Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 16 (2013). Number 1. pp. 107 — 115

© Journal “Algebra and Discrete Mathematics”

Ideals in (Z*,<p)

Sankar Sagi

Communicated by V. V. Kirichenko

ABSTRACT. A convolution is a mapping C of the set Z* of
positive integers into the set P(Z7T) of all subsets of ZT such that
every member of C(n) is a divisor of n. If for any n, D(n) is the set of
all positive divisors of n , then D is called the Dirichlet’s convolution.
It is well known that ZT has the structure of a distributive lattice
with respect to the division order. Corresponding to any general
convolution C, one can define a binary relation <¢ on Z* by °
m <¢ n if and only if m € C(n) > . A general convolution may not
induce a lattice on ZT . However most of the convolutions induce
a meet semi lattice structure on Z* .In this paper we consider a
general meet semi lattice and study it’s ideals and extend these to
(Z%,<p) , where D is the Dirichlet’s convolution.

Introduction

A convolution is a mapping C : Z+ — P(Z%) such that C(n) is a

set of positive divisors on n, n € C(n) and C(n) = | C(m), for any
meC(n)

n € Z*, where Z7 is the set of all positive integers and P(Z%) is the set
of all subsets of Z*. Popular examples are the Dirichlet’s convolution D
and the Unitary convolution U defined respectively by

D(n) = The set of all positive divisors of n

and U(n)= {d / d|n and (d, %) = 1}
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for any n € ZT. If C is a convolution, then the binary relation <¢ on Z¥,
defined by,

m <¢ n if and only if m € C(n) ,

is a partial order on Z7 and is called the partial order induced by C [7]. It
is well known that the Dirichlet’s convolution induces the division order
on ZT with respect to which Z* becomes a distributive lattice, where, for
any a,b € ZT the greatest common divisor(GCD) and the least common
multiple(LCM) of a and b are respectively the greatest lower bound(glb)
and the least upper bound(lub) of @ and b . In fact, with respect to the
division order, the lattice ZT satisfies the infinite join distributive law
given by

CL\/(/\ bz) = /\(a\/bi)
il icl
for any a € Z* and {b;};c; € ZT. In this paper, we discuss various
aspects of ideals in (Z1,<¢). Actually a general convolution may not
induce a lattice structure on Z*. However , most of the convolutions
we are considering induce a meet semi lattice structure on Z*. For this
reason, we first consider a general semi lattice and study it’s ideals and
later extend these to (27, <p).

1. Preliminaries

Let us recall that a partial order on a non-empty set X is defined
as a binary relation < on X which is reflexive (a < a), transitive (a <
b,b < ¢ = a < ¢) and antisymmetric (a < b,b < a = a = b) and that
a pair (X, <) is called a partially ordered set(poset) if X is a non-empty
set and < is a partial order on X. For any A C X and xz € X, x is called
a lower(upper) bound of A if x < a(respectively a < z) for all a € A.
We have the usual notations of the greatest lower bound(glb) and least
upper bound(lub) of A in X. If A is a finite subset {a1,as, - ,ay}, the
glb of A(lub of A) is denoted by a1 Aaz A--- A ay, or 7\ a; (respectively

i=1

by a1 VaaV---Vay, or \7} a;). A partially ordered set (X, <) is called a
i=1

meet semi lattice if a A b (=glb{a,b}) exists for all @ and b € X. (X, <)

is called a join semi lattice if a V b (=lub{a,b}) exists for all a and

be X. A poset (X, <) is called a lattice if it is both a meet and join semi

lattice. Equivalently, lattice can also be defined as an algebraic system
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(X, A, V), where A and V are binary operations which are associative,
commutative and idempotent and satisfying the absorption laws, namely
aA(aVb)=a=aV(aADb) for all a,b € X ; in this case the partial
order < on X is such that a A b and a V b are respectively the glb and
lub of {a,b}. The algebraic operations A and V and the partial order <
are related by

a=alANb < a<b <= aVb=0b.

Throughout the paper, Z% and A denote the set of positive integers and
the set of non-negative integers respectively.

Definition 1. A mapping C : Z+ — P(Z7) is called a convolution if
the following are satisfied for any n € Z+.

(1) C(n) is a set of positive divisors of n
(2) neC(n)
B)Cn)= U C(m).

meC(n)
Definition 2. For any convolution C and m and n € ZT, we define
m < n if and only if m € C(n)

Then < is a partial order on Z7 and is called the partial order induced
by C on Z*. In fact, for any mapping C : Z* — P(Z1) such that each
member of C(n) is a divisor of n, <¢ is a partial order on Z* if and only
if C is a convolution, as defined above [6],[8].

Definition 3. Let C be a convolution and p a prime number. Define a
relation <{, on the set N of non-negative integers by

a <% b if and only if p® € C(p?)
for any a and b € V.

It can be easily verified that < is a partial order on N, for each
prime p. The following is a direct verification.

Theorem 1. Let C be a convolution.
(1) If (27, <¢) is a meet(join) semilattice, then so is (N, <p)
for each prime p.
(2) If (27, <c) is a lattice, then so is (N, <) for each prime p.
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Now, we have the following examples from [9] in which the convolutions
induce meet semi lattice structures.

Example 1. Let D be the Dirichlet’s convolution defined by
D(n) = The set of all positive divisors of n.

Then <p is precisely the division order on Z* and, for each prime p, <%,
is the usual order on N. (Z7,<p) is known to be distributive lattice.

Example 2. Let U(n) be the Unitary convolution defined by
U(n) = {de D(n) | d and % are relatively prime}.

Then (Z7,<y) is a meet semilattice, but not a join semilattice.
Note that

U(p®) ={1,p"} for any 0 < a € N.
Example 3. Let F5 be the square-free convolution defined by
Fy(n) ={n}u{d e D(n) | p* does not divide n for any prime p}.

Then (£7,<p,) is a meet semilattice but not a join semilattice. Note
that, for any prime p and a € N,

{1} if a=0
By(pt)=4q {Lp} if a=1
{Lpp}if a>1

Example 4. For any k € Z7, a positive integer d is said to be k-free if
p¥ does not divide d for any prime p. Let Fj(n) be the set of all k-free
divisors of n together with n. Then (Z1,<p,) is a meet semilattice but
not a join semi lattice.

2. Ideals in Semi lattices

Recall that most of the convolutions like Dirichlet’s convolution, Uni-
tary convolution and k-free convolution induce meet semi lattice structure
on Z*[9]. For this reason we consider a general meet semi lattice and
study it’s ideals. Throughout this section, unless otherwise stated, by a
semi lattice we mean a meet semi lattice only.
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Definition 4. Let (S, A) be a semi lattice. A non-empty subset I of S is
called an ideal of S if the following are satisfied
(I)zeSandez<ael = zel
(2) For any a and b € I, there exists ¢ € I such that a <cand b <c¢

Theorem 2. Let a and b be elements of a meet semi lattice (S, N). Then
the following are equivalent to each other.

(1) There exists smallest ideal of S containing a and b.

(2) The intersection of all ideals of S containing a and b is again an
ideal of S.

(3) a and b have least upper bound in S.

Proof. (1) <= (2) is trivial.
(1) = (3) : Let I be the smallest ideal of S containing a and b. Then,
there exists € I such that

a<z and b<zx

Therefore x is an upper bound of a and b. If y is any other upper bound
of a and b, then (y] is an ideal of S containing a and b and hence I C (y|.
Since x € I, we get that x € (y| and therefore x < y. Thus z is the least
upper bound of a and b.

(3) = (1) : Let a V b be the least upper bound of a and b. Then
a<aVbandb<aVband hence (aV b is an ideal containing a and b.
If I is any ideal containing a and b, then there exists x € I such that

a<xz and b<z and hence aVb<zx

so that aVb € I and (aV b] C I. Thus (a V b] is the smallest ideal of S
containing a and b. O

Although the intersection of an arbitrary class of ideals need not be
an ideal, a finite intersection is always an ideal.

Theorem 3. Let (S, A) be a semi lattice and Z(S) the set of all ideals of
S. Then (Z(S),N) is a semilattice and a — (a] is an embedding of (S, N)
onto (Z(S),N).

Proof. By the above theorem, it follows that (Z(S),N) is a semi lat-
tice.Also, for any a and b in S, we have

(a]n(b] = (anb]

and (a] C (b <= a€(b] < a<b
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Therefore a +— (a] is an embedding of S into Z(5). O

Theorem 4. A semi lattice (S, M) is a lattice if and only if Z(S) is a
lattice and, in this case, a — (a] is an embedding of the lattice S into the
lattice Z(S) .

Proof. Tt is well known that the set Z(.S) of ideals of a lattice (S, A, V) is
again a lattice in which,

INT =1InJ
and IVJ = {zeS | <aAb, forsomeaclandbe J}

for any ideals I and J, in this case,
(a] v (b] = (aV]

for any a and b in S, so that a — (a] is an embedding of lattices.
Conversely, suppose that Z(S) is a lattice. Let a and b € S and I be
the least upper bound of (a] and (b] in Z(S). Then I is the smallest ideal
containing a and b and hence by Theorem 3.3, a V b exists in S. Therefore
S is a lattice. O

For a lattice (L, A, V), any ideal of the semi lattice (L, A) turns out
to be the usual ideal of the lattice (L, A, V).

3. Ideals in (Z7,<p)

Now we shall turn our attention to the particular case of the lattice
structure on Z1 induced by the division ordering / and study the ideals
of Z*. The division ordering is precisely the partial ordering <p induced
by the Dirichlet’s convolution D.

First we observe that 0 : (Z1,/) — (X N, <) is an order isomor-
P

phism where 0 is defined by

6(a)(p) =The largest n in N such that p" divides a,forany a € Z* and p €

Pand > N={f:P— N | f(p) =0 for all but finite p 's }. Here
P

P stands for the set of primes and N stands for the set of non-negative
integers.

Definition 5. Adjoin an external element oo to N and extend the usual
ordering < on N to N U {oo} by defining a < oo for all a € N'. We shall
denote N U {o0} together with this extended usual order by N> .
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Theorem 5. Let a: P — N be a mapping and define
I, = {neZt | 0(n)(p) < a(p) forall pe P}

Then I is an ideal of (27, /) and every ideal of (27, /) is of the form
I, for some mapping o : P — N

Proof. Since no prime divides the integer 1, we get that
0(1)(p) = 0 < a(p) for all p € P and hence 1 € I,. Therefore I, is a
non-empty subset of ZT.

mandn € I, = 6(m)(p) <a(p)and O(n)(p) < a(p) for all p € P
— 0(mVn)(p) = Max { 6(m)(p),0(n)(p) } < ap)
forallp e P

— mVnEl,
and

m<pnel, = 0(m)(p) < 0(n)(p) < a(p) forallpe P
= 0O(m)(p) < a(p) forallpeP
= me l,.

Thus I, is an ideal of (Z7, /).
Conversely suppose that I is any ideal of (2T, /). Define o : P — N>
by

a(p) = Sup{ 0(n)(p) | nel} forany peP

Note that a(p) is either a non-negative integer or oo, for any p € P.
Therefore « is a mapping of P into N'*°.

nel = 60(n)(p) <a(p) forallpe P

— n€l,
Therefore I C I,.
On the other hand, suppose n € I,. Then 0(n)(p) < a(p) for all
p € P. Since O(n) € > N, |6(n)| is finite. If [#(n)| = ¢, thenn =1 € I.
P

Suppose |f(n)| is non-empty. Let |6(n)| = { p1,p2---,pr }. Then
O(n)(p) = 0 for all p # p;, 1 < i < r and 6(n)(p;) € N. Now, for
each 1 < i <r, 0(n)(p;) < a(p;)) = Sup{ 8(m)(p;) | m € I } and
hence there exists m; € I such that 6(n)(p;) < 6(m)(p;). Now, put
m=miVmeV---Vm,, then m € I and
0(n)(p;) < Max.{ 0(m1)(pi),---,0(mi)(pi) } = 6(m)(p;) forall 1 <i <r.
Also, since 6(n)(p) = 0 for all p # p;, we get that 6(n)(p) < 8(m)(p) for
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all p € P so that n <p m € I and therefore n € I. Therefore I, C I.
Thus I = 1,. ]

Note that, if « is the constant map 0 defined by a(p) = 0 for all p € P,
then I, = {1} and that , if « is the constant map 0, then I, = Z7.

Definition 6. For any mappings o and 3 from P into N'*° , define
a<f ifandonlyif «p) < pB(p) forall p € P.
Thus < is a partial order on (N>°)”.

Theorem 6. The map o — I, is an order isomorphism of the poset
(NP, <), onto the poset (Z(Z7T),C) of all ideals of (ZF, /).

Proof.
Let a and 8 : P — N be any mappings. Clearly, o« < 3 = I, C I3.
On the other hand, suppose that I, C Ig. We shall prove that a(p) <
B(p) for all p € P so that « < . To prove this, let us fix p € P. If
B(p) = oo or ap) = 0, trivially a(p) < B(p). Therefore, we can assume
that 8(p) < oo and «a(p) > 0.
Consider n = p?®+1 Then

0(n)(p) = B(p) +1 £ B(p).

and hence n ¢ Ig. Since I, C Ig, n ¢ I, and therefore 6(n)(q) £ a(q) for
some ¢ € P. But 6(n)(q) = 0 for all ¢ # p. Thus

B(p) +1=0(n)(p) £ alp)
a(p) < B(p) + 1.

Therefore a(p) < (p). This is true forallp € P. Thus o < . Also a — I,
is a surjection. Thus a + I, is an order isomorphism of ((N°*°)7, <),
onto (Z(Z1), Q). O

Corollary 1. For any o and 3 : P — N,
1, ﬁ[g =1, A 8-
andIaU15:]avg.

where a A B and oV B are point-wise g.1.b and L.u.b of o and .
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