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ABSTRACT. The concept of graph structure was introduced by
E. Sampathkumar in 'Generalised Graph Structures’, Bull. Kerala
Math. Assoc., Vol 3, No.2, Dec 2006, 65-123. Based on the works
of Brouwer, Doob and Stewart, R.H. Jeurissen has ("The Incidence
Matrix and Labelings of a Graph’, J. Combin. Theory, Ser. B30
(1981), 290-301) proved that the collection of all admissible index
vectors and the collection of all labellings for 0 form free F-modules
(F is a commutative ring). We have obtained similar results on graph
structures in a previous paper. In the present paper, we introduce
labelling matrices and index matrices of graph structures and prove
that the collection of all admissible index matrices and the collection
of all labelling matrices for 0 form free F-modules. We also find
their ranks in various cases of bipartition and char F' (equal to 2
and not equal to 2).

Introduction

E. Sampathkumar introduced the concept of graph structure in [9].
It is in particular, a generalisation of the notions like graphs [5], signed
graphs [2], [11], [12] and edge-coloured graphs [6] with the colourings.
He defined a graph structure G as G = (V, Ry, Ry, ...Ry) where V is a
non-empty set and Ry, Ro, ..., Ry are relations on V which are mutually
disjoint such that each R;,i = 1,2, ..., k is symmetric and irreflexive.
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R.H. Jeurissen [8], based on the works of Brouwer [1], Doob [4] and
Stewart [10], has proved some results using incidence matrices of graphs.
He has defined index vectors and labelings and also admissible index
vectors. He has proved that if F'is a commutative ring and G a graph,
the collection of all admissible index vectors and the collection of all
labellings for 0 are free F-modules. He has also found out the ranks of
these modules in various cases, namely, G is bipartite, non-bipartite, char
F =2, char F' # 2 etc.

We have introduced similar concepts in graph structures in [3]. Instead
of index vectors and labellings, we have introduced R;-index vectors and R;-
labellings there and proved some results. Here we are introducing labelling
matrices and index matrices of a graph structure. We are also proving
that the collection of all admissible index matrices and the collection of
all labelling matrices for 0 form free F-modules. We are also finding their
ranks in various cases, namely, completely bipartite, not R;-bipartite for
some i s, char F' = 2, char F # 2 etc.

1. Preliminaries

We first go through some concepts introduced in [9].

Definition 1 ([9]). In a graph structure G = (V, Ry, R, ..., Ry), if (u,v) €
R;, (u,v) is an R;-edge.

Definition 2 ([9]). An R;-path between two vertices u and v is an
alternating sequence of vertices and edges consisting only of R;-edges.

Definition 3 (]9]). A set S of vertices in a graph structure
G = (V, Ry, Ry, ..., Ri) is R;-connected for any given i if any two vertices
in S are connected by an R;-path.

Now we recall the concept of R;-distance [3].

Definition 4 ([3]). The minimum number of R;-edges from a vertex u
to a vertex v in any R;-path of a graph structure G = (V, Ry, Ra, ..., Rx)
is called the R;-distance from u to v. It is the number of R;-edges from a
vertex u to a vertex v in an R;-tree.

The incidence matrix of a graph structure is defined as follows in [9].

Definition 5 ([9]). The incidence matrix B of a graph structure
G = (V,R1, Ra, ..., Ry) is a k x p matrix b = (b;;) where b;; is the number
of R;-edges incident to the vertex v;.
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We have defined the R;-incidence matrix of a graph structure in [3]
similar to the incidence matrix of a graph as follows.

Definition 6 ([3]). Let G = (V, Ry, Ra, ..., Ry) be a graph structure. The
Rj-incidence matrix of G is defined as Ir, = (b;;), where b,s = 1 if v, is
incident with an R;-edge es and 0 otherwise.

First we select a spanning R;-tree and label the R;-edges inside and
outside the spanning R;-tree as in [3]. We recall the procedure.

Let G be a finite R;-connected graph structure on p vertices with
q; number of R;- edges, 1 = 1,2, ..., k. Choose a spanning R;-tree T; as
follows.

Let vg be the root. Number the vertices as vy, va, ... successively. First
those at R;-distance 1 from vy, then those at R;-distance 2 and so on
(Those at same R;-distance are numbered arbitrarily). Label the R;-edge
(vr, vs) With r < s in the spanning R;-tree T; as e;. Number the R;-edges
outside the spanning R-tree Tj as e’ el 31.

Then the Ti-part of the R;-incidence matrix will be of the form

Vg 1 . 100 0 0 O0OOOOO0OO
vy 10 O O o1 . . . 1000O00O0
V2 0 06100001 . . .1
0 0 0 01 0 00O

0 .00 0 0 0
000010 .00 0
0000 O0OO0OO0OO0OTO0T1TOQO0 .0

0 000O0OO0OO0OO0OO0OTO0ODOTO0OO0OTO01

0 000O0OO0OO0OTO0OTO0ODOOOO0OO0O0

0 000OO0OO0OO0OO0OTO0ODOTO OO OO 0OT®O0O0

. 0 000O0OO0OO0OO0OTO0DO0OTUO0ODSOTOT®O0OO0
Up—1 0 000O0OO0OO0OO0OTO0ODO0OTUO0OOTOT®O0OO0

Consider a vertex vg and let vg, Uky s Ukys -5 Uk,., V0 DE the unique R;-path
in T; from v, to vg. Denote it by ¢}. Then ¢} — ¢ + &2 — . 4 (=1)%¢t =
[(—=1)t00...0]".

For each I, there exists an upper triangular p — 1 x p — 1 matrix D;
with elements 0, =1 and an all 1-diagonal such that

1 +1 +1 . . . =17
1 0 0 000 O
0 1 0
0 0
It D; = 0 0
0 0
0 1 0
00 0 000 1 |
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The top row has +1 or -1 in jth position depending on whether v; is at
odd or even R;-distance from vy.

Consider a column of B;, the part of I, corresponding to the R;-edges
outside T;. Suppose its 1’s are in jth and kth rows with j < k. Subtracting
jth and kth columns of I, D; from it (if j = 0, only k), we get

0

if R;-distance in T; from v; to vy is odd and that from vy to vg is

even or if R; - distance in T; from v; to vg is even and that from vy,
to vg is odd.

if v; and v, are at even R;-distance from vy

if v; and v, are at odd R;-distance from wvy.

Let E; be (0,—1) matrix with one or two -1s in each column.

(ITiDiBi)[é ?i]giVes

Tl 41 41 . . . 4110 0 2 9 —2 —9 7
1 0 0 ... 010 0 0 0 0 0
01 0 ... 010 0 0 0 0 0
0 0 1 00 0 0 00 .. 0
. 010 0 0 00 .. 0
00 0 ... 110 0 0 0 0 0 |

after renumbering R;-edges outside 7;.
The column operations on the R;-incidence matrices will give the
incidence matrix of the graph structure in the form

L e . . . 07
© L 6. . 06
I FE C)
. ©
e o o I
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where
" InB © . . . O ]
O Ipn|B © o
]G: (—) ’
. (C]
i © C] . 0 ITk‘Bk
Dy 6 . . . O] FE1 © . . . O]
® Dy, 6 . . 06 ©® FEF 6 . . 06
b o . e e
. . . 06 . . . O
e o . .0 D] e 0 . .6 E |

and each I; has the form of
I E;
({1, Di| B;) [ 0 I ] :

2. Labelling matrix and index matrix

We first recall the concepts of R;-labelling and R;-index vector intro-
duced in [3].

Definition 7 ([3]). Let F' be an abelian group or a ring and

G = (V,R1, Ry, ..., Ry;) be a graph structure with vertices vg, v1, ..., vp—1
and ¢; number of R;-edges. A mapping from V to F' is an R;-index vector
and a mapping from R; to F'is an R;-labelling.

Definition 8 ([3]). An R;-labelling z; is an R;-labelling for the R;-index
vector r; if for each j, ri(v;) = X, _ s wi(er), where EY is the set of all
R;-edges incident with v;. '

Definition 9 ([3]). R;-index vectors for which an R;-labelling exists are
called admissible R;-index vectors.

Now we introduce the concepts of labelling matrix and index matrix
of a graph structure.

Definition 10. Let F' be an abelian group or a ring. Let r; be an R;-index
vector and z; be an R;-labelling for ¢ = 1,2, ..., k. Then
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1 0...0
0reo0.. 0
a)r=|" O © | is defined to be an index matrix for G
0 . ..0m
0 T2 0..0
b)z =" O © 7| is defined to be a labelling matrix for G.
0 . ..0mz

Definition 11. The map

Ry
is a labelling for r : V¥ — FF if Z x;(m) = ri(xs) for s =0,1,2,....p—

meFkg

Now we prove a necessary and sufficient condition for x to be a labelling
matrix for r. For that first we recall the following lemma of [3].

Lemma 1 ([3]). Let G = (V, Ry, Ra, ..., R) be a graph structure. x; is
an R;-labelling for R;-index vector r; iff Ir,x; = r;.

Now we move on to prove the condition for = to be a labelling matrix
for r.

Lemma 2. Let G = (V, Ry, Ra,...,R;) be a graph structure. x is a
labelling for r iff Iz = r where

(I, O . . . 0 ]
0 Ip, O . . O
Ig = 0
.0
. O 0 0 Ig,
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Proof. Let x be a labelling for . Then by Lemma 2,

- In,

Iqgx =

0

0

[ IR, 21

0

0

0

Ip,
0

0
0
IR,z
0

0

0

0

0
0
.0
0 Ig, |
0
0
0
0 Ip,xk |

x1

0

0
T2
0

F
0

0

. 0
0 0
.0

. 0 zp |

0 0
1"20 0

0

=r.
. .0
0 0 r |

Conversely, let Igx = r. Then Ig,xz; =r; fori =1,2,...,k. So z; is a
labelling for r;,¢ = 1,2, ..., k. ie., x is a labelling for r.

Definition 12. Let G = (V, Ry, Ra, ..
an admissible R;-index vector for i = 1,2, ..., k, then

O]

., Ry) be a graph structure. If r; is

[ry O 0 ]

0 r O 0
S 0

. .0

L0 0 . . 0 7r |

is called an admissible index matrix for G.
Now we recall the definition of complete bipartition given in [9].

Definition 13 ([9]). A graph structure G is completely bipartite if for
each 7,1 < i <k, G is R;-bipartite (with same sets of bipartition).

Now we go through some of the results proved in [3].

Theorem 1 ([3]). If F is an abelian group and vi,vs, ..., v, are vertices
of an R;-bipartite graph structure G, then r; is an admissible R;-index

S p
vector iﬁZri(vj) = Z ri(vj) where S = {v1,va,...,vs} and
j=1 j=s+1

U = {vs41,Vs12, ..., 0p} are the sets of R;-bipartition.
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Theorem 2 ([3]). If F' is an abelian group and vy, v, ..., v, are the vertices
of a non-R;-bipartite graph structure G, then r; is an admissible R;-index
P

vector iff Z ri(vj) = 2f;, for some f; € F.
j=1

We now prove certain preliminary results.

Theorem 3. Let G = (V, Ry, Ra, ..., R) be a complete bipartite graph
structure. If F' is an abelian group and vi,va,...,v, are vertices of G,

si P
then r is an admissible index matriz iff Zri(vj) = Z ri(vj), for
j=1 j=si+1

i=1,2,...,k where S = {v1,v2,...,vs,} and U = {vs,;41,0s,42,...,0p} are
sets of bipartition.

Proof. Let r be admissible. Then r; is an admissible R;-index vector for
1=1,2,....,k. G is R;-bipartite for i = 1,2, ..., k. Therefore by Theorem 1,

S; P P
Zm vj) Z ri(v Z ri(vj)
7j=1 Jj=s;+1 Jj=s;+1

fori=1,2,.., k.
Conversely, let

Sj p p

dori(v) = > rilv) = Y ri(vy)

j=1 j=sit+1 j=si+1
fori=1,2,... k.
Then by Theorem 1, r; is an R;-admissible index vector for ¢ = 1,2, ..., k.
So r is admissible. O

Theorem 4. Let G = (V, Ry, R, ..., R;) be a graph structure. If F is
an abelian group and vi,va,...,v, are the vertices of a graph structure
G which is not R;-bipartite for i = 1,2,....k, then r is admissible iff

va] = 2f; for some fi e F,i=1,2,.. k.

Proof Let r be admissible. Then r; is an admissible R;-index vector, ¢ =
., k. G is not R;-bipartite for ¢ = 1,2, ..., k. Therefore by Theorem 2,

b2
Z (vj) = 2f; for some f; € F,i=1,2,...,k.
7j=1
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P

Conversely, let Z ri(v;) = 2f; for some f; € F,i=1,2,...,k. Then by
j=1

Theorem 2, r; is an admissible R;-index vector for ¢ = 1,2, ..., k. Therefore

r is admissible. [

Now we move on to prove that the collection of all admissible index
matrices for a graph structure form a free F-module and find its rank.

Theorem 5. Let G = (V, Ry, Ra, ..., Ri) be a graph structure. If F is an
integral domain, the admissible index matrices for G form a free F-module.
Its rank is

(i) k(p—1) if G is completely bipartite or char F = 2.
(ii) kp if G is not R;-bipartite for i =1,2,....k and char F # 2.
(iii) kp if G is not R;-bipartite except for i = iy,ia,...,1,, char F # 2
and 2 is invertible.
(iv) kp—r if G is not R;-bipartite except for i = iy,ia,...,4,, char F' # 2
and 2 is not invertible.

Proof. Index matrices of G belong to F*P*¥_ Let A = set of all admissible
index matrices. It is a subset of FFP*F,

Let r,s € A. Then r;, s; are admissible R;-index vectors for i = 1,2, ..., k.
Therefore there exists R;-labellings x,,, x5, for r; and s; for i = 1,2,..., k,
and we have

rn 00..0 rsg; 00..0
0r0..0 0s20..0
10 0. . 0 0 . .
’r‘is_ . . . . - . . . .
.o . 0 .o .0
00 ..0mr [0 0 ..0sy,
r 7 —$S1 0 0 0
0 T9 — S92 0 0
' .0
L 0 0 .0 Tr — Sk
I, 0 0 0
0 Ig, O 0
I(vy —z5) = O X
0
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z, 0 0 0 s, 0 0 0
0 z, 0 . . 0 0 x4 O 0
0 0 . 0 0
{ A el . S|}
. . .0 . . .0
0 0 . .0 =z, 0 0 . . 0 =z
T — S1 0 0 . . 0
0 ro —so 0 . . 0
_ 0 0o . :
I I .0
0 0 . .0 e — Sk

that is, z, — z, is a labelling for » — s since z,, — z, is a labelling for
r; —s; fori=1,2,....k. Sor —s € A.

Let f € F,r € A. Then r; is R;-admissible for ¢ = 1,2, ..., k. There
exists an R;-labelling x; for r;,7 = 1,2, ..., k. fx; is a labelling for fr;,i =
1,2,..,k. So fx is a labelling for fr and hence fr € A. Therefore A is an
F-module and it is a submodule of F*P*k,

Case 1: G is completely bipartite

s p
r is admissible iff Zm(vj) = Z ri(vj) for i = 1,2, ...,k by Theo-
7=1 Jj=s+1
rem 3.
ri(vp) = ri(v1) + ... +1ri(vs) — 1i(vsp1) — oo — Ti(Up—1).
B Tl(vl) 0 0 ]
r1(vs) 0 0
: [ ri(v1) O 0]
. 0 0 0
r1(vp) 0 : :
0 rav) 0
: ) 0 Tl(’l)l) .
. . I
B r2(vp) : B S
0 . .
0 f
(v .
) 00 0|
0 0 . .0 (v |
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- OO

Denote the above k(p — 1) matrices by

Let fi1, ..., fx(p—1) be elements of F and let f11711+ ...+ fr(p—1)Tk(p—1) = 0-

11,712, ---

Tk (v1)

0

—Tk (1)1) ]

oo
e

s T1(p—1)s -+ Tkl -+

0 07
0 .0
0 0
0
0
0
Tk (Vp—1)

0 —rg(vp-1) |

Then fu’l”u = .. = fk’(p—l)rk(p—l) = 0. Therefore f11 = f12 = ...

Jrp—1) = 0 and so 711,712, ..., Tg(p—1) are linearly independent. Therefore
A is a free F-module of rank k(p — 1).

Case 2: char ' =2

The case when G is completely bipartite has already been discussed.

So it is enough if we consider G to be not completely bipartite.

Two subcases arise.

Subcase 1: G is not R;-bipartite for i = 1,2, ..., k.
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P
By theorem 4, r is admissible iff Z ri(v;) = 2f; for some f; € F,i =

., k. Since char F =

ri(vp) =

—ri(v1) — ri(vg) —

2,

r(vp 1),1=1,2,.

J=1

=0,s = 1,2

OO
OO

00 . .0

oo
- OO

00 . .0

Let these elements be denoted by 711,712, ..., k1, ---

f117f127'

7f1(p 1)

. -afk(p—l) e F.

Tk(.i)l)

—rg(v1) ]

., k. Therefore

., k. So we can write

0_
0

0
Tk (Vp—1)
—1(Vp—1) |

s Tr(p—1) and let
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If
Jurn+ fizriz+ o+ fip-yrip-y -+ farn + o+ frip-1)Trp-1) = 0,
then f11 = fi2 = ... = fip—1) = .. = fk1 = .. = frp-1) = 0 and hence
T11,T12; s Tkls -+ Th(p—1) are linearly independent. Therefore A is a free

F-module with rank k(p — 1).

Subcase 2: G is R;-bipartite for i = i1,142,...,%9; 11,%2,...,7 €
{1,2,...,k}, 1 <r < k. For i =iy,19,...,i, r; is admissible iff

s p
D ori(v) = Y ri(v))
j=1 j=st1
by Theorem 1, that is,
ri(vp) = 1i(v1) +15(v2) + oo+ 15(vs) — ri(Vegr) — oo — ri(vp—1)

for i = 41,19, ..., 4. For i # iy,49, ..., 4., r; is admissible iff

P

Zri(vj) = 2fz = O

=1

by Theorem 2, that is, for i # i1, 2, ..., iy, 7i(vp) = —1i(v1) — ri(ve) — ... —
ri(vp—1). Therefore we can write r as a linear combination of k(p — 1)
matrices of which kr matrices have the form

00 . 0 .0
00 . . 0
0
7i(vj)

0
0
+7i(vy)
)
00 . 0 0|
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and the remaining have the form

000 . 0 . 07
00 . . .0
0
7i(vj)

0
0
—ri(v;)

. 0
0 0 0 0 |

Clearly they are linearly independent. Therefore A is a free F-module of
rank k(p — 1).

Case 3: (G is not R;-bipartite for i =1,2,...,k and char F # 2

Subcase 1: G is not R;-bipartite for ¢ = 1,2,....,k and char
F+#£2
a) 2 is invertible

ri(v;) = fi = (2271 fi) =227 fy)

j=1

P
for some f; € F,i = 1,2,...,k, ie., Zri(vj) =2f, fl=271f, € F for
j=1
1 =1,2,..., k. Therefore r; is R;-admissible for i = 1,2, ..., k by Theorem 2.
So 7 is admissible. Hence rank of A is rank of F*¥P*k = fp.
b) 2 is not invertible

Consider
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r2 0 0 1 ro o0 0
0 0 0 2 0 0
.. . 0 .
su=| - - sz = Sl
00 . 0 | 00 . 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0
0 :
2 .
0 . . )
Sip= | . . o SEL = ) o
oo . 2
.o ) ) 0
L0 0 0 00 . . . 0]
0 0 0 7
0 0 0
Skp:
o 0
0 0 2 |

Each s;; is admissible by Theorem 2. Also s;; € A,i = 1,2,...,k;j =
1,2,...,p. Let fi1, fi2, -, fips ooor 1y oo fap € Fand fr1s11 + fi2s12+ ... +
JepSkp = 0. Then fi1 = fia = ... = fi, = 0 since char F # 2. Therefore
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511, 812, ---, Skp are linearly independent and hence A is a free F'-module
with rank equal to the rank of FFP*F = kp.

Subcase 2: G is R;-bipartite for i = iy,19,...,7,,1 < r < k
and not R;-bipartite for i = i,.41,i49,...,1; Where iy,i9,...,7 €
{1,2,...,k}

a) 2 is invertible

P

Then Zri(vj) = f; = 2f! where f/ =27'f, € F.

=1

So r; is ain admissible R;-index vector for ¢ = 1,2,...,k and hence r
is admissible by Theorem 2. Therefore rank of A is equal to rank of
FkpxE — o,

b) 2 is not invertible

As in subcase 1 b, define s11, ..., sgp. Then s;; € A0 =1,2,...,k;j =
1,2,...,p. But for ¢ = iy, 19, ..., iy, Sip = Si1 T Si2 + ... + Sis — Si(s41) — e T
Si(p—1)- Therefore rank of A is equal to rank of Fkpxk _p = fp—pr. O

Now we prove that the collection of all labelling matrices for 0 form
a free F-module and find its rank. For that, first we recall a theorem
from [3].

Theorem 6 ([3]). Let G = (V, Ry, Ra, ..., Ri) be a graph structure. If F
s an integral domain, the R;-labelling of G for the R;-index vector O form
a free F-module. Its rank is q¢; — p + 1 if G is R;-bipartite or char F = 2
and q; — p if G is not R;-bipartite and char F # 2.

Theorem 7. Let G = (V, Ry, Ra, ..., Ri) be a graph structure. If F' is an
integral domain, the labellings of G for the index matrix 0 form a free
F-module. Its rank is

(i) i +q2+...+q—k(p—1) if G is completely bipartite or char F = 2,

(ii) g1 +q2 + ... + q — kp if G is not R;-bipartite for i =1,2,...,k and
char F # 2,

(iii) ¢1 +q2+ ...+ qr — kp+ 1 if G is R;-bipartite for i = iy,1i2,...,1, and
char F # 2.

Proof. Define ¢ : Flaitaetta)xk _ (101 as ¢(z) = Igz. Let 2,y €
Flataat.+aqp)xk.

oz +y) =Ig(z+y) = Igz + Ioy = ¢(z) + ¢(y),

For f € F,x € Ftet 4l ¢(fo) = Ig(fr) = f(Igx) = f¢(x).
Therefore ¢ is a homomorphism. It is onto also. Let

K = {2 € Flotatta)xk . [o0 — 0}, Tt is the kernel of ¢. Clearly it is
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a submodule of F(@1+e@+-+a)xk Hence K is an F-module.

7 is admissible iff Iz = r by Lemma 2. ie., iff (IcC)(C~tx) =r. So 0 is
admissible iff (IC)(C~'z) = 0. ie., iff (IcC)y = 0 where y = C 1.
Therefore a general solution for y pre-multiplied by C' is a labelling for 0.
A general solution for y for » = 0 has the form

O A 0 . . .0 T

®© 0 Ay, 0 . . . 0
S —

e .. A

where O is a zero matrix of suitable order,

Alz[ap € o aql},
v A = { ap .. Qe o gy .. aqk.}
Also
2(ati+1 T g2+ Qg — Qg e an') =0 (**>

for i =1,2,...,k. So the number of zeroes in the top row of each I,C; is
ti —p + 1.
Any labelling has the form CS. Therefore if z is a labelling,

© A, 0. . . . 0
® 6 . . .. . 0
c=C{| T+
© . . ....0
[ © Al(p+1) © O ]
S} o C)
+ ...
| © . 0]
[© A, © © 7 O © O
® o0 C) O 06 C)
+ + ...+
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[0 0 ... .. ©°7
© © 0
o+ }
o Apg, |
where
A =[a 0 0],
Ay = [0 a1 0 o 0 0], Aig =0 . . . 0 ay |,
Agp=lop 0 . 0 0], il =[0 .. .0 ag].

Case 1: char ' =2

(**) is automatically satisfied for each i. Therefore the elements of
the set of labellings for 0 are linearly independent. So the rank of the free
F-module of labellings for Ois ¢y —p+1+q@—p+1+..+q@g—p+1=
(G+a@+..+q)—kp+k=q +q¢+..+q — (p— 1)k by Theorem 6.

Case 2: (G is completely bipartite

Since G is R;-bipartite for each 4, the top elements of I, C; correspond-
ing to the R;-edges outside the spanning R;-tree will be 0 for ¢ = 1,2, ..., k.
So (**) is irrelevant and hence the elements of the set of labellings for 0 are
linearly independent. Therefore the rank of the free F-module of labellings
forOisqn—p+1+q@—p+1l+..+ag—p+l=(@+q+..+q)—kp+k
=q +q¢+...+q — (p—1)k by Theorem 6.

Case 3: (G is not completely bipartite and char F # 2

Subcase 1: G is not R;-bipartite for i =1,2,....k

In this case, due to (**), one of the matrices can be expressed as a
linear combination of others for each 7. So the rank of the free F-module
of labellings for 0is ¢ —p+q2—p+...+qg—p= (1 + g2+ ... + qx) — kp
by theorem 6.
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Subcase 2: G is R;-bipartite for i = i1,i9,...,%,,1 < r < k and
not R;-bipartite for i = i,41,...,15;11,02, ..., ik € {1,2,..., k}

In this case, due to (**), one of the matrices can be represented as a
linear combination of others for each ¢ except for ¢ = i1, 4o, ..., %,. so the
rank of the free F-module of labellings for 0is (¢1 + g2+ ... + qx) —kp+ 7
by Theorem 6. O
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