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Abstract. A convolution is a mapping C of the set Z+ of
positive integers into the set P(Z+) of all subsets of Z+ such that
every member of C(n) is a divisor of n. If for any n, D(n) is the set of
all positive divisors of n , then D is called the Dirichlet’s convolution.
It is well known that Z+ has the structure of a distributive lattice
with respect to the division order. Corresponding to any general
convolution C, one can define a binary relation ≤C on Z+ by ‘
m ≤C n if and only if m ∈ C(n) ’ . A general convolution may not
induce a lattice on Z+ . However most of the convolutions induce
a meet semi lattice structure on Z+ .In this paper we consider a
general meet semi lattice and study it’s ideals and extend these to
(Z+, ≤D) , where D is the Dirichlet’s convolution.

Introduction

A convolution is a mapping C : Z+ −→ P(Z+) such that C(n) is a
set of positive divisors on n, n ∈ C(n) and C(n) =

⋃

m∈C(n)
C(m), for any

n ∈ Z+, where Z+ is the set of all positive integers and P(Z+) is the set
of all subsets of Z+. Popular examples are the Dirichlet’s convolution D
and the Unitary convolution U defined respectively by

D(n) = The set of all positive divisors of n

and U(n)= {d / d|n and (d, n
d
) = 1}

2010 MSC: 06B10,11A99.
Key words and phrases: Partial Order,Lattice,Semi Lattice,Convolution,Ideal.



108 Ideals in (Z+, ≤D)

for any n ∈ Z+. If C is a convolution, then the binary relation ≤C on Z+,
defined by,

m ≤C n if and only if m ∈ C(n) ,

is a partial order on Z+ and is called the partial order induced by C [7]. It
is well known that the Dirichlet’s convolution induces the division order
on Z+ with respect to which Z+ becomes a distributive lattice, where, for
any a, b ∈ Z+, the greatest common divisor(GCD) and the least common
multiple(LCM) of a and b are respectively the greatest lower bound(glb)
and the least upper bound(lub) of a and b . In fact, with respect to the
division order, the lattice Z+ satisfies the infinite join distributive law
given by

a ∨ (
∧

i∈I

bi) =
∧

i∈I

(a ∨ bi)

for any a ∈ Z+ and {bi}i∈I ⊆ Z+. In this paper, we discuss various
aspects of ideals in (Z+, ≤C). Actually a general convolution may not
induce a lattice structure on Z+. However , most of the convolutions
we are considering induce a meet semi lattice structure on Z+. For this
reason, we first consider a general semi lattice and study it’s ideals and
later extend these to (Z+, ≤D).

1. Preliminaries

Let us recall that a partial order on a non-empty set X is defined
as a binary relation ≤ on X which is reflexive (a ≤ a), transitive (a ≤
b, b ≤ c =⇒ a ≤ c) and antisymmetric (a ≤ b, b ≤ a =⇒ a = b) and that
a pair (X, ≤) is called a partially ordered set(poset) if X is a non-empty
set and ≤ is a partial order on X. For any A ⊆ X and x ∈ X, x is called
a lower(upper) bound of A if x ≤ a(respectively a ≤ x) for all a ∈ A.
We have the usual notations of the greatest lower bound(glb) and least
upper bound(lub) of A in X. If A is a finite subset {a1, a2, · · · , an}, the

glb of A(lub of A) is denoted by a1 ∧ a2 ∧ · · · ∧ an or
n
∧

i=1
ai (respectively

by a1 ∨ a2 ∨ · · · ∨ an or
n
∨

i=1
ai). A partially ordered set (X, ≤) is called a

meet semi lattice if a ∧ b (=glb{a, b}) exists for all a and b ∈ X. (X, ≤)
is called a join semi lattice if a ∨ b (=lub{a, b}) exists for all a and
b ∈ X. A poset (X, ≤) is called a lattice if it is both a meet and join semi
lattice. Equivalently, lattice can also be defined as an algebraic system
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(X, ∧, ∨), where ∧ and ∨ are binary operations which are associative,
commutative and idempotent and satisfying the absorption laws, namely
a ∧ (a ∨ b) = a = a ∨ (a ∧ b) for all a, b ∈ X ; in this case the partial
order ≤ on X is such that a ∧ b and a ∨ b are respectively the glb and
lub of {a, b}. The algebraic operations ∧ and ∨ and the partial order ≤
are related by

a = a ∧ b ⇐⇒ a ≤ b ⇐⇒ a ∨ b = b.

Throughout the paper, Z+ and N denote the set of positive integers and
the set of non-negative integers respectively.

Definition 1. A mapping C : Z+ −→ P(Z+) is called a convolution if
the following are satisfied for any n ∈ Z+.

(1) C(n) is a set of positive divisors of n

(2) n ∈ C(n)

(3) C(n) =
⋃

m∈C(n)
C(m).

Definition 2. For any convolution C and m and n ∈ Z+, we define

m ≤ n if and only if m ∈ C(n)

Then ≤C is a partial order on Z+ and is called the partial order induced
by C on Z+. In fact, for any mapping C : Z+ −→ P(Z+) such that each
member of C(n) is a divisor of n, ≤C is a partial order on Z+ if and only
if C is a convolution, as defined above [6],[8].

Definition 3. Let C be a convolution and p a prime number. Define a
relation ≤p

C
on the set N of non-negative integers by

a ≤p
C

b if and only if pa ∈ C(pb)

for any a and b ∈ N .

It can be easily verified that ≤p
C

is a partial order on N , for each
prime p. The following is a direct verification.

Theorem 1. Let C be a convolution.
(1) If (Z+, ≤C) is a meet(join) semilattice, then so is (N , ≤p

C
)

for each prime p.
(2) If (Z+, ≤C) is a lattice, then so is (N , ≤p

C
) for each prime p.
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Now, we have the following examples from [9] in which the convolutions
induce meet semi lattice structures.

Example 1. Let D be the Dirichlet’s convolution defined by

D(n) = The set of all positive divisors of n.

Then ≤D is precisely the division order on Z+ and, for each prime p, ≤p
D

is the usual order on N . (Z+, ≤D) is known to be distributive lattice.

Example 2. Let U(n) be the Unitary convolution defined by

U(n) = {d ∈ D(n) | d and n
d

are relatively prime}.

Then (Z+, ≤U ) is a meet semilattice, but not a join semilattice.

Note that

U(pa) = {1, pa} for any 0 < a ∈ N .

Example 3. Let F2 be the square-free convolution defined by

F2(n) = {n} ∪ {d ∈ D(n) | p2 does not divide n for any prime p}.

Then (Z+, ≤F2
) is a meet semilattice but not a join semilattice. Note

that, for any prime p and a ∈ N ,

F2(pa) =











{1} if a = 0
{1, p} if a = 1
{1, p, pa} if a > 1

Example 4. For any k ∈ Z+, a positive integer d is said to be k-free if
pk does not divide d for any prime p. Let Fk(n) be the set of all k-free
divisors of n together with n. Then (Z+, ≤Fk

) is a meet semilattice but
not a join semi lattice.

2. Ideals in Semi lattices

Recall that most of the convolutions like Dirichlet’s convolution, Uni-
tary convolution and k-free convolution induce meet semi lattice structure
on Z+[9]. For this reason we consider a general meet semi lattice and
study it’s ideals. Throughout this section, unless otherwise stated, by a
semi lattice we mean a meet semi lattice only.
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Definition 4. Let (S, ∧) be a semi lattice. A non-empty subset I of S is
called an ideal of S if the following are satisfied

(1) x ∈ S and x ≤ a ∈ I =⇒ x ∈ I

(2) For any a and b ∈ I, there exists c ∈ I such that a ≤ c and b ≤ c

Theorem 2. Let a and b be elements of a meet semi lattice (S, ∧). Then
the following are equivalent to each other.

(1) There exists smallest ideal of S containing a and b.

(2) The intersection of all ideals of S containing a and b is again an
ideal of S.

(3) a and b have least upper bound in S.

Proof. (1) ⇐⇒ (2) is trivial.

(1) =⇒ (3) : Let I be the smallest ideal of S containing a and b. Then,
there exists x ∈ I such that

a ≤ x and b ≤ x

Therefore x is an upper bound of a and b. If y is any other upper bound
of a and b, then (y] is an ideal of S containing a and b and hence I ⊆ (y].
Since x ∈ I, we get that x ∈ (y] and therefore x ≤ y. Thus x is the least
upper bound of a and b.

(3) =⇒ (1) : Let a ∨ b be the least upper bound of a and b. Then
a ≤ a ∨ b and b ≤ a ∨ b and hence (a ∨ b] is an ideal containing a and b.
If I is any ideal containing a and b, then there exists x ∈ I such that

a ≤ x and b ≤ x and hence a ∨ b ≤ x

so that a ∨ b ∈ I and (a ∨ b] ⊆ I. Thus (a ∨ b] is the smallest ideal of S
containing a and b.

Although the intersection of an arbitrary class of ideals need not be
an ideal, a finite intersection is always an ideal.

Theorem 3. Let (S, ∧) be a semi lattice and I(S) the set of all ideals of
S. Then (I(S), ∩) is a semilattice and a 7→ (a] is an embedding of (S, ∧)
onto (I(S), ∩).

Proof. By the above theorem, it follows that (I(S), ∩) is a semi lat-
tice.Also, for any a and b in S, we have

(a] ∩ (b] = (a ∧ b]

and (a] ⊆ (b] ⇐⇒ a ∈ (b] ⇐⇒ a ≤ b
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Therefore a 7→ (a] is an embedding of S into I(S).

Theorem 4. A semi lattice (S, ∧) is a lattice if and only if I(S) is a
lattice and, in this case, a 7→ (a] is an embedding of the lattice S into the
lattice I(S) .

Proof. It is well known that the set I(S) of ideals of a lattice (S, ∧, ∨) is
again a lattice in which,

I ∧ J = I ∩ J
and I ∨ J = { x ∈ S | x ≤ a ∧ b, for some a ∈ I and b ∈ J }

for any ideals I and J , in this case,

(a] ∨ (b] = (a ∨ b]

for any a and b in S, so that a 7→ (a] is an embedding of lattices.

Conversely, suppose that I(S) is a lattice. Let a and b ∈ S and I be
the least upper bound of (a] and (b] in I(S). Then I is the smallest ideal
containing a and b and hence by Theorem 3.3, a ∨ b exists in S. Therefore
S is a lattice.

For a lattice (L, ∧, ∨), any ideal of the semi lattice (L, ∧) turns out
to be the usual ideal of the lattice (L, ∧, ∨).

3. Ideals in (Z+
, ≤D)

Now we shall turn our attention to the particular case of the lattice
structure on Z+ induced by the division ordering / and study the ideals
of Z+. The division ordering is precisely the partial ordering ≤D induced
by the Dirichlet’s convolution D.

First we observe that θ : (Z+, /) −→ (
∑

P

N , ≤) is an order isomor-

phism where θ is defined by
θ(a)(p) =The largest n in N such that pn divides a,for any a ∈ Z+ and p ∈
P and

∑

P

N = { f : P −→ N | f(p) = 0 for all but finite p ′s }. Here

P stands for the set of primes and N stands for the set of non-negative
integers.

Definition 5. Adjoin an external element ∞ to N and extend the usual
ordering ≤ on N to N ∪ {∞} by defining a < ∞ for all a ∈ N . We shall
denote N ∪ {∞} together with this extended usual order by N ∞ .
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Theorem 5. Let α : P −→ N ∞ be a mapping and define

Iα = { n ∈ Z+ | θ(n)(p) ≤ α(p) for all p ∈ P}

Then Iα is an ideal of (Z+, /) and every ideal of (Z+, /) is of the form
Iα for some mapping α : P −→ N ∞

Proof. Since no prime divides the integer 1, we get that
θ(1)(p) = 0 ≤ α(p) for all p ∈ P and hence 1 ∈ Iα. Therefore Iα is a
non-empty subset of Z+.

m and n ∈ Iα =⇒ θ(m)(p) ≤ α(p) and θ(n)(p) ≤ α(p) for all p ∈ P
=⇒ θ(m ∨ n)(p) = Max { θ(m)(p), θ(n)(p) } ≤ α(p)

for all p ∈ P

=⇒ m ∨ n ∈ Iα

and

m ≤D n ∈ Iα =⇒ θ(m)(p) ≤ θ(n)(p) ≤ α(p) for all p ∈ P
=⇒ θ(m)(p) ≤ α(p) for all p ∈ P

=⇒ m ∈ Iα.
Thus Iα is an ideal of (Z+, /).

Conversely suppose that I is any ideal of (Z+, /). Define α : P −→ N ∞

by

α(p) = Sup{ θ(n)(p) | n ∈ I } for any p ∈ P

Note that α(p) is either a non-negative integer or ∞, for any p ∈ P.
Therefore α is a mapping of P into N ∞.

n ∈ I =⇒ θ(n)(p) ≤ α(p) for all p ∈ P

=⇒ n ∈ Iα

Therefore I ⊆ Iα.

On the other hand, suppose n ∈ Iα. Then θ(n)(p) ≤ α(p) for all
p ∈ P. Since θ(n) ∈

∑

P

N , |θ(n)| is finite. If |θ(n)| = φ, then n = 1 ∈ I.

Suppose |θ(n)| is non-empty. Let |θ(n)| = { p1, p2 · · · , pr }. Then
θ(n)(p) = 0 for all p 6= pi, 1 ≤ i ≤ r and θ(n)(pi) ∈ N . Now, for
each 1 ≤ i ≤ r, θ(n)(pi) ≤ α(pi) = Sup{ θ(m)(pi) | m ∈ I } and
hence there exists mi ∈ I such that θ(n)(pi) ≤ θ(m)(pi). Now, put
m = m1 ∨ m2 ∨ · · · ∨ mr, then m ∈ I and
θ(n)(pi) ≤ Max.{ θ(m1)(pi), · · · , θ(mi)(pi) } = θ(m)(pi) for all 1 ≤ i ≤ r.
Also, since θ(n)(p) = 0 for all p 6= pi, we get that θ(n)(p) ≤ θ(m)(p) for
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all p ∈ P so that n ≤D m ∈ I and therefore n ∈ I. Therefore Iα ⊆ I.
Thus I = Iα.

Note that, if α is the constant map 0 defined by α(p) = 0 for all p ∈ P,
then Iα = {1} and that , if α is the constant map ∞, then Iα = Z+.

Definition 6. For any mappings α and β from P into N ∞ , define

α ≤ β if and only if α(p) ≤ β(p) for all p ∈ P.

Thus ≤ is a partial order on (N ∞)P .

Theorem 6. The map α 7→ Iα is an order isomorphism of the poset
((N ∞)P , ≤), onto the poset (I(Z+), ⊆) of all ideals of (Z+, /).

Proof.
Let α and β : P 7→ N ∞ be any mappings. Clearly, α ≤ β ⇒ Iα ⊆ Iβ .

On the other hand, suppose that Iα ⊆ Iβ . We shall prove that α(p) ≤
β(p) for all p ∈ P so that α ≤ β. To prove this, let us fix p ∈ P. If
β(p) = ∞ or α(p) = 0, trivially α(p) ≤ β(p). Therefore, we can assume
that β(p) < ∞ and α(p) > 0.

Consider n = pβ(p)+1. Then

θ(n)(p) = β(p) + 1 � β(p).

and hence n /∈ Iβ . Since Iα ⊆ Iβ , n /∈ Iα and therefore θ(n)(q) � α(q) for
some q ∈ P. But θ(n)(q) = 0 for all q 6= p. Thus

β(p) + 1 = θ(n)(p) � α(p)

α(p) < β(p) + 1.

Therefore α(p) ≤ β(p). This is true for all p ∈ P. Thus α ≤ β. Also α 7→ Iα

is a surjection. Thus α 7→ Iα is an order isomorphism of ((N ∞)P , ≤),
onto (I(Z+), ⊆).

Corollary 1. For any α and β : P → N ∞,

Iα ∩ Iβ = Iα ∧ β.

and Iα ∪ Iβ = Iα ∨ β.

where α ∧ β and α ∨ β are point-wise g.l.b and l.u.b of α and β.
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