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Abstract. For a commutative ring R and an ideal I of R,
the ideal-based zero-divisor graph is the undirected graph ΓI(R)
with vertices {x ∈ R−I : xy ∈ I for some y ∈ R−I}, where distinct
vertices x and y are adjacent if and only if xy ∈ I. In this paper,
we discuss the nature of the edges of ΓI(R). We also find the edge
chromatic number for the graph ΓI(R).

Introduction

Algebraic combinatorics is an area of mathematics that employs meth-
ods of abstract algebra in various combinatorial contexts and vice versa.
Associating a graph with an algebraic structure is a research study that
has attracted considerable attention. In fact, the study aims at exposing
the relationship between algebra and graph theory and advancing appli-
cations of one with the other. Let R be a commutative ring with identity
and I be a proper ideal of R. Let Z(R) be the set of zero-divisors of R.
The zero-divisor graph of R, denoted by Γ(R), is an undirected graph
whose vertices are the nonzero zero-divisors of R with two distinct vertices
x and y joined by an edge if and only if xy = 0. Beck [7] introduced the
concept of a zero-divisor graph of a commutative ring, but this work was
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mostly concerned with colorings of rings. The zero-divisor graph helps us
to study the algebraic properties of rings using graph-theoretical tools.
We can translate some algebraic properties of a ring to graph theory
language and then the geometric properties of graphs help us to explore
some interesting results in the algebraic structures of rings. The above
definition first appeared in Anderson and Livingston [4], which contains
several fundamental results concerning Γ(R). This definition, unlike the
earlier work of Anderson and Naseer [5] and Beck [7], does not take zero
to be a vertex of Γ(R). The zero-divisor graph has been extended to other
algebraic structures in DeMeyer et al.[8] and Redmond [13].

Let R be a commutative ring and let I be an ideal of R. The ideal-
based zero-divisor graph is an undirected graph ΓI(R) with vertices
{x ∈ R − I : xy ∈ I for some y ∈ R − I}, where distinct vertices x and
y are adjacent if and only if xy ∈ I. It was introduced by S. P. Redmond
[14]. In [14], he found the values of parameters such as connectivity,
clique, diameter, girth, etc. in relation with the zero-divisor graph. In
this paper, we find the values of parameters such as vertex chromatic
number, minimum and maximum degree of ΓI(R). In section 2, we give
the definitions and theorems from [14] which are needed for subsequent
sections. In section 3, we discusses the number and the nature of the
edges of ΓI(R). In section 4, we determine the edge chromatic number of
the graph ΓI(R).

A ring R is said to be decomposable if R can be written as R1 × R2,
where R1 and R2 are rings; otherwise, R is said to be indecomposable.
If X is either an element or a subset of R, then Ann(X) denotes the
annihilator of X in R. For any subset X of R, we define X∗ = X − {0},
and |X| denotes the number of elements in X.

For a graph G, the degree of a vertex v in G is the number of edges
incident with v. Denote the degree of the vertex v in ΓI(R) by deg(v) and
in Γ(R/I) by degΓ(v). We denote the minimum and maximum degree of
vertices of G by δ(G) and ∆(G), respectively. A graph G is regular if the
degrees of all vertices of G are the same. We denote the complete graph
with n vertices and complete bipartite graph with two parts of sizes m
and n by Kn and Km,n, respectively. The number of vertices in the set
X is denoted by |X|.

A proper k-edge coloring of a graph G is an assignment of k colors
{1, . . . , k} to the edges of G such that no two adjacent edges have the same
color. The edge chromatic number χ

′

(G) of a graph G is the minimum k
for which G has a proper k-edge coloring. A graph G is said to be edge
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critical if G is connected, χ′(G) = ∆(G) + 1, and for any edge e of G, we
have χ′(G − {e}) < χ′(G).

1. Preliminaries

Definition 1 ([14]). Let R be a commutative ring and let I be an ideal
of R. The ideal based zero-divisor graph is the undirected graph ΓI(R)
with vertices {x ∈ R − I : xy ∈ I for some y ∈ R − I}, where distinct
vertices x and y are adjacent if and only if xy ∈ I.

Example 1. For R ∼= Z16 × Z2 and I = 0 × Z2, ΓI(R) is shown in
Figure 1.
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Figure 1.

Remark 1 ([14]). Let I be an ideal of a ring R. Then ΓI(R) is a graph
on a finite number of vertices if and only if either R is finite or I is a
prime ideal. Moreover, if Γ(R/I) is a graph on N vertices, then ΓI(R) is
a graph on N |I| vertices.

Theorem 1 ([14]). Let I be an ideal of a ring R, and let x, y ∈ R − I.
Then

(a) if x + I is adjacent to y + I in Γ(R/I), then x is adjacent to y in
ΓI(R).

(b) if x is adjacent to y in ΓI(R) and x + I 6= y + I, then x + I is
adjacent to y + I in Γ(R/I).

(c) if x is adjacent to y in ΓI(R) and x + I = y + I, then x2, y2 ∈ I.

Corollary 1 ([14]). If x and y are (distinct) adjacent vertices in ΓI(R),
then all (distinct) elements of x + I and y + I are adjacent in ΓI(R). If
x2 ∈ I, then all the distinct elements of x + I are adjacent in ΓI(R).
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Remark 2 ([14]). Clearly there is a strong relationship between Γ(R/I)
and ΓI(R). Let I be an ideal of a ring R. One can verify that the following
method can be used to construct a graph ΓI(R). Let {aλ}λ∈Λ ⊆ R be
a set of coset representatives of the vertices of Γ(R/I). For each i ∈ I,
define a graph Gi with vertices {aλ + i : λ ∈ Λ}, where edges are defined
by the relationship aλ + i is adjacent to aβ + i in Gi if and only if aλ + I
is adjacent to aβ + I in Γ(R/I) (i.e., aλaβ ∈ I).

Define the graph G to have as its vertex set V =
⋃

i∈I
Gi. We define

the edge set of G to be:
(1) all edges contained in Gi for each i ∈ I
(2) for distinct λ, β ∈ Λ and for any i, j ∈ I, aλ + i is adjacent to aβ + j

if and only if aλ + I is adjacent to aβ + I in Γ(R/I) (i.e.,aλaβ ∈ I)
(3) for λ ∈ Λ and distinct i, j ∈ I, aλ + i is adjacent to aλ + j if and

only if a2
λ ∈ I.

Definition 2 ([14]). Using the notation as in the above construction, we
call the subset aλ + I a column of ΓI(R). If a2

λ ∈ I, then we call aλ + I a
connected column of ΓI(R).

Remark 3. Denote the vertices of Γ(R/I) by V (Γ(R/I)) = {ai + I :
i ∈ Λ}. From Remark 2, we can denote the vertex set of ΓI(R) as
V (ΓI(R)) = {ai + h : i ∈ Λ, h ∈ I}.

Theorem 2 (Vizing’s Theorem [16, p.16]). If G is a simple graph, then
either χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1.

Theorem 3 (Vizing’s Adjacency Lemma [16, p.24]). If G is a critical
graph, then G has at least ∆(G) − δ(G) + 2 vertices of maximum degree.

Theorem 4 ([9]). The sum of the degrees of the points of a graph G is
twice the number of lines.

Theorem 5 (Konig’s Theorem [16, p. 11]). For any bipartite graph G,
we have χ′(G) = ∆(G).

Theorem 6 ([14, Theorem 5.7]). Let I be a nonzero ideal of a ring R.
Then ΓI(R) is bipartite if and only if either (a) gr(ΓI(R)) = ∞ or (b)
gr(ΓI(R)) = 4 and Γ(R/I)) is bipartite.

Theorem 7 ([4, Theorem 2.8]). Let R be a commutative ring. Then Γ(R)
is a complete graph if and only if either R ∼= Z2 × Z2 or xy = 0 for every
x, y ∈ Z(R). In particular, if R is a reduced commutative ring and not a
field, then Γ(R) is a complete graph if and only if R ∼= Z2 × Z2.
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Remark 4. We note that if G is a graph and χ′(G) = ∆(G) + 1, then
there exist a subgraph of G say G1, such that χ′(G1) = ∆(G) + 1 and
for any edge e of G1 we have χ′(G − {e}) = ∆(G). Clearly G1 has a
connected subgraph, say H, such that χ′(H) = ∆(G) + 1. The graph H
is a critical graph with maximum degree ∆(G). If x is a vertex of H
with degree ∆(G), then by Vizing’s Adjacency Lemma, H has at least
∆(G) − degH(v) + 2 vertices of degree ∆(G), for any vertex v which is
adjacent to x. Therefore if G is a graph such that for every vertex u of
maximum degree there exist an edge uv such that ∆(G) − deg(v) + 2 is
more than the number of vertices with maximum degree in G, then by
the above argument and Vizing’s Theorem, we have χ′(G) = ∆(G).

Remark 5 ([2]). Assume that R = R1 × R2 × · · · × Rn is a finite
decomposable ring. We note that if x = (x1, x2, . . . , xn) has a maximum
degree in Γ(R), then x has exactly one non-zero component, say x1. Now
suppose that R1 is a local ring. We consider two cases: If R1 is a field,
then ∆(Γ(R)) = deg(x) = |R2| · · · |Rn|−1. If R1 is not field, then we have
x1 ∈ Ann(Z(R1))∗ and ∆(Γ(R)) = deg(x) = |Z(R1)||R2| · · · |Rn| − 2.

Theorem 8 ([10, Lemma 4.1]). Let I be an ideal of a ring R. Then in
ΓI(R),

deg(a) =

{

|I| degΓ(a + I) if a2 /∈ I.

|I| degΓ(a + I) + |I| − 1 if a2 ∈ I.

Theorem 9 ([10, Lemma 4.3]). Let I 6= (0) be an ideal of a ring R which
is not prime. Then

∆(ΓI(R)) =



































|I| − 1 if Γ(R/I) has a single vertex,

|I|∆(Γ(R/I)) + |I| − 1 if ΓI(R) has a connected

column a + I with

degΓ(a + I) = ∆(Γ(R/I)),

|I|∆(Γ(R/I)) otherwise.

2. Edge property of ΓI(R)

In this section, we discuss the number and nature of the edges of
ΓI(R).

Theorem 10. Let I be an ideal of a ring R and suppose ΓI(R) has k
connected columns. Then |E(ΓI(R))| = |I|2|E(Γ(R/I))| + k

(|I|
2

)

.
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Proof. Let a + I be a vertex of Γ(R/I). Then by Theorem 8, in ΓI(R),
deg(a + i) = deg(a + j), for all i, j ∈ I. Now

∑

a,i

deg(a + i) =
∑

a2 /∈I, i∈I

deg(a + i) +
∑

a2∈I, i∈I

deg(a + i)

= |I|[
∑

a2 /∈I

deg(a + i) +
∑

a2∈I

deg(a + i)]

= |I|[
∑

a2 /∈I

|I| degΓ(a + I) +
∑

a2∈I

(|I| degΓ(a + I) + |I| − 1)]

= |I|2
∑

a2 /∈I

degΓ(a + I) + |I|2
∑

a2∈I

degΓ(a + I) + |I|
∑

a2∈I

(|I| − 1)

= |I|2
∑

a+I∈V (Γ(R/I)

degΓ(a + I) + k|I|(|I| − 1)

By Theorem 4,

|E(ΓI(R))| =

∑

a∈V (ΓI(R))
deg(a)

2
=

∑

a,i
deg(a + i)

2

=

|I|2
∑

a+I∈V (Γ(R/I))
degΓ(a + I) + k|I|(|I| − 1)

2
.

Thus |E(ΓI(R))| = |I|2|E(Γ(R/I))| + k
(|I|

2

)

.

Theorem 11. Let I be an ideal of a ring R such that R/I is a finite ring
which is not a field. Suppose ΓI(R) has k connected columns. Then ΓI(R)
has an even number of edges if and only if one of the following holds:

(i) |I| ∈ 4Z.
(ii) |I| = 4m + 1, m ∈ Z and Γ(R/I) has even number of edges.
(iii) |I| ∈ 2Z − 4Z and k is even.
(iv) |I| = 2m + 1 (m ∈ Z and m is odd), Γ(R/I) has even number of

edges and k is even.
(v) |I| = 2m + 1 (m ∈ Z and m is odd), Γ(R/I) has odd number of

edges and k is odd.

Proof. Assume that ΓI(R) is a graph with even number of edges. Then
|E(ΓI(R))| is even. By Theorem 10, |I|2|E(Γ(R/I))| + k

(|I|
2

)

is even.

Case 1: k
(|I|

2

)

is even. In this case |I|2|E(Γ(R/I))| is even. If k is odd,
then |I| = 4m or 4m + 1. Suppose |I| = 4m. Then (i) holds. Suppose
not. Then |I| = 4m + 1. Since |I|2|E(Γ(R/I))| is also even, |E(Γ(R/I))|
is even and so (ii) holds.
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If k is even and
(|I|

2

)

is odd, then |I| = 2m or 2m+1. Suppose |I| = 2m.
Then (iii) holds. Suppose not. Then |I| = 2m + 1. Since |I|2|E(Γ(R/I))|
is also even, |E(Γ(R/I))| is even and so (iv) holds.

If k is even and
(|I|

2

)

is even, then |I| = 4m or 4m + 1. If |I| = 4m,
then (i) holds. If not, then |E(Γ(R/I))| is even, since |I|2|E(Γ(R/I))| is
also even. So (ii) holds.

Case 2: k
(|I|

2

)

is odd. In this case, |I|2|E(Γ(R/I))| is odd. Now k and
(|I|

2

)

are odd. Since |I|2|E(Γ(R/I))| is odd, |I| = 2m + 1 and |E(Γ(R/I))| is
odd. Thus (vii) is true.

Converse is obvious.

3. Edge chromatic number

In this section, we determine the edge chromatic number of ΓI(R)
when R/I is a finite local ring or R/I is a finite decomposable ring.

Theorem 12. Let I be an ideal of a ring R. If ΓI(R) is a graph with
V (Γ(R/I)) = Ann(Z(R/I)∗), then

χ
′

(ΓI(R)) =

{

∆(ΓI(R)) + 1 if |V (Γ(R/I))| is odd and |I| is odd,

∆(ΓI(R)) otherwise.

Proof. Since V (Γ(R/I)) = Ann(Z(R/I)∗), Γ(R/I) is a complete graph
and a2 ∈ I for all a + I ∈ V (ΓI(R)). Also, |V (ΓI(R))| = |I||Γ(R/I)|.
Hence the result follows.

If R/I is an Artinian local ring which is not a field, then the Jacobson
radical of R/I equals Z(R/I). Thus Z(R/I) is a nilpotent ideal and this
implies that if R/I is not a field, then Ann(Z(R/I)) 6= {0}. Also, every
element of Ann(Z(R/I))∗ is adjacent to every other vertex of Γ(R/I).

Theorem 13. Let I be an ideal of a ring R such that R/I is a finite local
ring which is not a field and Γ(R/I) is a graph on at least two vertices.
Then χ

′

(ΓI(R)) = ∆(ΓI(R)), unless Γ(R/I) is a complete graph.

Proof. Let k be the number of vertices of degree ∆(ΓI(R)). Then Γ(R/I)
has k

|I| vertices of maximum degree ∆(Γ(R/I)).

Suppose χ
′

(ΓI(R)) = ∆(ΓI(R)) + 1. Then by Remark 4, ΓI(R) has a
critical subgraph H such that ∆(ΓI(R))−degH(v)+2 6 k, where v ∈ N(u)
such that deg(v) < deg(u) = ∆(ΓI(R)). So ∆(ΓI(R))−deg(v)+2 6 k. We
have ∆(ΓI(R)) − deg(v) + 2 = |I|(∆(Γ(R/I)) − degΓ(v + I) + 2) − |I| + 1.
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This implies that ∆(Γ(R/I)) − degΓ(v + I) + 2 < k
|I| . Since R/I is a finite

local ring, Ann(Z(R/I)) 6= (0). Clearly ∆(Γ(R/I)) = |Z(R/I)∗| − 1 and
| Ann(Z(R/I))| − 1 is the number of vertices of degree ∆(Γ(R/I)). Hence

|Z(R/I)∗| − 1 − degΓ(v + I) + 2 6 | Ann(Z(R/I))| − 1

and so degΓ(v+I) > |Z(R/I)∗|−| Ann(Z(R/I))|, which is a contradiction.
Hence by Vizing’s Theorem, χ

′

(ΓI(R)) = ∆(ΓI(R)).

Theorem 14. Let I be an ideal of a ring R. If Γ(R/I) is a complete
graph and ΓI(R) is a non-complete graph having no connected columns,
then χ

′

(ΓI(R)) = ∆(ΓI(R)).

Proof. Since Γ(R/I) is complete graph, by Theorem 7, R/I ∼= Z2 × Z2

or (x + I)(y + I) = 0 + I, for all x + I ∈ Z(R/I). Since ΓI(R) has no
connected column, Γ(R/I) ∼= Z2 ×Z2 and R/I is complete bipartite graph.
Also gr(ΓI(R)) = 4. By Theorem 6, ΓI(R) is complete bipartite graph
and by Theorem 5, χ

′

(ΓI(R)) = ∆(ΓI(R)).

Note that if R is a finite commutative ring with identity, then R =
R1 × · · · × Rn, where n > 2 and each (Ri, mi) is a local ring, where
1 6 i 6 n.

Theorem 15. Let I be an ideal of a ring R such that R/I is a finite
decomposable ring. Then χ

′

(ΓI(R)) = ∆(ΓI(R)).

Proof. Since R/I is finite R/I = R1 × · · · × Rn, where n > 2 and each
Ri is a local ring. By Remark 5, without loss of generality suppose that
the non-zero components of the vertices with maximum degree in Γ(R/I)
occur in R1, . . . , Rk.

Claim. Either R1, . . . , Rk are fields or none of them are fields.

Suppose that R1 is a field and R2 is not a field. Now a vertex with
maximum degree in R1 ×{0}× · · ·×{0} has degree (|R2| · · · |Rn|)−1 and
each vertex with maximum degree in {0}×R2 ×{0}×· · ·×{0} has degree
(|R1||Z(R2)||R3| · · · |Rn|) − 2. Thus we have |Z(R2)||R3| · · · |Rn|(|R1| −
|R2/Z(R2)|) = 1, a contradiction.

By Remark 5, for any i, 1 6 i 6 k, ∆(Γ(R/I)) = (|R1| · · · |Ri−1||Z(Ri)|
|Ri+1| · · · |Rn)−ǫ, where ǫ = 1 or 2. Hence |R1/Z(R1)| = · · · = |Rk/Z(Rk)|.
Since for each j, k + 1 6 j 6 n, the degree of any vertex in
{0} × · · · × {0} × Rj × {0} × · · · × {0} is less than ∆(Γ(R/I)). So we have

|Rj/Z(Rj)| > |R1/Z(R1)|. (1)
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For any t, 1 6 t 6 n, suppose that et + I is the element whose tth

component is one and other components are zero.

Case 1: R1, . . . , Rk are not fields. Now Γ(R/I) has
k

∑

t=1
| Ann(Z(Rt))

∗|

vertices of maximum degree. Every vertex a + I of maximum degree in
Γ(R/I) is adjacent to at least one of the et + I’s. Since ΓI(R) has a

connected column, ΓI(R) has |I|
k

∑

t=1
| Ann(Z(Rt))

∗| vertices of maximum

degree and every vertex a of maximum degree is adjacent to at least one
et. Now for any i, 1 6 i 6 n, we have

∆(Γ(R/I)) − degΓ(ei + I) + 2 > (|R1|· · ·|Ri−1||Z(Ri)||Ri+1|· · ·|Rn| − 2)

− (|R1| · · · |Ri−1||Ri+1| · · · ||Rn| − 1) + 2

= |R1| · · · |Ri−1|(|Z(Ri)| − 1)|Ri+1| · · · |Rn| + 1

= |R1| · · · |Ri−1||Z(Ri)
∗||Ri+1| · · · |Rn| + 1

> |R1| + · · · + |Ri−1| + |Z(Ri)
∗| + |Ri+1| + · · · + |Rn| + 1

> | Ann(Z(R1))| + · · · + | Ann(Z(Ri−1))| + · · · + | Ann(Z(Rn))| + 1

>

k
∑

i=1

| Ann(Z(Ri)
∗)| + k + 1 >

k
∑

i=1

| Ann(Z(Ri)
∗)| + 2.

Let m =
k

∑

i=1
| Ann(Z(Ri)

∗)|. Then ∆(Γ(R/I)) − degΓ(ei + I) + 2 > m + 2.

Now

∆(ΓI(R)) − deg(ei) + 2 = |I|∆(Γ(R/I)) + |I| − 1 − |I| degΓ(ei + I) + 2

= |I|(∆(Γ(R/I)) − degΓ(ei + I) + 2) − 2|I| + |I| + 1

> (m + 2)|I| − |I| + 1 > m|I| > |I|
k

∑

i=1

| Ann(Z(Ri)
∗)|.

Hence by Remark 4, we conclude that χ
′

(ΓI(R)) = ∆(ΓI(R)).

Case 2: R1, . . . , Rk are fields. Then Γ(R/I) has
k

∑

t=1
|R∗

t | vertices of maxi-

mum degree.

Subcase 1: n > 2. Then every vertex of maximum degree in Γ(R/I) is
adjacent to 1−(et+I), for some t, 1 6 t 6 k. In this case |R1| = · · · = |Rk|
and if we set |R1| = a, then by (1) we have |Rj | > a for any j, j > k. Now
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since an−1 − a + 2 > n(a − 1), for any i, 1 6 i 6 k, we have

∆(Γ(R/I)) − degΓ(1 − ei + I) + 2

= (|R1| · · · |Ri−1||Ri+1| · · · |Rn| − 1) − (|Ri| − 1) + 2

> an−1 − a + 2 >
k

∑

t=1

|R∗
t |. (2)

In this case, ΓI(R) has no connected columns. Also, |I|
k

∑

t=1
|R∗

t | vertices

have maximum degree in ΓI(R) and every vertex a of maximum degree
is adjacent to 1 − ei, for some i, 1 6 i 6 k. Note that

∆(ΓI(R)) − deg(1 − ei) + 2 = |I|∆(Γ(R/I)) − |I| degΓ(ei + I) + 2.

Take m = |I|
k

∑

t=1
|R∗

t |. Suppose ∆(ΓI(R)) − deg(1 − ei) + 2 6 m, where

1 6 i 6 n. Then |I|(∆(Γ(R/I)) − degΓ(1 − ei + I) + 2) − 2|I| + 2 6 m
and so ∆(Γ(R/I)) − degΓ(1 − ei + I) + 2 6

m
|I| + 1. Hence

∆(Γ(R/I) − degΓ(1 − ei + I) + 2 6

k
∑

t=1

|R∗
t | + 1. (3)

From (2),

∆(Γ(R/I)) − degΓ(1 − ei + I) + 2 =
k

∑

t=1

|R∗
t | + 1.

This implies that

degΓ(1 − ei + I) = ∆(Γ(R/I)) −
k

∑

t=1

|R∗
t | + 1

= |R1| · · · |Ri−1||Ri+1| · · · |Rn| − 1 −
k

∑

t=1

|R∗
t | + 1

= |R1| · · · |Ri−1||Ri+1| · · · |Rn| −
k

∑

t=1

|Rt| + k

> |R1| + · · · + |Ri−1| + |Ri+1| + · · · + |Rn| −
k

∑

t=1

|Rt| + k

>

n
∑

t=k+1

|Rt| − |Ri| + k > 2a − a + k > a
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which contradicts that degΓ(1 − et + I) = |Ri| − 1 = a − 1. Therefore,

∆(Γ(R/I)) − degΓ(1 − ei + I) + 2 > m = |I|
k

∑

t=1

|R∗
t |.

By Remark 4, we conclude that χ
′

(ΓI(R)) = ∆(ΓI(R)).
Subcase 2: n = 2. If k = 1 and R2 is not a field, then by (1) we

have |R2| > 2|R1|. Also ΓI(R) has a connected column. Since in this
case any vertex of maximum degree in Γ(R/I) is adjacent to e2 + I,
∆(Γ(R/I)) − degΓ(e2 + I) + 2 = (|R2| − 1) − (|R1| − 1) + 2 > |R∗

1|. Thus

∆(Γ(R/I)) − degΓ(e2 + I) + 2 > |R∗
1| + 1.

If ∆(Γ(R/I))−degΓ(e2+I)+2 = |R∗
1|+1, then degΓ(e2+I) = ∆(Γ(R/I))−

|R∗
1| + 1 > |R1| + 1, which contradicts that degΓ(e2 + I) = |R1| − 1. Thus

∆(Γ(R/I)) − degΓ(e2 + I) + 2 > |R∗
1| + 1.

∆(ΓI(R)) − deg(e2) + 2 = |I|(∆(Γ(R/I)) − degΓ(e2 + I) + 2) − |I| + 1

> |I|(|R∗
1| + 2) − |I| + 1 > |I||R∗

1|.

By Remark 4, χ
′

(ΓI(R)) = ∆(ΓI(R)). If either k = 1 and R2 is a field or
k = 2, then Γ(R/I) is a complete bipartite graph and gr(ΓI(R)) = 4. By
Theorem 6, ΓI(R) is a complete bipartite graph. Hence, by Theorem 5,
we have χ

′

(ΓI(R)) = ∆(ΓI(R)) and the proof is complete.
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