]=\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]+\left[\begin{array}{cc}\hat{a} & h_{i 1} \\ k_{i 2} & \hat{h}_{i 2}\end{array}\right]$ where the second summand maps A_{i} into $p A$. Also, on A_{p}, σ has representation $\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]=\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]+\left[\begin{array}{ll}0 & c \\ \hat{b} & 0\end{array}\right]$ where again the second summand map A_{p} into $p A$.

Define $I:=\{\sigma \in \mathcal{R}(C) \mid \sigma(w) \in p A$ for all $w \in A\}$ and note I is a nil ideal. Moreover $\mathcal{R}(C) / I \cong \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$ so from Theorem $2.3, I=J \mathcal{R}(C)$.

If $m=n=1$ then $A=\mathbb{Z}_{p}+\mathbb{Z}_{p}$. The maximal abelian subgroups are the cyclic groups $\left\langle e_{1}+i e_{2}\right\rangle, i=0,1,2, \ldots, p-1$ and $\left\langle e_{2}\right\rangle$. Thus we have a partition and $\mathcal{R}(C) \cong\left(\mathbb{Z}_{p}\right)^{p+1}$ with $J(\mathcal{R}(C))=\{0\}$.
Case (ii). $A=\bigoplus_{i=1}^{t} \mathbb{Z}_{p^{n_{i}}}, n_{1} \geq n_{2} \geq \cdots \geq n_{t}$ and $t \geq 3$.
We remark first that since $t \geq 3$, any two elements of A are contained in a maximal subgroup, so $\mathcal{R}(C) \subseteq \operatorname{End}(A)$.

Lemma 4.1. For any element $w \in A$, let $I(w)$ denote the intersection of all cells in C containing w. Then $I\left(e_{i}\right)=\left\langle e_{i}\right\rangle+p A$ and $I\left(e_{i}+e_{j}\right)=$ $\left(e_{i}+e_{j}\right)+p A, 1 \leq i, j \leq t, i \neq j$.

Proof. To illustrate the proof we let $i=1$ and $j=2$. First $\left\langle e_{1}, p e_{2}, e_{3}, \ldots, e_{t}\right\rangle, \ldots,\left\langle e_{1}, e_{2}, \ldots, e_{t-1}, p e_{t}\right\rangle$ are maximal subgroups of A containing e_{1}. Hence $I\left(e_{1}\right) \subseteq\left\langle e_{1}, p e_{2}, \ldots, p e_{t}\right\rangle \subseteq\left\langle e_{1}\right\rangle+p A$. On the other hand, the intersection of all maximal subgroups is contained in $I\left(e_{1}\right)$ which means $p A \subseteq I\left(e_{1}\right)$. But $\left\langle e_{1}\right\rangle \subseteq I\left(e_{1}\right)$ giving $\left\langle e_{1}\right\rangle+p A \subseteq I\left(e_{1}\right)$ and hence equality. Moreover, $\left\langle e_{1}+e_{2}, p e_{2}, e_{3}, \ldots, e_{t}\right\rangle$,
$\left\langle e_{1}, e_{2}, p e_{3}, e_{4}, \ldots, e_{t}\right\rangle, \ldots,\left\langle e_{1}, e_{2}, \ldots, e_{t-1}, p e_{t}\right\rangle$ are maximal subgroups containing $e_{1}+e_{2}$ and we get $I\left(e_{1}+e_{2}\right)=\left\langle e_{1}+e_{2}\right\rangle+p A$.

Now for $\sigma \in \mathcal{R}(C), \sigma\left(e_{i}\right)=a_{i} e_{i}+p w_{i}, w_{i} \in A$ and $\sigma\left(e_{i}+e_{j}\right)=$ $a_{i j}\left(e_{i}+e_{j}\right)+p w_{i j}, w_{i j} \in A$. Since $\sigma\left(e_{i}+e_{j}\right)=\sigma\left(e_{i}\right)+\sigma\left(e_{j}\right)$ we get $a_{i} \equiv a_{i j} \equiv a_{j} \bmod p$ so for each $i, 1 \leq i \leq t, a_{i}=r+q_{i} p$. From this we then get $\sigma\left(e_{i}\right)=r e_{i}+b_{1 i} e_{1}+\cdots+b_{t i} e_{t}$ where $p \mid b_{j i}$. Using the natural basis, σ has matrix representation

$$
\left[\begin{array}{cccc}
r+b_{11} & b_{12} & \ldots & b_{1 t} \\
b_{21} & r+b_{22} & & \\
\vdots & b_{32} & & \\
& \vdots & & \\
b_{t 1} & b_{t 2} & & r+b_{t t}
\end{array}\right]=\left[\begin{array}{cccc}
r & & & \\
& \ddots & \bigcirc \\
& \bigcirc & \ddots & \\
& & & r
\end{array}\right]+\left[\begin{array}{ccc}
b_{11} & \ldots & b_{1 t} \\
b_{21} & & \\
\vdots & & \vdots \\
b_{t 1} & \ldots & b_{t t}
\end{array}\right]
$$

where $p \mid b_{i j}$ and $r \in \mathbb{Z}_{p}$. If we let $I=\{\sigma \in \mathcal{R}(C) \mid \sigma(w) \in p A$ for $w \in A\}$ then I is a nil ideal, $\mathcal{R}(C) / I \cong \mathbb{Z}_{p}$ and $I=J(\mathcal{R}(C))$ by Theorem 2.3.

We summarize the results of this section.

Theorem 4.2. Let A be a finite p-group, $A=\bigoplus_{i=1}^{t} \mathbb{Z}_{p^{n_{i}}}, n_{1} \geq n_{2} \geq \cdots \geq$ n_{t} and let C be the cover of A by maximal subgroups. Then

$$
\mathcal{R}(C) / J(\mathcal{R}(C)) \cong \begin{cases}\mathbb{Z}_{p}, & \text { if } t \geq 3 \\ \mathbb{Z}_{p}+\mathbb{Z}_{p}, & \text { if } t=2, n_{1} \geq 2 \\ \left(\mathbb{Z}_{p}\right)^{p+1} & \text { if } t=2, n_{1}=1=n_{2}\end{cases}
$$

References

[1] Anderson, F.W. and Fuller, K.R., Rings and Categories of Modules, $2^{\text {nd }}$ Ed., Springer-Verlag, Berlin-Heidelberg-New York, 1992.
[2] Cannon, G. Alan, Maxson, C.J., and Neuerburg, Kent M., "Rings and Covered Groups," J. of Algebra, 320 (2008), 1586-1598.
[3] Robinson, D.J.S., A Course in the Theory of Groups, $2^{\text {nd }}$ Ed., Springer-Verlag, Berlin-Heidelberg-New York, 1996.
[4] Winkler, Reinhard, "On Maximal Abelian Groups of Maps," J. Austral. Math. Soc. (Series A), 55 (1993), 414-420.

Contact information

C. J. Maxson
Department of Mathematics, Texas A\&M University, College Station, TX, 778433368, USA and Department of Mathematics, University of Stellenbosch, 7600 Stellenbosch, South Africa
E-Mail: cjmaxson@math.tamu.edu

Received by the editors: 11.03.2009 and in final form 01.05.2009.

