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of disconnected hypergraphs

Yuriy V. Zhuchok

Communicated by V. I. Sushchansky

Abstract. We prove that the monoid of endomorphisms
of an arbitrary disconnected hypergraph is isomorphic to a wreath
product of a transformation semigroup with a certain small category.
For disconnected hypergraphs we also study the structure of the
monoid of strong endomorphisms and the group of automorphisms.

1. Introduction

For many types of geometrically-combinatorial objects in mathematics

the concepts of a connectedness and a disconnectedness are defined natu-

rally. In such cases each disconnected object is a union of its connected

components and the reduction’s problem of the description of some struc-

tures (e.g., the monoid of endomorphisms, the group of automorphisms

etc.) of an arbitrary disconnected object to the description of its connected

components is appeared. In the paper this problem is solved for monoids

of endomorphisms of disconnected hypergraphs.

It is well known that the monoid of endomorphisms of any algebraic

system carries a substantial information about a system and gives a

new, convenient enough language with the help of which it is possible

to study the structure of this system. Semigroups of endomorphisms of

relational systems and their properties were studied by many authors.
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A survey of early works related to semigroups of endomorphisms of

graphs and hypergraphs can be found in [1], [2] and more late works, for

example, in [3], [4]. The specific attention was spared such problems as the

definability of graphs by their semigroups of endomorphisms [5], [6], the

description of abstract characteristics of semigroups of endomorphisms

of graphs [7], the study of algebraic and combinatorial properties of

endomorphisms of graphs [8–10], the description of representations of

monoids of endomorphisms of graphs and hypergraphs [11–13] and etc.

Presently, in the semigroup theory the construction of a wreath product

and its different modifications are actively used for the description of

exact representations of monoids of endomorphisms. In [14] V. Fleischer

introduced the construction of a wreath product of a monoid with a

small category as a generalization of a wreath product of monoids and

applied it in different cases. V. Fleischer and U. Knauer [15] used this

construction for the description of an exact representation of the monoid

of endomorphisms of an arbitrary act. In [16] the author proved that the

semigroup of endomorphisms of a free product of semigroups from a given

class is isomorphic to a wreath product of a transformation semigroup

with some small category. U. Knauer and M. Nieporte in [17] proved

that the monoid of strong endomorphisms of an arbitrary undirected

finite graph without multiple edges is isomorphic to a wreath product

of a canonical strong quotient graph with some category. Similar results

for a suitable class of undirected infinite graphs without multiple edges

and n-uniform hypergraphs were announced in [18]. In this direction the

reduction’s problem of the description of the semigroup of endomorphisms

of an arbitrary disconnected hypergraph to the description of its connected

components is opened. In terms of a wreath product construction we

solve this problem for the monoid of endomorphisms of disconnected

hypergraphs and some its submonoids.

The paper is organized in the following way. In Section 2, using a

wreath product of a transformation semigroup with a small category, we

prove the reduction’s theorem for the semigroup of endomorphisms of a

disconnected hypergraph. In Section 3 by means of different semigroup

constructions we study the structure of the monoid of strong endomor-

phisms of disconnected hypergraphs. In Section 4 we show that the group

of automorphisms of a disconnected hypergraph is isomorphic to a direct

product of wreath products of groups. Finally, in Section 5 we study the

monoid of endomorphisms of arbitrary relational structures.
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2. The monoid of endomorphisms

of an arbitrary disconnected hypergraph

It is known that there are different definitions of a hypergraph. In
this paper we use the definition of a hypergraph which is given in [2].

Let V be an arbitrary non-empty set, E be a family of non-empty
subsets of V . A pair (V,E) is called a (undirected) hypergraph with the
set of vertices V and the set of edges E.

It is clear that any undirected graph is an example of a undirected
hypergraph. Therefore all results of the paper are correct for arbitrary
undirected graphs also.

Let H = (V,E) be an arbitrary hypergraph. The set V and the set E
of the hypergraph H are denoted also by V (H) and E(H) respectively.

By ℑ(X) we denote the symmetric semigroup on a set X. A transfor-
mation f ∈ ℑ(V ) is called an endomorphism of a hypergraph H = (V,E)
if for all A ⊆ V the condition A ∈ E implies Af ∈ E.

The set of all endomorphisms of a hypergraph H is a semigroup with
respect to the ordinary operation of the composition of transformations.
This semigroup is called a semigroup of endomorphisms of a hypergraph
H and is denoted by EndH.

A sequence of edges e1, e2, . . . , en of a hypergraph H is called a chain
if ei ∩ ei+1 6= ∅ for all i ∈ {1, 2, . . . , n − 1}. Vertices a and b of a hy-
pergraph H = (V,E) are called connected [13] if there exists the chain
e1, e2, . . . , en ∈ E such that a ∈ e1 and b ∈ en.

A hypergraph H is called connected, if every pair of vertices in the
hypergraph is connected, and disconnected, in other cases. A connected
component is a maximal connected subhypergraph of H.

We denote by α the relation of a connectivity of vertices on an
arbitrary hypergraph H. Obviously, α is an equivalence relation on the set
V and connected components are then induced subhypergraphs formed
by equivalence classes of this relation.

Let H/α be a set of all connected components Ki, i ∈ I, of a hyper-
graph H, that is

H/α = {Ki | i ∈ I}.

We will also designate by H =
⋃
i∈I Ki an arbitrary hypergraph H.

The set of all homomorphisms from the connected component Ki to the
component Kj is denoted by Hom(Ki;Kj).

If ϕ : A → B is an arbitrary mapping and ∅ 6= Y ⊆ A, then by ϕ|Y
we designate the restriction ϕ on the subset Y .
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The description of endomorphisms of a disconnected hypergraph gives
the following

Lemma 1. A transformation ϕ of an arbitrary disconnected hypergraph
H =

⋃
i∈I Ki is an endomorphism if and only if for any i ∈ I there exists

j ∈ I such that ϕ |Ki∈ Hom(Ki;Kj).

Proof. Let ϕ ∈ EndH and Ki be an arbitrary connected component
of H. If |Ki| = 1, then it is clear that ϕ |Ki∈ Hom(Ki;Kj) for some
j ∈ I. Suppose that |Ki| ≥ 2 and a, b ∈ Ki, a 6= b. Then there exists
the chain e1, e2, . . . , en ∈ E such that a ∈ e1 and b ∈ en. As ϕ is an
endomorphism of H, then eiϕ ∈ E for all i ∈ {1, 2, . . . , n}. Therefore
there exists the chain e1ϕ, e2ϕ, . . . , enϕ ∈ E which connects aϕ and bϕ,
that is aϕ, bϕ ∈ Kj for some j ∈ I.

The converse statement is obvious.

Let K be a small category, S be a monoid with an identity 1 which
acts on the left on a set of objects X = ObK of the category K . We put

M =
⋃

a,b∈X

MorK (a; b)

and denote by Map(X;M) the set of all mappings from X to M .

Further let

W = {(s; f)|s ∈ S, f ∈ Map(X;M), xf ∈ MorK (x; sx) for x ∈ X}.

For all (r; f), (p; g) ∈ W we define the operation:

(r; f)(p; g) = (rp; fpg),

where x(fpg) = (px)f xg for all x ∈ X and (px)f xg is a composition of
morphisms (px)f , xg in the category K .

The set W with a such multiplication is a monoid with the identity
(1; e), where mapping e ∈ Map(X;M) is such that xe ∈ Mor(x;x) is an
identical morphism idx for every object x in K .

The monoid W is called the wreath product of the monoid S with the
category K and is denoted by S wrK [14].

Observe that if W = S wrK is a finite wreath product, then

|W | =
∑

s∈S

∏

x∈X

|MorK (x; sx)|.
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Let H =
⋃
i∈I Ki be an arbitrary hypergraph, α be the relation of a

connectivity of vertices on H and C be the small category such that

ObC = H/α, MorC (Ki;Kj) = Hom(Ki;Kj),

MorC =
⋃

i,j∈I

MorC (Ki;Kj).

We denote by T (I) the set of all transformations ζ of the set I such that
MorC (Ki;Kiζ) 6= ∅ for all i ∈ I. It is clear that T (I) is a subsemigroup
of the symmetric semigroup ℑ(I) and objects of the category C naturally
set left T (I)-act:

ζKi = Kiζ , ζ ∈ T (I).

Thus, we obtain the construction of the wreath product T (I)wrC of
the transformation monoid T (I) with the small category C .

Let (g; f) ∈ T (I)wrC , where g ∈ T (I), f ∈ Map(ObC ;MorC ). Then
t(Kif) ∈ Kig for all t ∈ Ki.

Note that the composition of mappings in the next theorem only is
defined from the right to the left.

The main result of this paper is the following theorem:

Theorem 1. The monoid of endomorphisms EndH of an arbitrary dis-
connected hypergraph H =

⋃
i∈I Ki is isomorphic to the wreath product

T (I)wrC of the transformation monoid T (I) with the small category C .

Proof. Let η ∈ EndH . By η∗ we designate the transformation of I which
in according to Lemma 1 is induced by the endomorphism η:

η∗ : I → I : i 7→ iη∗ = j, if Kiη ⊆ Kj .

Define the mapping ξ from the semigroup EndH into the wreath
product T (I)wrC by the rule:

ξ : η 7→ (η∗;h),where Kih = η|Ki for all i ∈ I.

This mapping is well-defined as Kih ∈ Hom(Ki;Kiη∗) for all i ∈ I.
For any elements ϕ,ψ ∈ EndH we have

(ϕψ)ξ = ((ϕψ)∗;µ),where Kiµ = (ϕψ)|Ki , i ∈ I,

ϕξ = (ϕ∗; f) and ψξ = (ψ∗; g), where Kif = ϕ|Ki , Kig = ψ|Ki , i ∈ I.

Then
ϕξ ψξ = (ϕ∗; f)(ψ∗; g) = (ϕ∗ψ∗; fψ∗g).



Yu. V. Zhuchok 139

It is clear that (ϕψ)∗ = ϕ∗ψ∗. Moreover, for all Ki ∈ ObC

Ki µ = (ϕψ)|Ki = ϕ|Kiψψ|Ki = ϕ|Kiψ∗
ψ|Ki =

= Kiψ∗f Kig = (ψ∗Ki)f Kig = Ki(fψ∗g).

Thus, fψ∗g = µ and so, ξ is a homomorphism.
If ϕ 6= ψ, then xϕ 6= xψ for some x ∈ Ki. It means that x(Kif) 6=

x(Kig), hence ϕξ 6= ψξ.
Assume (α;β) ∈ T (I)wrC and define a transformation λ of the

hypergraph H by
xλ = x(Kiβ), if x ∈ Ki

for all x ∈ H. Easily to see that λ ∈ EndH and λξ = (λ∗;β) = (α;β).
Therefore, EndH ∼= T (I)wrC .

Let ϕ be an arbitrary endomorphism of a finite disconnected hyper-
graph H =

⋃
i∈I Ki. By Theorem 1 ϕ can be represented as ϕ = (ϕ∗; f).

Since the mapping f is defined by the rule: Kif = ϕ|Ki , i ∈ I, then it
can be chosen by ∏

i∈I

| Hom(Ki;Ki ϕ∗) |

ways. Thus, from Theorem 1 we obtain the following

Corollary 1. Let H =
⋃
i∈I Ki be a disconnected finite hypergraph. Then

|EndH| =
∑

ζ∈T (I)

∏

i∈I

| Hom(Ki;Kiζ) | .

Consider as an example the hypergraph H = (V,E), where

V = {a, b, c, d, e, f, g}, E = {{a}, {b, c}, {c, d}, {c}, {e, f, g}}.

Connected components of H are K1,K2,K3 such that

V (K1) = {a}, E(K1) = {{a}},

V (K2) = {b, c, d}, E(K2) = {{b, c}, {c, d}, {c}},

V (K3) = {e, f, g}, E(K3) = {{e, f, g}}.

In this case, ObC = {K1,K2,K3} and morphisms of C are the follow-
ing: sets Hom(K1;K1), Hom(K1;K2), Hom(K2;K1), Hom(K3;K1) are
single-element, Hom(K3;K3) is the symmetric group on K3 and

Hom(K2;K2) = {ϕ ∈ ℑ(K2)|ϕ(c) = c},
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Hom(K3;K2) = {ϕ ∈ Map(K3;K2)|im(ϕ) ∈ E(K2)}.

From here, putting I = {1, 2, 3}, we obtain

T (I) = {ϕ ∈ ℑ(I)|ϕ|{1,2} ∈ ℑ({1, 2})}

and by Theorem 1 the monoid EndH is isomorphic to T (I)wrC .

Besides, by Corollary 1 we have

|EndH| = 2 · (1 + 9 + 13 + 117 + 6 + 54) = 400.

Further we consider another construction for the description of an exact
representation of the semigroup of endomorphisms of any disconnected
hypergraph.

Let H =
⋃
i∈I Ki be a disconnected hypergraph and C be the small

category defined above. We put Mor0C = MorC ∪{0}, where 0 /∈ MorC ,
and define on this set a such operation:

ϕψ =

{
ϕ ◦ ψ, ϕ 6= 0 6= ψ and composition ϕ,ψ is defined,
0 in other cases,

where ϕ ◦ ψ is a composition of morphisms.

It is clear that the set Mor0C is a semigroup with respect to the above
defined operation. This semigroup up to an isomorphism is contained in
the semigroup BH of all binary relations on H.

Let T be an arbitrary semigroup, G(T ) be a set of all its subsets.
Putting AB = {ab|a ∈ A, b ∈ B} for all A,B ⊆ T , we obtain a semigroup
on G(T ) which is called a global supersemigroup of a semigroup T .

The set of all elements which are taken one from each block of a
partition DX = {Xλ|λ ∈ Λ} of some set X is called a cross-section of this
partition.

For the partition

LMor0C = {Hom(Ki; ∗)|i ∈ I} ∪ {{0}},

where Hom(Ki; ∗) =
⋃
j∈I Hom(Ki;Kj), of the semigroup of morphisms

Mor0C we denote the set of all its cross-sections by T (LMor0C ).

Lemma 2. The set T (LMor0C ) is a subsemigroup of the global super-
semigroup Gl(Mor0C ) of the semigroup Mor0C .
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Proof. Let A,B ∈ T (LMor0C ). Since

{dom(η)|η ∈ B, η 6= 0} = ObC ,

then for each ϕ ∈ A,ϕ 6= 0 there exists a unique element ψ ∈ B, ψ 6= 0
such that im(ϕ) ⊆ dom(ψ). From here ϕψ 6= 0. Besides, in those cases
when ϕ is the same and f ∈ B such that f 6= ψ we have ϕf = 0.

Thus, taking into account that 0 ∈ AB and

{dom(η)|η ∈ A, η 6= 0} = ObC ,

dom(ϕ) = dom(ϕψ),when ϕψ 6= 0,

we obtain AB ∈ T (LMor0C ).

The representation of the monoid of endomorphisms of a disconnected
hypergraph by unary relations gives

Theorem 2. For any disconnected hypergraph H the following isomor-
phism holds:

EndH ∼= T (LMor0C ).

Proof. The isomorphism ξ from EndH to T (LMor0C ) is defined by the
next rule:

fξ = {f |A : A ∈ ObC } ∪ {0}

for all f ∈ End H.

3. The monoid of strong endomorphisms

of an arbitrary disconnected hypergraph

Let H = (V,E) and H ′ = (V ′, E′) be arbitrary hypergraphs. A
homomorphism ϕ : H → H ′ is called a strong homomorphism if Aϕ ∈ E′

implies A ∈ E for all A ⊆ V such that there exists an edge e ∈ E with
|e| = |A|. The set of all strong homomorphisms from H into H ′ is denoted
by SHom(H;H ′). It is clear that SEndH is a submonoid of the monoid
EndH.

Recall that a subhypergraph of H is called a correct hypergraph if it
contains all edges of H.

Lemma 3. An endomorphism ϕ of an arbitrary disconnected hypergraph
H =

⋃
i∈I Ki is a strong endomorphism if and only if

(i) for any i ∈ I there exists j ∈ I such that ϕ |Ki∈ SHom(Ki;Kj);
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(ii) any edge of the correct subhypergraph Hϕ can not be represented

as a union of two or more non-empty subsets from the corresponding

images Kiϕ, i ∈ I.

Proof. Let ϕ ∈ SEndH. Taking into account Lemma 1 we immediately
obtain the condition (i). Assume that there exists e ∈ E(Hϕ) such that
e =

⋃
j∈J Aj , ∅ 6= Aj ⊆ Kjϕ for some subset J ⊆ I, |J | ≥ 2. Then there

exists a subset A ⊆ eϕ−1 such that |A| = |e|, Aϕ = e and A * Ki for
all i ∈ I. On the other hand, since the endomorphism ϕ is strong, then
A ∈ E(H) and so A ⊆ Kα for some α ∈ I.

The sufficiency of the assertion is obvious.

Let H =
⋃
i∈I Ki be an arbitrary hypergraph. Denote by CS the small

category such that

ObCS = H/α, MorCS (Ki;Kj) = SHom(Ki;Kj).

We denote by TS(I) the monoid of all transformations of the set I
which in according to Lemma 3 are induced by all strong endomorphisms
of the hypergraph H.

Theorem 3. The monoid of strong endomorphisms SEndH of any dis-
connected hypergraph H =

⋃
i∈I Ki is isomorphic to the wreath product

TS(I)wrCS of the transformation monoid TS(I) with the category CS.

Proof. The proof of the theorem is the same as the proof of Theorem 1.

Let H be an arbitrary disconnected finite hypergraph and ϕ = (ϕ∗; f)
∈ SEndH (see Sect. 2). In this case the mapping f for the given trans-
formation ϕ∗ can be chosen by

∏

i∈I

| SHom(Ki;Ki ϕ∗) |

ways. So, we have the following assertion:

Corollary 2. Let H =
⋃
i∈I Ki be a disconnected finite hypergraph. Then

|SEndH| =
∑

ζ∈TS(I)

∏

i∈I

| SHom(Ki;Kiζ) | .
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Assume that T (LMor0CS
) be a semigroup which is defined on the

set of morphisms of the category CS in the same way as T (LMor0C ) is
defined on Mor0C (see Sect. 2). Denote by T ∗(LMor0CS

) the subsemigroup
of T (LMor0CS

) which consists of all elements A such that any edge of
the correct subhypergraph defined on the set

⋃
ϕ∈A,ϕ 6=0 im(ϕ) can not

be represented as a union of two or more non-empty subsets from the
corresponding images im(ϕ), 0 6= ϕ ∈ A. Thus, for any disconnected
hypergraph H we have

SEndH ∼= T ∗(LMor0CS
).

Further we describe an exact representation of the monoid of strong
endomorphisms of undirected finite graphs in terms of the wreath product
of a group of automorphisms with a suitable category.

Let G = (V,E) be a undirected finite graph without multiple edges.
For every x ∈ V by N(x) we denote the neighborhood of x, that is a set
of all vertices y ∈ V such that {x, y} ∈ E.

A binary relation ν on the set of vertices of G defined by

xνy ⇔ N(x) = N(y)

is an equivalence relation. The equivalence class of ν which contains x is
denoted by xν .

Define on the quotient set V/ν a new graph G/ν putting V (G/ν) =
V/ν and {xν , yν} ∈ E(G/ν) if and only if {x, y} ∈ E(G). In particular, a
loop {zν} ∈ E(G/ν) if and only if a loop {z} ∈ E(G). The defined graph
is called a canonical strong quotient graph of G.

Recall that a generalized lexicographic product of the graph U with
graphs Yu, u ∈ U, is a graph U [(Yu)u∈U ] such that

V (U [(Yu)u∈U ]) = {(u; yu)|u ∈ U, yu ∈ Yu}

and {(u; yu), (v; zv)} ∈ E(U [(Yu)u∈U ]) if and only if one of the following
conditions holds:

(i) {u, v} ∈ E(U),
(ii) u = v, {u} ∈ E(U),
(iii) u = v, {u} /∈ E(U), {yu, zu} ∈ E(Yu).

It is well known that any undirected graph G without multiple edges
can be exactly represented as a generalized lexicographic product of the
quotient graph U = G/ν with graphs Yu, u ∈ U, such that | Yu |=| u | for
all u ∈ U .

By AutG we denote the group of all automorphisms of G.
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Theorem 4. [17] Let G = U [(Yu)u∈U ] be a undirected finite graph without
multiple edges, U = G/ν and K be a small category such that ObK =
U, MorK (Yu;Yv) = Map(Yu;Yv). Then

SEndG ∼= AutUwrK .

The isomorphic mapping ξ from SEndG to AutUwrK is defined by
the condition:

fξ = (f∗; f ′), where f∗ : xν 7→ (xf)ν , f
′ : A 7→ f |A

for all f ∈ SEnd G.
Observe that Theorem 4 does not hold for undirected infinite graphs

without multiple edges. Indeed, let N be the set of all positive integers
and let

E = {{n, n+ 1}, {n+ 1, n+ 2}, {n+ 2, n+ 3}|n ∈ 4N} ∪ {{1, 2}, {2, 3}}.

Then the transformation f : n 7→ n+ 4 of the graph (N,E) is a strong
endomorphism such that for the two-element class {1, 3} of (N,E)/ν we
have 1νf

∗ = 5ν , 3νf
∗ = 7ν and 5ν 6= 7ν .

Besides, in [17] it was proved that the monoid of all strong endomor-
phisms of an arbitrary undirected finite graph without multiple edges is a
regular monoid. For arbitrary undirected graphs conditions of a regularity
of the monoid of strong endomorphisms were studied in [19], [20].

4. The group of automorphisms

of an arbitrary disconnected hypergraph

A bijective homomorphism ϕ : H → H ′ from a hypergraph H to a
hypergraph H ′ is called an isomorphism if f−1 is a homomorphism also.
The set of all isomorphisms from H to H ′ is denoted by ISo(H;H ′).

Let H =
⋃
i∈J Ki be an arbitrary hypergraph. Denote by CIS the

small category such that

ObCIS = H/α, MorCIS (Ki;Kj) = ISo(Ki;Kj).

We denote the group of all bijective transformations ζ of the set J
such that ISo(Ki;Kiζ) 6= ∅ for all i ∈ J by TIS(J).

Theorem 5. The group of automorphisms AutH of an arbitrary dis-
connected hypergraph H =

⋃
i∈J Ki is isomorphic to the wreath product
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TIS(J)wrCIS of the permutation group TIS(J) with the category CIS.
Moreover, if H is a finite hypergraph, then

|AutH| =
∑

ζ∈TIS(J)

∏

i∈J

| ISo(Ki;Kiζ) | .

Proof. The proof of this theorem is the same as the proof of Theorem 1.

Let T (LMor0CIS
) be a semigroup which is defined on the set of

morphisms of the category CIS in the same way as T (LMor0C ) is de-
fined on Mor0C (see Sect. 2). Denote by T ∗(LMor0CIS

) the subgroup
of T (LMor0CIS

) which consists of all elements A such that the following
conditions hold:

(i) im(ϕ) 6= im(ψ) for all non-zero different ϕ,ψ ∈ A ;
(ii) for all Ki ∈ H/α there exists a non-zero ϕ ∈ A with im(ϕ) = Ki.
Therefore, for any disconnected hypergraph H we have

AutH ∼= T ∗(LMor0CIS
).

Now we consider other representation of the group of automorphisms
of a disconnected hypergraph which is similar to the description of the
group of automorphisms of a disconnected graph (see, for instance, [21]).

Let α be the relation of a connectivity of vertices on a hypergraph
H, P be a set of all representatives taken on one from every class of an
isomorphism’s relation on H/α and let Y = {i | Ki ∈ P}.

For every i ∈ Y we put
_
i = {j ∈ J | Ki

∼= Kj} and Fi =
⋃

j∈
_
i

Kj .

Thus, H is a disjoint union of hypergraphs Fi, i ∈ Y , and we obtain

Lemma 4. The group of automorphisms AutH of an arbitrary discon-
nected hypergraph H is isomorphic to the direct product

∏
i∈Y AutFi of

groups of automorphisms AutFi of hypergraphs Fi, i ∈ Y .

Proof. Let ϕ be an automorphism of the hypergraph H. It is clear that
ϕ |Fi∈ AutFi for all i ∈ Y . Conversely, if some transformation ϕ of H
isomorphically maps each hypergraph Fi, i ∈ Y, on itself then, obviously,
ϕ is an automorphism of H. Thus, the mapping

ξ : AutH →
∏

i∈Y

AutFi : φ 7→ φξ = (φi), φi = φ|Fi ,

is an isomorphism of groups.
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Let G be an arbitrary group, X be a non-empty set. By ℑ[X] we
denote the symmetric group on X and by Fun(X;G) the direct product
of isomorphic copies Gx of the group G which are indexed by elements of
X. Thus, Fun(X;G) is a group of all functions X → G with the ordinary
composition of functions.

Define on the set ℑ[X] × Fun(X;G) the operation by

(g; f)(g′; f ′) = (gg′; fg
′

f ′),

where xfg = (xg−1)f for all x ∈ X.

Concerning the defined operation ℑ[X] ×Fun(X;G) is a group which
is called the wreath product of the group G with the symmetric group
ℑ[X] (see, e.g., [22]). This group is denoted by GWrℑ[X].

In terms of the wreath product of groups we obtain the description of
groups of automorphisms of disconnected hypergraphs Fi, i ∈ Y .

Lemma 5. For any i ∈ Y the group of automorphisms AutFi of a discon-
nected hypergraph Fi is isomorphic to the wreath product AutKiWrℑ[

_

i ]
of the group of automorphisms AutKi with the symmetric group ℑ[

_

i ].

Proof. Let ϕ be an automorphism of the hypergraph Fi, i ∈ Y . Denote
by δϕ :

_
i →

_
i the bijection which is induced by ϕ and for all λ, µ ∈

_
i

fix isomorphisms f (λ;µ) : Kλ → Kµ such that f (λ;λ), λ ∈
_
i , are identical

automorphisms and the equality f (λ;µ)f (µ;λ) = f (λ;λ) holds.

Further we define the mapping

ξ : AutFi → AutKi Wr ℑ[
_
i ] : ϕ 7→ ϕξ = (δϕ; ϕ̃),

putting jϕ̃ = f (i;jδ−1
ϕ )ϕ|K

jδ
−1
ϕ

f (j;i) for all j ∈
_
i .

Let ϕ,ψ ∈ AutFi, then

ϕξ = (δϕ; ϕ̃), ψξ = (δψ; ψ̃) and (ϕψ)ξ = (δϕψ; ϕ̃ψ).

It is clear that δϕψ = δϕδψ. Besides, ϕξψξ = (δϕδψ; ϕ̃δψ ψ̃),where

j(ϕ̃δψ ψ̃) = jϕ̃δψjψ̃ = (jδ−1
ψ )ϕ̃ jψ̃ =

= (f (i;(jδ−1
ψ

)δ−1
ϕ )ϕ|K

(jδ−1
ψ

)δ−1
ϕ

f (jδ−1
ψ

;i)) (f (i;jδ−1
ψ

)ψ|K
jδ

−1
ψ

f (j;i)) =

= f (i;j(δϕδψ)−1)ϕ|K
j(δϕδψ)−1f

(jδ−1
ψ

;i)f (i;jδ−1
ψ

)ψ|K
jδ

−1
ψ

f (j;i) =
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= f (i;jδ−1
ϕψ

)ϕ|K
jδ

−1
ϕψ

ψ|K
jδ

−1
ψ

f (j;i) = f (i;jδ−1
ϕψ

)(ϕψ)|K
jδ

−1
ϕψ

f (j;i) = jϕ̃ψ

for all j ∈
_
i . Thus, ξ is a homomorphism.

Finally, note that the bijectivity of ξ is checked directly.

From Lemmas 4 and 5 we obtain

Theorem 6. The group of automorphisms AutH of any disconnected
hypergraph H is isomorphic to the direct product

∏
i∈Y AutKiWrℑ[

_

i ]
of wreath products of groups of automorphisms AutKi with symmetric
groups ℑ[

_

i ], i ∈ Y .

From here it follows that it is enough to consider groups of automor-
phisms of connected hypergraphs.

5. The monoid of endomorphisms of relational structures

In this section we show that obtained results for undirect hypergraphs
can be used to describe the monoid of endomorphisms of arbitrary rela-
tional structures and its submonoids.

Recall that a pair (X,R), where R is some set of relations on a
set X, is called a relational structure over X. Examples of relational
structures are arbitrary relational clones, ordered sets, quasi-ordered
sets, graphs, hypergraphs, different algebras of relations etc. The most
important relational structures are those in which each relation from R

is a binary relation. For instance, such structures are so-called coherent
configurations and, in particular, associative schemes, Heming’s schemes,
Johnson’s schemes (see, e.g., [21]).

Let (X,R) be an arbitrary relational structure. A transformation ϕ
of the set X is called an endomorphism of the structure (X,R) if ϕ is
an endomorphism of each relation from R. The set of all endomorphisms
of (X,R) is a semigroup with respect to the ordinary operation of the
composition of transformations. This semigroup is called a monoid of
endomorphisms of the relational structure (X,R) and is denoted by
End (X,R).

The monoid of strong endomorphisms and the group of automorphisms
of an arbitrary relational structure (X,R) are defined by the similar way.
These monoids are denoted by SEnd (X,R) and Aut (X,R) respectively.

Now it remains to define the concept of a connectivity in the relational
structure with a single relation. Take an arbitrary structure (X,R) and
assume that ρ ∈ R is a relation of an arity k. If x = (x1, x2, . . . , xk) ∈ ρ
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then by x∗ we denote the set {x1, x2, . . . , xk}. A sequence of elements
e1, e2, . . . , en of the relation ρ we call a chain if e∗

i ∩ e∗
i+1 6= ∅ for all

i ∈ {1, 2, . . . , n− 1}. Elements a and b of the relational structure (X, ρ)
we call connected if there exists the chain e1, e2, . . . , en ∈ ρ such that
a ∈ e∗

1 and b ∈ e∗
n. A relational structure (X, ρ) we will call connected, if

every pair of elements in the structure is connected, and disconnected, in
other cases. In addition, a connected component is a maximal connected
substructure of (X, ρ).

It is clear that the relation of a connectivity in (X, ρ) is an equivalence
on the set X and connected components are induced substructures formed
by equivalence classes of this relation.

Further, in the same way as for hypergraphs the reduction’s problem
of the description of the semigroup of endomorphisms of an arbitrary
disconnected relational structure (X, ρ) to the description of its connected
components is solved.

Thus, knowing how to construct the monoid End (X, ρ) for all relations
ρ ∈ R we obtain

End (X,R) =
⋂

ρ∈R

End (X, ρ).

The structure of the monoid SEnd (X,R) and the group Aut (X,R)
is described analogously.

Finally, we consider the following example. Let (X,R) be a relational
structure with X = {1, 2, . . . , 7} and R = {ρ1, ρ2, ρ3, }, where ρi, 1 ≤ i ≤
3, is a relation of the arity i+ 1 and

ρ1 = {{3}, {4, 5}, {4, 6}, {4, 7}}, ρ2 = {{1, 2, 3}, {3, 4, 5}, {7}}, ρ3 = {X}.

Here a set from a relation of an arity k means all k-permutations of
elements of the given set. We find elements of the monoid SEnd (X,R).

Obviously, SEnd (X, ρ3) = ℑ(X). Using Theorem 4, we obtain

SEnd (X, ρ1) = {ϕ ∈ ℑ(X)|{1, 2}ϕ ⊆ {1, 2}, 3ϕ = 3 and

4ϕ = 4, {5, 6, 7}ϕ ⊆ {5, 6, 7} or 4ϕ ∈ {5, 6, 7}, {5, 6, 7}ϕ = {4}}.

Similarly as in Theorem 3 we establish that

SEnd (X, ρ2) = {ϕ ∈ ℑ(X)|ϕ|{3,6,7} = i{3,6,7} and ϕ|{1,2} ∈ ℑ[{1, 2}],

ϕ|{4,5} ∈ ℑ[{4, 5}] or ϕ|{1,2} ∈ ℑ[{4, 5}], ϕ|{4,5} ∈ ℑ[{1, 2}]},
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where iA is an identity transformation of a set A. Thus,

⋂

1≤i≤3

SEnd (X, ρi) = SEnd (X, ρ1) ∩ SEnd (X, ρ2) and so,

SEnd (X,R) = {ϕ ∈ ℑ(X)|ϕ|{1,2} ∈ ℑ[{1, 2}], ϕ|X\{1,2} = iX\{1,2}}.

Therefore, SEnd (X,R) ∼= ℑ[Y ], where |Y | = 2.
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