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Abstract. For all λ, µ ∈ [0, 1] such that λ < µ, we first intro-
duced the definitions of (λ, µ)-fuzzy ideals and (λ, µ)-fuzzy interior
ideals of an ordered Γ-semigroup. Then we proved that in regular
and in intra-regular ordered semigroups the (λ, µ)-fuzzy ideals and
the (λ, µ)-fuzzy interior ideals coincide. Lastly, we introduced the
concept of a (λ, µ)-fuzzy simple ordered Γ-semigroup and charac-
terized the simple ordered Γ-semigroups in terms of (λ, µ)-fuzzy
interior ideals.

1. Introduction and preliminaries

The formal study of semigroups began in the early 20th century. Semi-
groups are important in many areas of mathematics, for example, coding
and language theory, automata theory, combinatorics and mathematical
analysis.

Γ-semigroups were first defined by Sen and Saha [14] as a generalization
of semigroups and studied by many researchers, for example [1, 2, 5, 6, 8,
9, 3, 12, 15, 16, 17, 18].

The concept of fuzzy sets was first introduced by Zadeh [24] in 1965
and then the fuzzy sets have been used in the reconsideration of classical
mathematics. Recently, Yuan [23] introduced the concept of fuzzy subfield
with thresholds. A fuzzy subfield with thresholds λ and µ is also called
a (λ, µ)-fuzzy subfield. Yao continued to research (λ, µ)-fuzzy normal
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subfields, (λ, µ)-fuzzy quotient subfields , (λ, µ)-fuzzy subrings and (λ, µ)-
fuzzy ideals in [19, 20, 21, 22].

In this paper, we studied (λ, µ)-fuzzy ideals in ordered Γ-semigroups.
This can be seen as an application of [22] and as a generalization of
[7, 11, 13].

Let S = {x, y, z, ...} and Γ = {α, β, γ, ...} be two non-empty sets.

An ordered Γ-semigroup SΓ = (S, Γ, ≤) is a poset (S, ≤) such that
there exists a mapping S × Γ × S → S (images of (a, α, b) to be denoted
by aαb), such that, for all x, y, z ∈ S, α, β, γ ∈ Γ, we have

(1) (xβy)γz = xβ(yγz).

(2) x ≤ y ⇒

{

xαz ≤ yαz

zαx ≤ zαy.

Note that an ordered semigroup is a special ordered Γ-semigroup with
Γ = {◦}, i.e., Γ is a set with one element.

Let (S, ◦, ≤) be an ordered semigroup. A nonempty subset A of S is
called a left (respectively, right) ideal of S if (1) S ◦ A ⊆ A (respectively,
A ◦ S ⊆ A); (2) a ∈ A, b ∈ S, b ≤ a ⇒ b ∈ A. A is called an ideal of S if
it is both a left and a right ideal of S .

If (S, Γ, ≤) is an ordered Γ-semigroup, and A is a subset of S, we
denote by (A] the subset of S defined as follows:

(A] = {t ∈ S|t ≤ a for some a ∈ A}.

Given an ordered Γ-semigroup S, a fuzzy subset of S (or a fuzzy
set in S) is an arbitrary mapping f : S → [0, 1], where [0, 1] is the
usual closed interval of real numbers. For any t ∈ [0, 1], ft is defined by
ft = {x ∈ S|f(x) ≥ t}.

For each subset A of S, the characteristic function fA is a fuzzy subset
of S defined by

fA(x) =

{

1, if x ∈ A

0, if x 6∈ A.

In the following, we will use S, SΓ or (S, Γ, ≤) to denote an ordered
Γ-semigroup.

In the rest of this paper, we will always assume that 0 ≤ λ < µ ≤ 1.

We will use a ∨ b to denote max{a, b} and a ∧ b to stand for min{a, b}.
Note that ([0, 1], ∧, ∨) is a distributive lattice.
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2. (λ, µ)-fuzzy ideals and (λ, µ)-fuzzy interior ideals

In this section, we first introduce the concepts of (λ, µ)-fuzzy ideals
and (λ, µ)-fuzzy interior ideals of an ordered Γ-semigroup. Then we show
that every (λ, µ)-fuzzy ideal is a (λ, µ)-fuzzy interior ideal.

Definition 1. A fuzzy subset f of an ordered Γ-semigroup S is called a
(λ, µ)-fuzzy right ideal of S if

(1) f(xαy) ∨ λ ≥ f(x) ∧ µ for all x, y ∈ S, α ∈ Γ and
(2) If x ≤ y, then f(x) ∨ λ ≥ f(y) ∧ µ for all x, y ∈ S.
A fuzzy subset f of S is called a (λ, µ)-fuzzy left ideal of S if
(1) f(xαy) ∨ λ ≥ f(y) ∧ µ for all x, y ∈ S, α ∈ Γ and
(2) If x ≤ y, then f(x) ∨ λ ≥ f(y) ∧ µ for all x, y ∈ S.
A fuzzy subset f of S is called a (λ, µ)-fuzzy ideal of S if it is both a

(λ, µ)-fuzzy right and a (λ, µ)-fuzzy left ideal of S.

Definition 2. If (S, Γ, ≤) is an ordered Γ-semigroup, a nonempty subset
A of S is called an interior ideal of S if

(1) SΓAΓS ⊆ A and
(2)If a ∈ A, b ∈ S and b ≤ a, then b ∈ A.

Definition 3. If (S, Γ, ≤) is an ordered Γ-semigroup, a fuzzy subset f of
S is called a (λ, µ)-fuzzy interior ideal of S if the following assertions are
satisfied:

(1) f(xβaγy) ∨ λ ≥ f(a) ∧ µ for all x, a, y ∈ S, β, γ ∈ Γ and
(2) If x ≤ y, then f(x) ∨ λ ≥ f(y) ∧ µ.

Theorem 1. Let (S, Γ, ≤) be an ordered Γ-semigroup, Then f is a (λ, µ)-
fuzzy interior ideal of S if and only if ft is an interior ideal of S for all
t ∈ (λ, µ].

Proof. Let f be a (λ, µ)-fuzzy interior ideal of S, ∀t ∈ (λ, µ] and ∀β, γ ∈ Γ.
First of all, we need to show that xβaγy ∈ ft, for all a ∈ ft, x, y ∈ S.
From f(xβaγy) ∨ λ ≥ f(a) ∧ µ ≥ t ∧ µ = t and λ < t we conclude

that f(xβaγy) ≥ t, that is xβaγy ∈ ft.
Then, we need to show that b ∈ ft for all a ∈ ft, b ∈ S such that b ≤ a.
From b ≤ a we know that f(b) ∨ λ ≥ f(a) ∧ µ and from a ∈ ft we

have f(a) ≥ t. Thus f(b) ∨ λ ≥ t ∧ µ = t. Notice that λ < t, we conclude
that f(b) ≥ t, that is b ∈ ft.

Conversely, let ft be an interior ideal of S for all t ∈ (λ, µ].
If there are x0, a0, y0 ∈ S, such that f(x0βa0γy0) ∨ λ < t = f(a0) ∧ µ,

then t ∈ (λ, µ], f(a0) ≥ t and f(x0βa0γy0) < t. That is a0 ∈ ft and
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x0βa0γy0 6∈ ft. This is a contradiction with that ft is an interior ideal of
S. Hence f(xβaγy) ∨ λ ≥ f(a) ∧ µ holds for all x, a, y ∈ S.

If there are x0, y0 ∈ S such that x0 ≤ y0 and f(x0)∨λ < t = f(y0)∧µ,
then t ∈ (λ, µ], f(y0) ≥ t and f(x0) < t, that is y0 ∈ ft and x0 6∈ ft. This
is a contradiction with that ft is an interior ideal of S. Hence if x ≤ y,
then f(x) ∨ λ ≥ f(y) ∧ µ.

Theorem 2. Let (S, Γ, ≤) be an ordered Γ-semigroup and f a (λ, µ)-fuzzy
ideal of S, then f is a (λ, µ)-fuzzy interior ideal of S.

Proof. Let x, a, y ∈ S, β, γ ∈ Γ, Since f is a (λ, µ)-fuzzy left ideal of S

and x, aγy ∈ S, we have that

f(xβ(aγy)) ∨ λ ≥ f(aγy) ∧ µ (1)

Since f is a (λ, µ)-fuzzy right ideal of S, we have that

f(aγy) ∨ λ ≥ f(a) ∧ µ (2)

From (1) and (2) we know that f(xβaγy)∨λ = (f(xβ(aγy))∨λ)∨λ ≥
(f(aγy) ∧ µ) ∨ λ = (f(aγy) ∨ λ) ∧ (µ ∨ λ) ≥ f(a) ∧ µ.

3. (λ, µ)-fuzzy interior ideals of regular/intra-regular or-
dered Γ-semigroups

We prove here that in regular and in intra-regular ordered Γ-semigroups
the (λ, µ)-fuzzy ideals and the (λ, µ)-fuzzy interior ideals coincide.

Definition 4. An ordered Γ-semigroup (S, Γ, ≤) is called regular if for
all a ∈ S there exists x ∈ S such that a ≤ aβxγa, for all β, γ ∈ Γ.

Definition 5. An ordered Γ-semigroup (S, Γ, ≤) is called intra-regular
if for all a ∈ S there exists x, y ∈ S such that a ≤ xβaγaδy, for all
β, γ, δ ∈ Γ.

Theorem 3. Let (S, Γ, ≤) be a regular ordered Γ-semigroup and f a
(λ, µ)-fuzzy interior ideal of S, then f is a (λ, µ)-fuzzy ideal of S.

Proof. Let x, y ∈ S, then f(xβy) ∨ λ ≥ f(x) ∧ µ, for all β ∈ Γ.
Indeed, since S is regular and x ∈ S, there exist z ∈ S such that

x ≤ xβzγx, for all β, γ ∈ Γ. Thus we have that xβy ≤ (xβzγx)βy =
(xβz)γxβy. So

f(xβy) ∨ λ ≥ f((xβz)γxβy) ∧ µ (3)
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for f is a (λ, µ)-fuzzy interior ideal. Again since f is a (λ, µ)-fuzzy interior
ideal of S, we have

f((xβz)γxβy) ∨ λ ≥ f(x) ∧ µ. (4)

From (3) and (4) we have that f(xβy) ∨ λ = (f(xβy) ∨ λ) ∨ λ ≥
(f((xβz)γxβy) ∧ µ) ∨ λ = (f((xβz)γxβy) ∨ λ) ∧ (µ ∨ λ) ≥ f(x) ∧ µ,
and f is a (λ, µ)-fuzzy right ideal of S.

In a similar way, we can prove that f is a (λ, µ)-fuzzy left ideal of S.
Thus f is a (λ, µ)-fuzzy ideal of S.

Theorem 4. Let (S, Γ, ≤) be an intra-regular ordered semigroup and f a
(λ, µ)-fuzzy interior ideal of S, then f is a (λ, µ)-fuzzy ideal of S.

Proof. Let a, b ∈ S, then f(aβb) ∨ λ ≥ f(a) ∧ µ, for all β ∈ Γ.
Indeed, since S is intra-regular and a ∈ S, there exist x, y ∈ S such

that a ≤ xβaγaδy. Then aβb ≤ (xβaγaδy)βb.
Since f is a (λ, µ)-fuzzy interior ideal of S, we have that f(aβb) ∨ λ =

(f(aβb)∨λ)∨λ ≥ (f(xβaγaδyβb)∧µ)∨λ = (f(xβaγaδyβb)∨λ)∧(µ∨λ).
Again since f is a (λ, µ)-fuzzy interior ideal of S, we have f(xβaγaδyβb)∨

λ = f((xβa)γaδ(yβb)) ∨ λ ≥ f(a) ∧ µ.
Thus we have that f(aβb) ∨ λ ≥ f(a) ∧ µ, and f is a (λ, µ)-fuzzy right

ideal of S.
In a similar way we can prove that f is a (λ, µ)-fuzzy left ideal of S.
Therefore, f is a (λ, µ)-fuzzy ideal of S.

Remark 1. From previous theorems we know that in regular or intra-
regular ordered Γ-semigroups the concepts of (λ, µ)-fuzzy ideals and
(λ, µ)-fuzzy interior ideals coincide.

4. (λ, µ)-fuzzy simple ordered Γ-semigroups

In this section, we introduce the concept of (λ, µ)-fuzzy simple ordered
Γ-semigroups and characterize this type of ordered Γ-semigroups in terms
of (λ, µ)-fuzzy interior ideals.

Definition 6. An ordered Γ-semigroup S is called simple if it does not
contain proper ideals, that is, for any ideal A 6= ∅ of S, we have A = S.

Definition 7. An ordered Γ-semigroup S is called (λ, µ)-fuzzy simple
if for any (λ, µ)-fuzzy ideal f of S, we have f(a) ∨ λ ≥ f(b) ∧ µ, for all
a, b ∈ S.
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Remark 2. In [11], Kehayopulu and Tsingelis studied (0, 1)-fuzzy simple
ordered semigroup (They called it fuzzy simple ordered semigroup. see
Definition 3.1 of [11]).

Sardar, Davvaz and Majumder researched (0, 1)-fuzzy simple ordered
Γ-semigroup , which was called fuzzy simple ordered Γ-semigroup in their
paper [13].

Theorem 5. Let S be an ordered Γ-semigroup, then S is (λ, µ)-fuzzy
simple if and only if for any (λ, µ)-fuzzy ideal f of S, if ft 6= ∅, then
ft = S, for all t ∈ (λ, µ].

Proof. Assume that S is is (λ, µ)-fuzzy simple. For any (λ, µ)-fuzzy ideal
f of S, suppose that ft 6= ∅. We need to prove that x ∈ ft for all x ∈ S,
where t ∈ (λ, µ].

Since ft 6= ∅, we can suppose that there exists y ∈ ft, that is f(y) ≥ t.
So f(x) ∨ λ ≥ f(y) ∧ µ ≥ t ∧ µ = t.
Notice that λ < t, we have that f(x) ≥ t, that is x ∈ ft.
Conversely, for any (λ, µ)-fuzzy ideal f of S, suppose that ft = S, for

all t ∈ (λ, µ]. We need to prove that f(a) ∨ λ ≥ f(b) ∧ µ, for all a, b ∈ S.
If there exist a0, b0 ∈ S, such that f(a0) ∨ λ < t = f(b0) ∧ µ, then

t ∈ (λ, µ], f(a0) < t and f(b0) ≥ t. Thus a0 6∈ ft = S. This is a
contradiction.

So f(a) ∨ λ ≥ f(b) ∧ µ holds, for all a, b ∈ S.

Proposition 1. Let S be an ordered Γ-semigroup and f a (λ, µ)-fuzzy
right ideal of S, then Ia = {b ∈ S|f(b) ∨ λ ≥ f(a) ∧ µ} is a right ideal of
S for every a ∈ S.

Proof. Let a ∈ S, then Ia 6= ∅ since a ∈ Ia.
(1) Let b ∈ Ia and s ∈ S, then bβs ∈ Ia for any β ∈ Γ. Indeed, since

f is a (λ, µ)-fuzzy right ideal of S and b, s ∈ S, we have

f(bβs) ∨ λ ≥ f(b) ∧ µ. (5)

Since b ∈ Ia, we have that

f(b) ∨ λ ≥ f(a) ∧ µ. (6)

From (5) and (6) we conclude that f(bβs) ∨ λ = (f(bβs) ∨ λ) ∨ λ ≥
(f(b) ∧ µ) ∨ λ = (f(b) ∨ λ) ∧ (µ ∨ λ) ≥ f(a) ∧ µ. So bβs ∈ Ia.

(2) Let b ∈ Ia and S ∋ s ≤ b, then s ∈ Ia. Indeed, since f is a
(λ, µ)-fuzzy right ideal of S , s, b ∈ S and s ≤ b, we have

f(s) ∨ λ ≥ f(b) ∧ µ. (7)
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Since b ∈ Ia, we have
f(b) ∨ λ ≥ f(a) ∧ µ. (8)

From (7) and (8) we obtain that f(s) ∨ λ = (f(s) ∨ λ) ∨ λ ≥ (f(b) ∧
µ) ∨ λ = (f(b) ∨ λ) ∧ (µ ∨ λ) ≥ f(a) ∧ µ. So s ∈ Ia.

Similarly, we have

Proposition 2. Let S be an ordered Γ-semigroup and f a (λ, µ)-fuzzy
left ideal of S, then Ia = {b ∈ S|f(b) ∨ λ ≥ f(a) ∧ µ} is a left ideal of S

for every a ∈ S.

By the previous two propositions we have

Proposition 3. Let S be an ordered Γ-semigroup and f a (λ, µ)-fuzzy
ideal of S, then Ia = {b ∈ S|f(b) ∨ λ ≥ f(a) ∧ µ} is an ideal of S for
every a ∈ S.

Lemma 1. Let S be an ordered Γ-semigroup and ∅ 6= I ⊆ S, then I is
an ideal of S if and only if the characteristic function fI is a (λ, µ)-fuzzy
ideal of S.

Proof. “⇒”
Suppose I is an ideal of S. For any x ∈ S, two cases are possible:
(1) x ∈ I. In this case, xγy ∈ I for any γ ∈ Γ and y ∈ S. This is

because I is an ideal of S.
Thus fI(xγy) = fI(x) = 1 and so fI(xγy) ∨ λ ≥ fI(x) ∧ µ.
Similarly, we have fI(yγx) ∨ λ ≥ fI(x) ∧ µ.
So fI is a (λ, µ)-fuzzy ideal of S.
(2) x 6∈ I. In this case, fI(x) = 0. So fI(xγy) ∨ λ ≥ fI(x) ∧ µ and

fI(yγx) ∨ λ ≥ fI(x) ∧ µ hold. Thus fI is a (λ, µ)-fuzzy ideal of S.
“⇐”
Conversely, suppose that fI is a (λ, µ)-fuzzy ideal of S. Then fI(xγy)∨

λ ≥ fI(x) ∧ µ and fI(yγx) ∨ λ ≥ fI(x) ∧ µ.
Set x ∈ I, we need to show that xγy ∈ I and yγx ∈ I for any γ ∈ Γ

and y ∈ S.
Since x ∈ I, we have that fI(x) = 1, so fI(xγy)∨λ ≥ µ and fI(yγx)∨

λ ≥ µ. Note that λ < µ, we have that fI(xγy) ≥ µ and fI(yγx) ≥ µ.
Thus fI(xγy) = 1 and fI(yγx) = 1. That is xγy ∈ I and yγx ∈ I for any
γ ∈ Γ and y ∈ S.

Theorem 6. An ordered Γ-semigroup S is simple if and only if it is
(λ, µ)-fuzzy simple.
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Proof. Suppose S is simple, let f be a (λ, µ)-fuzzy ideal of S and a, b ∈ S.
By previous propostion, the set Ia is an ideal of S. Since S is simple, we
have Ia = S. Then b ∈ Ia, from which we have that f(b) ∨ λ ≥ f(a) ∧ µ.
Thus S is (λ, µ)-fuzzy simple.

Conversely, suppose S contains proper ideals and let I be such ideal
of S. By the previous lemma, we know that fI is a (λ, µ)-fuzzy ideal
of S. We have that S ⊆ I. Indeed, let x ∈ S. Since S is (λ, µ)-fuzzy
simple, fI(x) ∨ λ ≥ fI(b) ∧ µ for all b ∈ S. Now let a ∈ I. Then we have
fI(x) ∨ λ ≥ fI(a) ∧ µ = 1 ∧ µ = µ. Notice that λ < µ, we conclude that
fI(x) ≥ µ, which implies that fI(x) = 1, that is x ∈ I. Thus we have that
S ⊆ I, and so S = I. We get a contradiction.

Lemma 2. An ordered Γ-semigroup S is simple if and only if for every
a ∈ S, we have S = (SΓaΓS].

Proof. It is easy from Lemma 1.2 of [10] or from Theorem 1.1 of [4].

Theorem 7. Let S be an ordered Γ-semigroup, then S is simple if and only
if for every (λ, µ)-fuzzy interior ideal f of S, we have f(a) ∨ λ ≥ f(b) ∧ µ,
for all a, b ∈ S.

Proof. Suppose S is simple. Let f be a (λ, µ)-fuzzy interior ideal of S and
a, b ∈ S. Since S is simple and b ∈ S, by the previous lemma, we have that
S = (SΓbΓS]. Since a ∈ S, we have that a ∈ (SΓbΓS]. Then there exist
x, y ∈ S and β, γ ∈ Γ such that a ≤ xβbγy. Since a, xβbγy ∈ S, a ≤ xβbγy

and f is a (λ, µ)-fuzzy interior ideal of S, we have that

f(a) ∨ λ ≥ f(xβbγy) ∧ µ. (9)

Since x, b, y ∈ S and f is a (λ, µ)-fuzzy interior ideal of S, we have that

f(xβbγy) ∨ λ ≥ f(b) ∧ µ. (10)

From (9) and (10) we conclude that f(a)∨λ = (f(a)∨λ)∨λ ≥ (f(xβbγy)∧
µ) ∨ λ = (f(xβbγy) ∨ λ) ∧ (µ ∨ λ) ≥ f(b) ∧ µ.

Conversely, Suppose that for every (λ, µ)-fuzzy interior ideal f of S,
we have f(a) ∨ λ ≥ f(b) ∧ µ, for all a, b ∈ S.

Now let f be any (λ, µ)-fuzzy ideal f of S, then it is a (λ, µ)-fuzzy
interior ideal of S. So we have f(a) ∨ λ ≥ f(b) ∧ µ, for all a, b ∈ S. Thus
S is (λ, µ)-fuzzy simple by its definition. And from the previous theorem,
we conclude that S is simple.

As a consequence we have
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Theorem 8. For an ordered Γ-semigroup S, the following are equivalent:
(1) S is simple.
(2) S = (SΓaΓS] for every a ∈ S.
(3) S is (λ, µ)-fuzzy simple.
(4) For every (λ, µ)-fuzzy interior ideal f of S, we have f(a) ∨ λ ≥

f(b) ∧ µ, for all a, b ∈ S.

5. Conclusion and further research

In this paper, we generalized results of [11, 13]. We introduced (λ, µ)-
fuzzy ideals and (λ, µ)-fuzzy interior ideals of an ordered Γ-semigroup and
studied them. When λ = 0 and µ = 1, we meet ordinary fuzzy ideals and
fuzzy interior ideals. So we can say that (λ, µ)-fuzzy ideals and (λ, µ)-fuzzy
interior ideals are more general concepts than fuzzy ones.

In [22], Yao gave the definition of (λ, µ)-fuzzy bi-ideals in semigroups.
One can study (λ, µ)-fuzzy bi-ideals in ordered Γ-semigroups. We would
like to explore this in next papers.
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