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Abstract. For several classes of finite nonabelian groups

we investigate the structure of the ring of functions, R(C), deter-

mined by the cover C of maximal abelian subgroups. We deter-

mine the Jacobson radical J(R(C)) and the semisimple quotient

ring R(C)/J(R(C)).

1. Introduction

Let G = 〈G,+〉 be a group written additively but not necessarily abelian,
with identity element 0, and let C := {A1, A2, . . . , AN} be a cover of
G by abelian subgroups, i.e., each Ai is an abelian subgroup of G and
N
⋃

i=1
Ai = G. Define R(C) := {σ : G → G | σ|Ai

∈ End(Ai), for all i}.

Then R(C) is a ring of functions on G called the ring determined by the
cover C. Note that the identity function, id., and the zero function, 0,
are in R(C) and we require them to be in all of our rings of functions.

On the other hand, suppose R is a ring of functions on G. Define
C(R) := {B ⊆ G|B is an abelian subgroup of G and R|B ⊆ End(B)}.
Then C(R) is a cover of G by abelian subgroups. These correspondences
were initiated in [2] and were shown to form a Galois correspondence. One
of the goals of this investigation is to determine structural properties of
the ring R(C) in terms of the cover C. For additional background and
results, we refer the reader to [2].

Suppose C := {A1, . . . , AN} is a cover of the finite group G by abelian

subgroups. Define ψ : R(C) −→
N
⊕

i=1
End(Ai) by ψ(σ) = (σ1, . . . , σN )
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where σ ∈ R(C) and σi = σ|Ai
. Then ψ is a monomorphism and one

wishes to identify Im ψ in
N
⊕

i=1
End(Ai). We note if C is a partition then ψ

is surjective and R(C) ∼=
N
⊕

i=1
End(Ai). However, when there are nontrivial

intersections among the cells of C, the identification of Im ψ becomes
more difficult.

As in [2], let J (C) denote the intersection semilattice determined by
the cells of C, including the cells of C, so J (C) is a cover by abelian
subgroups. For Ai ∈ C, let J (Ai) = {Ai∩B| for each B ∈ J (C)}. Then
J (Ai ∩Aj) = J (Ai) ∩ J (Aj).

Theorem A. With the notation as above, Im ψ = {(σ1, . . . , σN )|σi|W =
σj|W for each W ∈ J (Ai ∩Aj), 1 ≤ i, j ≤ N}.

Proof. Let T := {(σ1, . . . , σN |σi|W = σj|W , for each W ∈ J (Ai∩Aj), 1 ≤
i, j ≤ N}. For σ ∈ R(C), ψ(σ) = (σ1, . . . , σN ) and σi|W = σj|W , W ∈
J (Ai∩Aj). Thus σ ∈ T . For the reverse inclusion, take (ρ1, . . . , ρN ) ∈ T
and define ρ : G→ G by ρ(x) = ρi(x) if x ∈ Ai. By the definition of T, ρ
is a well-defined function in R(C) and we note that ψ(ρ) = (ρ1, . . . , ρN ).
Hence T ⊆ Im ψ as desired.

We note that, using the above theorem, we again see that when C is
a partition, ψ is surjective since in this case J (Ai ∩Aj) = {0} for i 6= j.

In this paper we continue the work of [2]. We restrict our attention
to a particular type of cover, namely the cover, C, by maximal abelian
subgroups and, for the most part, to special classes of finite nonabelian
groups. We then investigate the image ψ(R(C)) or more specifically the
associated semisimple ring, R(C)/J(R(C)).

Conventions: All groups, G, in this paper will be finite and, unless
stated otherwise C will always denote the cover of G by its maximal
abelian subgroups. By maximal we always mean proper. If the order
of the group G, denoted by |G|, is at most 3 then G has no cover by
maximal abelian subgroups, so we take |G| ≥ 4.

2. The symmetric group Sn

We note first that we take n ≥ 4. For if n = 2, S2
∼= Z2 which has no

cover by maximal abelian subgroups. For S3 we see from [2] that R(C) ∼=
Z3 ⊕ (Z2)

3 and thus J(R(C)) = {0}. The main tool for our investigation
of the symmetric group is the characterization of the maximal abelian
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subgroups of Sn given by Reinhard Winkler in [4]. We summarize his
results which are relevant to our work.

Let M = {1, 2, . . . , n} and let Sn be the symmetric group on M . Let
P be any partition of M and for every K ∈ P, let +K be an abelian
group operation on K. For every choice a = (aK)K∈P , aK ∈ K, put
fa(b) = aK +K b for b ∈ K. Define

JP,(+K)K∈P
:= {fa|a = (aK)K∈P , aK ∈ K}.

Theorem 2.1 ([4]). (i) H = HP,(+K)K∈P
is an abelian subgroup of Sn

and is maximal with respect to this property if and only if P does

not contain more than one singleton class.

(ii) Every maximal abelian subgroup H of Sn is of this form, i.e., there

is a partition P of M containing not more than one singleton class

and a family (+K) of abelian group operations +K on K for every

K ∈ P such that H = HP,(+K)K∈P
.

We remark that we use the cycle notation for the elements in Sn and
denote the operation (composition) with the addition symbol “+.” Before
going into the general situation we consider the specific example S4 which
will illustrate some of the techniques.

Example 2.2. For n = 4 we have the partitions 4 + 0, 3 + 1, 2 + 2 in
which there is at most one singleton. For the partition {1, 2, 3, 4} we
have the cyclic groups 〈(1 2 3 4)〉, 〈(1 2 4 3)〉 and 〈(1 3 2 4)〉. There are
other abelian group structures on {1, 2, 3, 4} but these are “picked up” in
the 2 + 2 cases. For 3 + 1 we get the cyclic groups 〈(1 2 3)〉, 〈(1 2 4)〉,
〈(1 3 4)〉, 〈(2 3 4)〉 and for 2 + 2 we get 〈(1 2), (3 4)〉, 〈(1 3), (2 4)〉,
〈(1 4), (2 3)〉 so we have groups generated by 4-cycles, 3-cycles and 2-
cycles. If c is a 4-cycle or a 3-cycle we get for σ ∈ R(C), σ(c) ∈ 〈c〉.
Suppose σ(1 2 3 4) = k(1 2 3 4). Then 2σ(1 2 3 4) = k2(1 2 3 4)
or σ ((1 3) + (2 4)) = k(1 3) + k(2 4). On the other hand, σ(1 3) =
x1(1 3) + x2(2 4) and σ(2 4) = y1(1 3) + y2(2 4). From this we find
x1 + y1 ≡ k ≡ x2 + y2 mod 2. If k ≡ 0 mod 2 then x1 = y1 and x2 = y2

so σ(1 3) = σ(2 4) and conversely if σ(1 3) = σ(2 4) then k ≡ 0 mod 2.
A similar argument holds for the other 4-cycles. Define

I := {ρ ∈ R(C)|ρ(d) = 0

for each 3-cycle d and ρ(c) ∈ 〈2c〉 for each 4-cycle c} .

We note that I is a nil ideal in R(C).
Now suppose c = (1 2 3 4) and σ(c) ∈ {c, 3c}. Then x1 + y1 ≡ 1 ≡

x2+y2 mod 2 and σ has the matrix representation [ x1 y1
x2 y2 ] on 〈(1 3), (2 4)〉.
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If x1 = 1 and x2 = 1 then y1 = y2 = 0. Note [ 1 0
1 0 ] = [ 1 0

0 1 ] + [ 0 0
1 1 ]

and the second matrix in the sum represents a function in I restricted
to 〈(1 3), (2 4)〉. Hence modulo I, each 4-cycle determines a copy of
Z2. Thus we have R(C)/I ∼= (Z3)

4 ⊕ (Z2)
3. Since I is a nil ideal and

J(R(C)/I) = {0} we have I = J(R(C)). (See [1], Corollary 15.12.)
Since we make use of this result from [1] several times in the sequel

we state it for reference.

Theorem 2.3 ([1], Corollary 15.12). Let I be an ideal of the ring R. If

I is nil and if J(R/I) = {0}, then I = J(R).

We return to the general case and take n ≥ 5. Let H be a maximal
abelian subgroup of Sn. Then H is a direct sum of finite cyclic groups
and each generator of these cyclic subgroups is of prime power order.
We focus on cycles. However we should mention that the generators of
H need not be cycles of prime power order, but can be sums of such
cycles. For example in S6, the subgroup, H, generated by the cycle
σ = (1 2 3 4 5 6) is a maximal abelian subgroup and H has generators
σ1 = (1 4) + (2 5) + (3 6) of order 2 and σ2 = (1 5 3) + (2 6 4). (Note
σ1 + σ2 = σ.)

Theorem 2.4. Let c be a cycle in Sn of order |c|, i.e., |c|c = 0 in Sn.
Let σ ∈ R(C). Then σ(c) ∈ 〈c〉 unless |c| = 2m, m ≥ 2 and n = |c| + 2.

Proof. If |c| = n or |c| = n − 1 then 〈c〉 is the unique maximal abelian
subgroup containing c so by definition, σ(c) ∈ 〈c〉. If n − |c| ≥ 3 then
one can find suitable partitions P1 and P2 of those elements in M =
{1, 2, . . . , n} not in c to determine maximal abelian subgroups H1 and
H2 such that H1 ∩H2 = 〈c〉. Hence σ(c) ∈ 〈c〉.

It remains to consider n − |c| = 2. If |c| is odd, let t be the 2-cycle
determined by the elements in M not in c. From this we get that 〈c, t〉 is
a maximal abelian subgroup and σ(c) = xc+ yt. But then 0 = σ(|c|c) =
|c|σ(c) = |c|yt, so y = 0 and σ(c) ∈ 〈c〉. Next suppose that |c| = 2mℓ, ℓ
odd, ℓ ≥ 3 and m ≥ 1. Again let t be the 2-cycle associated with c and so,
as above, σ(c) = xc+ yt for each σ ∈ R(C). We note that ℓc is the sum
of ℓ disjoint 2m-cycles, say ℓc = b1 + b2 + · · · + bℓ. Using an appropriate
partition, 〈b1, b2, . . . , bℓ〉 is a subgroup of a maximal abelian subgroup
and also one finds σ(bi) ∈ 〈bi〉 for σ ∈ R(C). We take σ(bi) = kibi.
Thus σ(ℓc) = ℓσ(c) = ℓxc + ℓyt = xb1 + xb2 + · · · + xbℓ + ℓyt. But also

σ(ℓc) = σ(b1 + · · ·+ bℓ) =
ℓ
⊕

i=1
σ(bi) = k1b1 + · · ·+ kℓbℓ. From this we get

y = 0 and σ(c) ∈ 〈c〉.
Now let n = 2m + 2 and let c be a cycle in Sn. If |c| is odd then

n = |c| + 2k + 1. For σ ∈ R(C), σ(c) = sxc + y1t1 + · · · + yktk where
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the tk are 2-cycles. Then 0 = |c|σ(c) = y1|c|t1 + · · · + yk|c|tk which
implies yi = 0, i = 1, 2, . . . , k so σ(c) ∈ 〈c〉. If |c| is even and |c| < 2m

then n = |c| + 2h and n = |c| + (2h − 1) + 1. From suitable partitions
we get two maximal abelian subgroups whose intersection is 〈c〉. Again
we obtain σ(c) ∈ 〈c〉 for σ ∈ R(C). When |c| = 2m we get a unique
2-cycle, tc associated with c and 〈c, tc〉 is a maximal abelian subgroup so
σ(c) = xc+ ytc, σ ∈ R(C).

Let b be an element in Sn of prime power order, say |b| = pm1 where,
if n = 2m1 + 2, |b| 6= 2m1 . If b is a cycle, then from the above theorem
σ(b) ∈ 〈b〉, σ ∈ R(C), say σ(b) = kb. Now k = qp + r, 0 ≤ r < p
so σ(b) = rb + qpb, r ∈ Zp. If b is not a cycle then we first take b as
the sum of disjoint cycles of order pm1 , b = b1 + · · · + bt. Then there
is a cycle c of order tpm1 such that tc = b. We know σ(c) = kc so
σ(b) = σ(tc) = tσ(c) = tkc = kb and again we get σ(b) = sb + q̂pb,

s ∈ Zp. Note also that σ(bi) = kibi so σ(b) =
t
⊕

i=1
kibi. This implies that

k ≡ ki,modp, for each i.
For the general case we take b to be the sum of elements of order

pmi , m1 ≥ · · · ≥ mt. Let bi be the sum of the summands of order
pmi . We have just shown that σ(bi) = ribi + qipbi. Using a suitable
partition, 〈b1, . . . , bt〉 is a subgroup of a maximal abelian subgroup so
σ(b) = σ(b1) + · · · + σ(bt) = r1b1 + r2b2 + · · · + rtbt + pb̂ where ri ∈ Zp

and b̂ is an element of prime power order. We want to show ri = rj in
Zp. Note that each pmi−1bi is a sum of p-cycles, bi1 + · · · + biNi

. Using
these p-cycles we can form a cycle c of order (N1 + · · · + Nt)p and we
know σ(c) = rc. Then σ((N1 + · · ·+Nt)c) = r(N1 + · · ·+Nt)c and from
this we find ri ≡ r ≡ rj mod p.

We summarize the above.

Lemma 2.5. If b is an element in Sn of prime power order pm where

|b| 6= 2m if n = 2m + 2, then for σ ∈ R(C), σ(b) = rσb+ pb̂ where b̂ is an

element of prime power order and rσ ∈ Zp.

We now turn to one of our main results.

Theorem 2.6. Let C = {A1, . . . , AN} be the cover of Sn by maximal

abelian subgroups and let P := {pi|pi is a prime integer, pi ≤ n}. Then

R(C)/J(R(C)) ∼=
⊕

pi∈P

(Zpi
)ni , ni ≥ 1.

Proof. From abelian group theory each Ai decomposes into its primary
components and each endomorphism of Ai decomposes into endomor-
phisms of these primary components. From Section 1 we have R(C) ∼=
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Im ψ where ψ(σ) = (σ1, . . . , σN ), σ ∈ R(C). From the decomposition
into primary components we get σi = (σi1, σi2, . . . , σiℓi). The primary
components decompose further into cyclic groups in which each genera-
tor is an element of prime power order.

We first take n 6= 2m + 2, m ≥ 2. Define

I := {σ ∈ R(C)|σ(b) ∈ 〈pib̂〉 for any element b of prime power order

pi ∈ P, pni

i , and b̂ has order a power of pi}.

One verifies that I is an ideal of R(C), moreover a nil ideal.
As we noted above we only have to consider elements, b, of prime

power order and so from Lemma 2.5, for σ ∈ R(C), σ(b) = rσb + pb̂,

rσ ∈ Zp. Thus we obtain an embedding R(C) →֒

(

⊕

pi∈P

Zpi
b

)

⊕ I, b an

element of order a power of pi. This leads to an embedding of R(C)/I
into

⊕

pi∈P

(Zpi
)mi and thus we have R(C)/I ∼=

⊕

pi∈P

(Zpi
)ni , ni ≥ 1.

Now take n = 2m + 2, m ≥ 2. We modify the definition of I. The
difference here is when c is a cycle of order 2m. Then there is a unique
2-cycle, tc, associated with c and σ(c) = xcc + yctc. Define I := {σ ∈
R(C)|σ(c) ∈ 〈2c, tc〉 if c is a cycle of order 2m and σ(c) ∈ 〈pĉ〉 if c is
any element of prime power order, not 2m and ĉ is an element of order a
power of 2}.

Again one finds that I is a nil ideal. For example if σ ∈ I and |c| = 2m

then σ(c) = k ·2c+ytc and σ2m−1

(c) = 0. Now as in the previous case, for
σ ∈ R(C), σ(c) = xσc+ yσtc and xσ = q · 2 + r, so σ(c) = rc+ q2c+ yctc
so R(C)/I ∼=

⊕

pi∈P

(Zpi
)ni , ni ≥ 1.

From Theorem 2.3, I = J(R(C)).

The above result is not very precise. One would like to specify the
exponents ni for a given n. We now turn to this specification. As we
have seen above, each element b of prime power order pm gives rise to
a copy of Zp in the decomposition of R(C)/J(R(C)). We wish to find
how many distinct copies of Zp appear in this decomposition. We know,
for σ ∈ R(C), σ(b) = kb modulo J(R(C)). Further, pm−1b is a sum of
p-cycles pm−1b = b1 + · · · + bℓ and σ(bi) = kibi, i = 1, 2, . . . , t. Just as
we did in the discussion prior to Lemma 2.5 we find that ki ≡ k mod p.
Thus we can restrict to cycles of prime order, i.e., p-cycles. So when c1
and c2 are p-cycles and σ ∈ R(C) we have σ(c1) = k1c1 and σ(c2) = k2c2.
We want to determine when k1 ≡ k2 mod p, that is when the same copy
of Zp is associated with any element of prime power pm which contains
either c1 or c2 as one of its disjoint summands.
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If k1 ≡ k2 mod p we say c1 and c2 are p-equivalent and write c1 ∼p c2.
In fact we note that hc1 ∼p c1 for any nonzero element hc1 in 〈c1〉 so ∼p

is an equivalence relation on the subgroups of order p in Sn. We denote
the number of equivalence classes by np. Thus the number of summands
of Zp in R(C)/J(R(C)) is np.

Lemma 2.7. Disjoint p-cycles in Sn are p-equivalent.

Proof. Let c1 and c2 be disjoint p-cycles in Sn so we must have n ≥ 2p.
Let c1 = (x1, . . . , xp) and c2 = (y1, . . . , yp). Form c3 = (x1, y1, x2, y2, . . . ,
xn, yn), a cycle of order 2p. If n = 2p or n = 2p + 1 there is a unique
maximal abelian subgroup containing c3 and for σ ∈ R(C), σ(c3) =
k3c3. We also have σ(c1) = k1c1 and σ(c2) = k2c2. Therefore σ(2c3) =
k3(2c3) = k3(c1 + c2). But c1 and c2 are in a maximal abelian subgroup
so σ(2c3) = σ(c1 + c2) = k1c1 + k2c2 and we see k1 ≡ k3 ≡ k2 mod p.

Next suppose n = 2p + 2. Let t denote the unique 2-cycle on the
elements of M not in c3. Then 〈c3, t〉 is a maximal abelian subgroup and
σ(c3) = xc3 + yt so σ(2c3) = x2c3 and the result follows as above. If
n = 2p+ n1, n1 ≥ 3 we get σ(c3) ∈ 〈c3〉 and obtain c1 ∼p c2.

Lemma 2.8. For n ≥ 5 all 2-cycles are 2-equivalent.

Proof. Let a = (a1, a2) and b = (b1, b2) be 2-cycles and σ ∈ R(C). Then
σ(a) = k1a and σ(b) = k2b. If a and b are disjoint, the result follows from
the previous lemma. Otherwise we suppose a1 = b1. Since n ≥ 5, there
exist elements a3, b3 in M different from a1, a2, b2. Thus c = (a3, b3) is
disjoint from a and b. Hence a ∼p c ∼p b as desired.

We note that, from the above lemma, when n ≥ 5 only one copy of
Z2 appears in the decomposition of R(C)/J(R(C)). We now take p to
be an odd prime.

Theorem 2.9. Let p be an odd prime and let x and y be p-cycles in Sn
on X = {x1, . . . , xp} and Y = {y1, . . . , yp} respectively, where X ⊆ M ,

Y ⊆M . Let n12 = |X ∩ Y |. If n ≥ 2p+ min{n12, p− n12} then x ∼p y.

Proof. Without loss of generality we let {x1, . . . , x12} = {y1, . . . , y12} so
we have n12 + 2(p− n12) = 2p− n12 elements listed in X ∪ Y . Note that
p− n12 6= n12 since p is an odd prime.

Case (i). p− n12 < n12.
We have n ≥ 2p+ (p−n12) so we have at least 2p+ (p−n12)− (2p−

n12) = p elements from M = {1, 2, . . . , n} not yet listed in x and y. We
use these p elements to obtain a p-cycle, w, disjoint from x and y. Thus
x ∼p w ∼p y.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.66 Rings of functions on non-abelian groups

Case (ii). p− n12 > n12.

In this case n ≥ 2p + n12 and so there are at least 2p + n12 −
(2p − n12) = 2n12 elements from M not yet listed. Note in this case
2n12 < p. Let w1, w2, . . . , wn12

and v1, v2, . . . , vn12
be 2n12 elements

not listed in x and y. Let X = {w1, w2, . . . , wn12
, xn12+1, . . . , xp} and

Y = {v1, v2, . . . , vn12
, yn12+1, . . . , yp} and let x̄ be a p-cycle from the ele-

ments of X, ȳ a p-cycle from the elements of Y . Then y ∼p x̄ ∼p ȳ ∼p x
giving the result.

Corollary 2.10. If n ≥ 2p + 1 then all p-cycles in Sn are p-equivalent,

i.e., np = 1.

Proof. Suppose x = (x1, . . . , xp) and y = (y1, . . . , yp) are arbitrary p-
cycles in Sn with X = {x1, . . . , xp} and Y = {y1, . . . , yp}. If X = Y
then n12 − p = 0 while if X ∩ Y = ∅ then n12 = 0. Thus by the above
theorem, x ∼p y. We take |X ∩ Y | ≥ 1. Let yi ∈ Y − (X ∩ Y ) and
xj ∈ X − (X ∩ Y ). Replace xj in x by yi to obtain x′. From the above
theorem, x ∼p x′ since the intersection number n12 = p − 1 and by
hypothesis, n ≥ 2p + {p − 1, p − (p − 1)}. Continuing by replacing one
element at a time we get x ∼p y.

We classify the primes in P = {p|p is a prime, p ≤ n} into three
subsets. Define P1 = {p ∈ P | 2p+1 ≤ n}, P2 = {p ∈ P |2p = n < 2p+1}
and P3 = {p ∈ P |p ≤ n < 2p}. As we have just seen, for primes p ∈ P1,
all p-cycles are p-equivalent, so np = 1 for p ∈ P1.

To investigate the primes in P3 we first indicate how many distinct
subgroups of order p are in Sn. We choose p of the n elements in M and
recall that each choice determines (p − 1)! p-cycles. But each subgroup
of order p contains p− 1 of these cycles, so we have

(

n
p

)

(p− 2)! distinct
subgroups of order p in Sn.

Suppose now p ∈ P2 and x = (x1, . . . , xp) is a p-cycle. As noted
above there are (p − 2)! subgroups using {x1, . . . , xp} and (p − 2)! for
the n− p = p other elements in M . Since these sets are disjoint we have

2(p− 2)! subgroups in a class so in this case np =
(n

p)(p−2)!

2(p−2)! = 1
2

(

n
p

)

.

We summarize this section in the following result.

Theorem 2.11. Let C be the cover of Sn, by maximal abelian subgroups

and let P1, P2, P3 be the sets of prime numbers defined above. Then
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R(C)/J(R(C)) ∼=
⊕

p∈P

(Zp)
np where P = P1 ∪ P2 ∪ P3 and

np =



























1, p ∈ P1

1

2

(

n

p

)

, p ∈ P2

(

n

p

)

(p− 2)!, p ∈ P3.

We close this section with some examples for small n.

Example 2.12. C is the cover of Sn by maximal abelian subgroups.

(i) n = 4;P1 = ∅, P2 = {2},P3 = {3}, n2 = 1
2

(

4
2

)

= 3, n3 =
(

4
3

)

(3 −
2)! = 4 so R(C)/J(R(C)) ∼= (Z3)

4 ⊕ (Z2)
3 as found in Example

2.2.

(ii) n = 5; P1 = {2}, P2 = ∅, P3 = {3, 5}, n2 = 1, n3 =
(

5
3

)

(3−2)! = 10,

n5 =
(

5
2

)

(5 − 5)! = 6 so R(C)/J(R(C)) ∼= Z2 ⊕ (Z3)
10 ⊕ (Z5)

6.

(iii) n = 10; P1 = {2, 3}, P2 = {5}, P3 = {7}, n2 = n3 = 1, n5 =
1
2

(

10
5

)

3!, n7 =
(

10
7

)

5! so R(C)/J(R(C)) ∼= Z2⊕Z3⊕(Z5)
n5 ⊕(Z7)

n7 .

(iv) n = 11; P1 = {2, 3, 5}, P2 = ∅, P3 = {7, 11} and R(C)/J(R(C)) ∼=
Z2 ⊕ Z3 ⊕ Z5 ⊕ (Z7)

n7 ⊕ (Z11)
n11 .

3. p-groups with a cyclic maximal subgroup

Let G be a finite p-group having a cyclic subgroup which is also a maximal
subgroup. The structure of groups with this property is well-known.

Theorem 3.1 ([3, 5.3.4]). A group of order pn has a cyclic maximal

subgroup if and only if it is one of the following types:

(i) a cyclic group of order pn;

(ii) the direct product of a cyclic group of order pn−1 and one of order

p, i.e., Zpn−1 ⊕ Zp;

(iii) the dihedral group D2n−1 = 〈x, y|2n−1x = 2y = 0, y + x = (2n−1 −
1)x+ y〉, n ≥ 3;

(iv) the group Mn(p) := 〈x, y|pn−1x = py = 0,−y + x + y = (1 +
pn−2)x〉, n ≥ 3;

(v) SDn := 〈x, y|2n−1x = 2y = 0,−y + x+ y = (2n−2 − 1)x〉, n ≥ 3;
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(vi) GQ := 〈x, y|2n−1x = 0, 2y = 2n−2x,−y+x+ y = (2n−1 −1)x〉, n ≥
3.

We consider the nonabelian cases separately in the following subsec-
tions. The cyclic group of order pn has no cover by maximal abelian
subgroups. The abelian case, i.e. part (ii) will be handled in the next
section.

3.1. Dihedral group Dn

We consider here the collection of all dihedral groups rather than just
dihedral p-groups. So we let Dn := 〈x, y|nx = 0 = 2y, y+x = (n− 1)x+
y〉.

Case A.1. n odd.
The maximal abelian subgroups are the cyclic subgroups

C = {〈x〉, 〈y〉, 〈x+ y〉, 〈2x+ y〉, . . . , 〈(n− 1)x+ y〉}.

Note that C is a partition so we have R(C) ∼= Zn ⊕ (Z2)
n. If n =

pα1

1 . . . pαt

t , pi an odd prime, then J(R(C)) ∼= J(Zn)⊕{0} =

(

t
⊕

i=1
piZpαi

i

)

⊕

{0} so R(C)/J(R(C)) ∼=

(

t
⊕

i=1
Zpi

)

⊕ (Z2)
n.

Case A.2. n even.
Let C = {〈x〉, 〈n2x, y〉, 〈

n
2x, x+y〉, . . . , 〈n2x, (

n
2 −1)x+y〉}. Note that C

is a cover of Dn and each cell is abelian since the center of Dn, Z(Dn), is
〈n2x〉. We show each cell is a maximal abelian subgroup. Since |〈x〉| = n,
〈x〉 is a maximal subgroup. Suppose H is an abelian subgroup, H ⊇
〈n2x, rx + y〉. For w ∈ H, w = hx + y and we have hx + y + rx + y =
rx+ y + hx+ y so hx+ (n− 1)rx = rx+ (n− 1)hx or 2hx = 2rx. Thus
2h− 2r = qn or h = r+ q · n2 . Hence w = hx+ y = q · n2x+ rx+ y which
is in 〈n2x, rx+ y〉. Hence H = 〈n2x, rx+ y〉 giving the result.

For notational convenience we let A := 〈x〉 and Ai := 〈n2x, ix + y〉,
i = 0, 1, . . . , n2 −1 and take σ ∈ R(C) where as we have shown above, C is
the cover of Dn by maximal abelian subgroups. On A, σ(x) = kx. If we

use the basis {n2x, ix+ b} on Ai then σ has the representation
[

k̄ bi1
0 bi2

]

on

Ai where k̄ ≡ k mod 2. Thus σ 7→ ψ(σ) =

(

k,
[

k̄ b01
0 b02

]

, . . . ,

[

k̄ bn
2
−1 1

0 bn
2
−1 2

])

.

From this we see |R(C)| = n4
n
2 = n · 2n. Suppose n = pα1

1 pα2

2 . . . pαt

t

where the pi are primes and we have p1 = 2, α1 ≥ 1. Define I :=
{σ ∈ R(C)|σ(x) = (p1 . . . pt)x and σ(ix+ b) ∈ 〈n2x〉}. Calculations show
that I is an ideal. Moreover for σ ∈ I, σ2(ix + y) = σ(h · n2x) = 0



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.C. J. Maxson 69

while σ2(x) = p2
1p

2
2 . . . p

2
tψ. Thus I is a nil ideal of R(C) and we find

R(C)/I ∼= Im ψ
ψ(I)

∼= Zn

p1...ptZn
⊕ (Z2)

n
2 ∼= Zp1 ⊕ · · · ⊕ Zpt

⊕ (Z2)
n
2 . Again,

applying Theorem 2.3 we see that I = J(R(C)).

Theorem 3.2. Let Dn be the dihedral group of order 2n and let C be the

cover of Dn by maximal abelian subgroups. If n = 2α0pα1

1 . . . pαt

t , pi an

odd prime, then

R(C)/J(R(C)) ∼=

{

Zp1 ⊕ · · · ⊕ Zpt
⊕ (Z2)

n if α0 = 0,

Zp1 ⊕ · · · ⊕ Zpt
⊕ (Z2)

n
2
+1 if α0 > 0.

3.2. The group

Mn(p) := 〈x, y|pn−1x = py = 0;−y + x+ y = (1 + pn−2)x〉

The group Mn(p) has pn elements and its center Z(Mn(p)) = 〈px〉. One
finds that

C := {〈x〉, 〈x+ y〉, . . . , 〈x+ (p− 1)y〉, 〈y, px〉}

is the cover by maximal abelian subgroups. Let Ai := 〈x + iy〉, i =
0, 1, . . . , p − 1 and A := 〈y, px〉. For σ ∈ R(C), let σ(x) = kx and
σ(x + iy) = ki(x + iy). Since 〈px〉 is contained in each of the cells of
C, there exist hi such that hi(x + iy) = px. Thus σ(px) = hiσ(x +
iy) = hiki(x + iy) = kipx. But also σ(px) = pσ(x) = kpx. Thus we
find k ≡ ki, i = 0, 1, 2, . . . , p − 1. On the cell A, with respect to the

bases {y, px}, σ has representation
[

y1 0
y2 k

]

=
[

y1 0
0 0

]

+
[

0 0
y2 k

]

. If we let

I := {σ ∈ R(C)|σ(w) ∈ pMn(p) for each w in Mn(p)} then I is a nil
ideal with R(C)/I ∼= Zp ⊕ Zp = (Zp)

2. Applying Theorem 2.3 gives
I = J(R(C)).

3.3. Semidihedral group

SDn := 〈x, y|2n−1x = 0 = 2y;−y + x+ y = (2n−2 − 1)x〉

Since 2y = 0, from −y+x+y = (2n−2−1)x we get y+x = (2n−2−1)x+y.
Using this we see if a is odd, 〈ax+ y〉 = {0, ax+ y, 2n−2x, (2n−2 + a)x+
y} while if a is even, 2(ax + y) = 0 and 〈ax + y, 2n−2x〉 = {0, ax +
y, 2n−2x, (2n−2x + a)x + y}. Since the center Z(SDn) = {0, 2n−2x} we
find that the cover by maximal abelian subgroups is

C = {〈x〉, 〈x+y〉〈2x+y, 2n−2x〉, 〈3x+y〉, . . . , 〈(2n−2−1)x+y〉, 〈2n−2x, y〉}.
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Let A := 〈x〉 and Ai :=

{

〈ix+ y〉 if i is odd
〈ix+ y, 2n−2x〉, if i is even.

For σ ∈ R(C), σ(x) = kx and σ(ix + y) = ki(ix + y) if i is odd.
But then σ(2n−2x) = k2n−2x and 2σ(ix + y) = σ(2n−2x) = ki2

n−2x
which gives k ≡ ki mod 2 when i is odd. For i even, using the basis

{2n−2x, ix + y}, σ has the representation
[

k bi1
0 bi2

]

on Ai. If we define

I := {σ ∈ R(C)|σ(x) ∈ 〈2x〉 and σ(ix + y) ∈ 〈2n−2x〉 for i even}
then calculations show that I is a nil ideal of R(C) and R(C)/I ∼=
Z2⊕ (Z2)

2n−3

where the second summand arises from the 2n−3 subgroups
containing ix + y, i even. Hence from Theorem 2.3, I = J(R(C)) and
R(C)/J(R(C)) ∼= (Z2)

2n−3+1.

3.4. Generalized quaternion groups

GQ := 〈x, y|2n−1x = 0, 2y = 2n−2x,−y + x+ y = (2n−1 − 1)x〉

Since (2n−1 − 1)x = −x we find y+x = −x+ y = (2n−1 − 1)x+ y. Using
this we find the cover by maximal abelian subgroups is

C = {〈x〉, 〈x+ y〉, 〈2x+ y〉, . . . , 〈2n−2x+ y〉 = 〈y〉}.

For σ ∈ R(C), σ(x) = kx and σ(ix+y) = ki(ix+y), i = 1, 2, . . . , 2n−2.
Since 2(ix + y) = 2n−2x we find σ(2n−2x) = 2σ(ix + y) = ki2

n−2 and
σ(2n−2x) = k2n−2x so k ≡ ki mod 2, i = 1, 2, . . . , 2n−2. Let I := {σ ∈
R(C)|σ(x) ∈ 〈2x〉}. (Note σ(x) ∈ 〈2x〉 implies σ(w) ∈ 〈2x〉 for all
w ∈ GQ.) Again I is a nil ideal and R(C)/I ∼= Z2. Thus I = J(R(C))
(using Theorem 2.3) and we see R(C) is a local ring.

4. Finite abelian p-groups

As in the above section we let p be an arbitrary but fixed prime integer

and let A be a finite abelian p-group. Thus we have A ∼=
t
⊕

i=1
Zpni , so

without loss of generality, we take A =
t
⊕

i=1
Zpni with the natural basis

{e1, e2, . . . , et}. As usual C is the cover by maximal abelian subgroups,
which in this case, is the cover by maximal subgroups. As is well known
the intersection of all maximal subgroups of A is pA = 〈pe1, . . . , pet〉.

Case (i). t = 2, A = Zpn ⊕ Zpm , n ≥ m.

First we consider n ≥ m ≥ 2. Let C = {〈e1, pe2〉, 〈e1+e2, pe2〉, . . . , 〈e1+
(p− 1)e2, pe2〉, 〈pe1, e2〉} and let w = ae1 + be2 be arbitrary in A. If p|a
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then w ∈ 〈pe1, e2〉 or if p|b then w ∈ 〈e1, pe2〉. Otherwise we have a
is invertible modpn and a−1w = e1 + a−1be2 and a−1b 6≡ 0 mod p so
a−1b = qp+ r, 0 < r < p. Thus a−1w = e1 + re2 + qpe2 ∈ 〈e1 + re2, pe2〉.
Thus we see C is a cover and since the order of each cell is pn+m−1, each
cell is a maximal subgroup, i.e. C is the cover by maximal abelian sub-
groups. Let Ai := 〈e1+ie2, pe2〉, i = 0, 1, . . . , p−1 and let Ap := 〈pe1, e2〉.
Let σ ∈ R(C). Then on Ai, i = 0, 1, . . . , p − 1, σ has representa-

tion
[

ki1 hi1

ki2 hi2

]

using the generating set {e1 + ie2, pe2} and on Ap, us-

ing {pe1, e2}, σ has representation [ a cb d ]. We then have σ(e1 + ie2) =
ki1(e1 + ie2) + ki2pe2 so σ(pe1 + ipe2) = ki1pe1 + ki1ipe2 + ki2p

2e2. But
σ(pe1+ipe2) = pae1+be2+ip(cpe1+de2). Hence pa+icp2 ≡ ki1p mod pm

or ki1 ≡ a mod p.

Also, we get b ≡ 0 mod p. For, σ(pe1) = ape1 + be2 and σ(pe1) =
pk01e1+pk02pe2 so b ≡ k02p

2 mod pn giving the result. Further, σ(pe2) =
hi1(e1+ie2)+hi2pe2, i = 0, 1, 2, . . . , p−1 and also from σ(e2) = cpe1+de2
one gets σ(pe2) = cp2e1 + pde2. Hence (ihi1 + hi2)p ≡ pd mod pn and
hi1 ≡ cp2 mod pm. From this hi1 ≡ 0 mod p2 which in turn gives hi2 ≡
d mod p. Therefore on Ai, i = 0, 1, 2, . . . , p − 1, σ has representation
[

ki1 hi1

ki2 hi2

]

=
[

a 0
0 d

]

+
[

â hi1

ki2 ĥi2

]

where the second summand maps Ai into

pA. Also, on Ap, σ has representation [ a cb d ] =
[

a 0
0 d

]

+
[

0 c
b̂ 0

]

where again
the second summand map Ap into pA.

Define I := {σ ∈ R(C)|σ(w) ∈ pA for all w ∈ A} and note I is a nil
ideal. Moreover R(C)/I ∼= Zp ⊕ Zp so from Theorem 2.3, I = JR(C).

If m = n = 1 then A = Zp + Zp. The maximal abelian subgroups are
the cyclic groups 〈e1 + ie2〉, i = 0, 1, 2, . . . , p− 1 and 〈e2〉. Thus we have
a partition and R(C) ∼= (Zp)

p+1 with J(R(C)) = {0}.

Case (ii). A =
t
⊕

i=1
Zpni , n1 ≥ n2 ≥ · · · ≥ nt and t ≥ 3.

We remark first that since t ≥ 3, any two elements of A are contained
in a maximal subgroup, so R(C) ⊆ End(A).

Lemma 4.1. For any element w ∈ A, let I(w) denote the intersection

of all cells in C containing w. Then I(ei) = 〈ei〉 + pA and I(ei + ej) =
(ei + ej) + pA, 1 ≤ i, j ≤ t, i 6= j.

Proof. To illustrate the proof we let i = 1 and j = 2. First
〈e1, pe2, e3, . . . , et〉, . . . , 〈e1, e2, . . . , et−1, pet〉 are maximal subgroups of A
containing e1. Hence I(e1) ⊆ 〈e1, pe2, . . . , pet〉 ⊆ 〈e1〉 + pA. On
the other hand, the intersection of all maximal subgroups is con-
tained in I(e1) which means pA ⊆ I(e1). But 〈e1〉 ⊆ I(e1) giving
〈e1〉+ pA ⊆ I(e1) and hence equality. Moreover, 〈e1 + e2, pe2, e3, . . . , et〉,
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〈e1, e2, pe3, e4, . . . , et〉, . . . , 〈e1, e2, . . . , et−1, pet〉 are maximal subgroups
containing e1 + e2 and we get I(e1 + e2) = 〈e1 + e2〉 + pA.

Now for σ ∈ R(C), σ(ei) = aiei + pwi, wi ∈ A and σ(ei + ej) =
aij(ei + ej) + pwij , wij ∈ A. Since σ(ei + ej) = σ(ei) + σ(ej) we get
ai ≡ aij ≡ aj mod p so for each i, 1 ≤ i ≤ t, ai = r + qip. From this we
then get σ(ei) = rei + b1ie1 + · · · + btiet where p|bji. Using the natural
basis, σ has matrix representation

















r + b11 b12 . . . b1t
b21 r + b22
... b32

...
bt1 bt2 r + btt

















=













r
. . . ©

©
. . .

r













+











b11 . . . b1t
b21
...

...
bt1 . . . btt











where p|bij and r ∈ Zp. If we let I = {σ ∈ R(C)|σ(w) ∈ pA for w ∈ A}
then I is a nil ideal, R(C)/I ∼= Zp and I = J(R(C)) by Theorem 2.3.

We summarize the results of this section.

Theorem 4.2. Let A be a finite p-group, A =
t
⊕

i=1
Zpni , n1 ≥ n2 ≥ · · · ≥

nt and let C be the cover of A by maximal subgroups. Then

R(C)/J(R(C)) ∼=











Zp, if t ≥ 3;

Zp + Zp, if t = 2, n1 ≥ 2;

(Zp)
p+1 if t = 2, n1 = 1 = n2.
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