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On one class of partition polynomials
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Abstract. We consider relations between one class of parti-
tion polynomials, parafunctions of triangular matrices (tables), and
linear recurrence relations.

Introduced by Bell in [1] the concept of partition polynomials is widely
used in discrete mathematics. They arise in number theory [2], algebra (the
theory of symmetric polynomials), combinatorics [3] (e.g., an expression for
the sum of divisors of the natural number through unordered partitions),
differentiation of composite functions (Faa di Bruno’s formula) [4] etc.

In this article, one class of partition polynomials is investigated using
the calculus of triangular matrices (see [5], [6]). Their relations to some
linear recurrence equations and parafunctions of triangular matrices are
found. It should be noted that a general approach to partition polynomial
is considered in [6], where it is proved that some parafunction of triangular
matrices corresponds to every partition polynomial.

1. Subsidiary concepts and statements

From now on K is a number field.
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Definition 1. A triangular table of elements K

A =













a11

a21 a22

...
...

. . .

an1 an2 · · · ann













n

(1)

is called a triangular matrix, and the number n the order of A.

Note that a triangular matrix in our definition is not a matrix in its
usual sense because it is a triangular rather than rectangular table of
numbers.

For every element aij of the matrix (1), the (i − j + 1) elements
aik, k = j, . . . , i are called the derived elements of the matrix determined
by the key element aij .

The product of all the derived elements determined by the element
aij is denoted by {aij} and called the factorial product of the key element

aij , i.e.

{aij} =
i
∏

k=j

aik.

Definition 2. If A is a triangular matrix (1), then the paradeterminant
and the parapermanent of the triangular matrix are, accordingly, the
numbers:

ddet(A) =
n
∑

r=1

∑

α1+...+αr=n

(−1)n−r
r
∏

s=1

{aα1+...+αs,α1+...+αs−1+1},

pper(A) =
n
∑

r=1

∑

α1+...+αr=n

r
∏

s=1

{aα1+...+αs,α1+...+αs−1+1},

where summation is performed over the set of natural solutions of the
equation α1 + . . . + αr = n.

Definition 3. For an element aij of a triangular matrix A, the corner

Rij(A) is the triangular matrix that consists of the elements ars of A

whose indices satisfy j 6 s 6 r 6 i.

Obviously, the corner is the triangular matrix of (i − j + 1)–th order,
and aij is its bottom left corner.

We assume below that

ddet (R01(A)) = ddet (Rn,n+1(A)) = pper(R01(A)) = pper(Rn,n+1(A)) = 1.
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Theorem 1. The following identities are valid:

ddet (A) =
n
∑

s=1

(−1)n+s {ans} ·ddet (Rs−1,1),

pper(A) =
n
∑

s=1

{ans} · pper(Rs−1,1).

Remark 1. Essentially Theorem 1 makes it possible to decompose (ex-
pand) parafunctions of a triangular matrices in the elements of the last
row.

2. On one class of partition polynomials

In [6] it is shown that the parafuctions of the matrices of the form

A =









k11 · x1

k21 · x2

x1

k22 · x1

· · · · · · · · · · · · · · · · · · · · ·
kn1 · xn

xn−1

kn2 · xn−1

xn−2

· · · knn · x1









n

=

(

kij ·
xi−j+1

xi−j

)

1≤j≤i≤n

, x0 = 1,

where kij is some fractional rational function of arguments i and j, are
related to partition polynomials.

The following two theorems are valid:

Theorem 2. Let the polynomials yn(x1, x2, . . . , xn), n = 0, 1, . . . be de-

termined by the recurrence equation

yn = x1yn−1 − x2yn−2 + . . . + (−1)n−2xn−1y1 + (−1)n−1anxny0, (2)

where y0 = 1, then the following equalities are valid:

yn = ddet













a1x1

a2
x2

x1
x1

... . . .
. . .

an
xn

xn−1
. . . x2

x1
x1













, (3)

yn =
∑

λ1+2λ2+...+nλn=n

(−1)n−k

(

n
∑

i=1

λiai

)

(k − 1)!

λ1!λ2! · . . . · λn!
xλ1

1 xλ2

2 ·. . .·xλn

n ,

(4)
where k = λ1 + λ2 + . . . + λn.
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Proof. The fact that the paradeterminant (3) complies with the recurrence
relation (2) follows from its expansion in the last row elements.

We prove the equality (4).
Let the theorem be valid for n = 0, 1, . . . , m. We prove its validity for

n = m + 1. Let us find the coefficient at some fixed monomial

x
λ∗

1

1 , x
λ∗

2

2 , . . . , xλ∗

m

m , x
λ∗

m+1

m+1 (5)

in the polynomial ym+1.

The following two cases are possible:
1) λ∗

m+1 = 0. In this case, according to the recurrence relation

ym+1 = x1ym − x2ym−1 + . . . + (−1)m−1xmy1 + (−1)mam+1xm+1y0,

the required coefficient of the monomial (5) can be obtained as the sum
of the coefficients corresponding to the summands

a(i) = (−1)i−1xiym−i+1, i = 1, 2, . . . , m

of this relation. It is obvious that the summands a(i) correlate with the
partition

λ∗
1 +2λ∗

2 + . . .+i(λ∗
i −1)+(i+1)λ∗

i+1 + . . .+(m−i+1)λ∗
m−i+1 = m−i+1

and the partition correlate with the coefficients

(−1)i−1(−1)m−i+1−k−1 (λ∗
1a1 + . . . + (λ∗

i − 1)ai + . . . + λ∗
mam) ×

×
(k − 2)!

λ∗
1! · . . . · (λ∗

i − 1)! · . . . · λ∗
m!

,

where k = λ∗
1 + λ∗

2 + . . . + λ∗
m. Taking into account λ∗

m−i+2 = . . . =
λ∗

m+1 = 0, these coefficients can be written as

(−1)m−A+1 (B − ai))
(A − 2)!

λ∗
1! · . . . · (λ∗

i − 1)! · . . . · λ∗
m!λ∗

m+1!
,

where

A =
m+1
∑

i=1

λ∗
i , B =

m+1
∑

i=1

λ∗
i ai.

Therefore, the required coefficient, for the monomial

x
λ∗

1

1 x
λ∗

2

2 · . . . · xλ∗

m

m x
λ∗

m+1

m+1
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equals

m+1
∑

i=1

(−1)m+1−A(B−ai)λi
(A − 2)!

λ∗
1! · . . . · λ∗

m+1!
= (−1)m+1−AB

(A − 1)!

λ∗
1! · . . . · λ∗

m+1!

2) λ∗
m+1 = 1. It is obvious that in this case

λ∗
1 = λ∗

2 = . . . = λ∗
m = 0,

and the recurrence relation implies that the required coefficient is

(−1)mam+1.

But this coefficient can be represented as

(−1)m+1−AB
(A − 1)!

λ∗
1! · . . . · λ∗

m+1!
,

because A = 1, B = am+1.

The following theorem is proved by analogy.

Theorem 3. Let the polynomials yn(x1, x2, . . . , xn), n = 0, 1, . . . be de-

termined by the recurrence equation

yn = x1yn−1 + x2yn−2 + . . . + xn−1y1 + anxny0,

where y0 = 1, then the following equalities are valid

yn = pper













a1x1

a2
x2

x1
x1

... . . .
. . .

an
xn

xn−1
. . . x2

x1
x1













,

yn =
∑

λ1+2λ2+...+nλn=n

(

n
∑

i=1

λiai

)

(k − 1)!

λ1!λ2! · . . . · λn!
xλ1

1 xλ2

2 · . . . · xλn

n ,

where k = λ1 + λ2 + . . . + λn.

If a1 = a2 = . . . = an = 1 and m = n in Theorem 2, then obtain
Theorem 2.5.3 from [5]. The parapermanents of such matrices appear
in an expression of homogeneous symmetric polynomials through power
sums (cf. [5, pp. 174,338]).
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If ai = i, i = 1, . . . , n, in Theorem 2, then we obtain the expression of
Waring’s formula as the paradeterminant of the triangular matrix

sn = ✂
✂
✂
✂

❇
❇
❇
❇

σ1

2σ2

σ1
σ1

... . . .
. . .

(n − 1)σn−1

σn−2

σn−2

σn−1
. . . σ1

n σn

σn−1

σn−1

σn−2
. . . σ2

σ1
σ1

❇
❇
❇
❇

✂
✂
✂
✂ n

,

here sn are symmetric power sums and σi, i = 1, . . . , n, are elementary
symmetric polynomials.

The case ai = ri + s, where r and s are some rational numbers such
that rs 6= 0, is of particular interest. Then the following statement is
valid.

Corollary 1. The following equalities give the same polynomials:

yn = x1yn−1 − x2yn−2 + . . . + (−1)n−2xn−1y1 + (−1)n−1(rn + s)xny0,

yn = ddet













(r + s)x1

(2r + s)x2

x1
x1

... . . .
. . .

(rn + s) xn

xn−1
. . . x2

x1
x1













,

yn =
∑

λ1+2λ2+...+nλn=n

(−1)n−k (rn + sk)
(k − 1)!

λ1!λ2! · . . . · λn!
xλ1

1 xλ2

2 · . . . · xλn

n ,

where k = λ1 + λ2 + . . . + λn, y0 = 1.

A similar result is valid for the theorem 3.

Corollary 2. The following equalities give the same polynomials:

yn = x1yn−1 + x2yn−2 + . . . + xn−1y1 + (rn + s)xny0,

yn = pper













(r + s)x1

(2r + s)x2

x1
x1

... . . .
. . .

(rn + s) xn

xn−1
. . . x2

x1
x1













,

yn =
∑

λ1+2λ2+...+nλn=n

(rn + sk)
(k − 1)!

λ1!λ2! · . . . · λn!
xλ1

1 xλ2

2 · . . . · xλn

n ,

where k = λ1 + λ2 + . . . + λn, y0 = 1.
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