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ABSTRACT. Let B = % (Fermat ring), where
m > 2 and n > 3. In a recent paper D. Fiston and S. Maubach
show that for m > n? — 2n the unique locally nilpotent derivation
of B is the zero derivation. In this note we prove that the ring
B2 has non-zero irreducible locally nilpotent derivations, which are

explicitly presented, and that its ML-invariant is C.

Introduction

Let C[X7,...,X,] be the polynomial ring in n variables over complex
numbers C. Define

mo__

_ CXy,.... X,
"X X))

where m > 2 and n > 3. This ring is known as Fermat ring.

In a recent paper [3] D. Fiston and S. Maubach show that for
m > n? — 2n the unique locally nilpotent derivation of B™ is the zero
derivation. Consequently the following question naturally arises: is the
unique locally nilpotent derivation of the Fermat ring B, for m > 2 and
n > 3 the zero derivation?

In this work we show that the answer to this question is negative for
m = 2 and n > 3. In other words, there exist nontrivial locally nilpotent
derivations over B2 (see examples 1 and 2). Furthemore, we show that
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these derivations are irreducible (see Theorem 2). In the general case,
we prove that for certain classes of derivations of B the unique locally
nilpotent derivation is the zero derivation (see Proposition 2).

The material is organized as follows. Section 1 provides the basic
definitions, notations and results that are needed in this paper. In section
2 we present some results on the locally nilpotent derivations of the ring of
Fermat. In section 3 we show examples of linear derivations in LN D(B?2)
and some results on these derivations.

1. Generalities

In the following the word "ring” means commutative ring with a unit
element and characteristic zero. Furthermore, we denote the group of
units of a ring A by A* and the polynomial ring A[X1,...,X,] by A"
A "domain" is an integral domain. If A is a subring of B (A < B) and B
is a domain, then Frac(B) is its field of fractions and trdeg4(B) is the
transcendence degree of Frac(B) over Frac(A).

Let R be a ring. An additive mapping D : R — R is said to be a
derivation of R if it satisfies the Leibniz rule: D(ab) = aD(b) + D(a)b, for
all a,b € R. If A < R is a subring and D is a derivation of R satisfying
D(A) =0, we call D an A-derivation. We denote the set of all derivations
of R by Der(R) and the set of all A-derivations of R by Ders(R). A
derivation D is irreducible if it satisfies: given b € R, D(R) C bR if and
only if b € R*.

A derivation D is locally nilpotent if for each r € R there is an integer
n > 0 such that D™(r) = 0. Let us denote by LND(R) the set of all
locally nilpotent derivations of R. If A is a subring of B, we will make
use of the following notations

LNDA(B)={D € LND(B) | D € Ders(B)}

KLND(B) = {A;A = ker D, D € LND(B)}.

Given D € LND(B) define vp(b) = min{n € N | D"*! = 0}, for
0 # b € B. In addition, define vp(0) = —oo. The degree function vp
induced by a derivation D is a degree function on B (see [2]).

In this note x, ¥, z, ... will represent residue classes of variables X, Y,
Z, ... module an ideal.

Note that since C is algebraically closed given G = 7" ; a; X" with
a; € C* there exists a C-automorphism ¢ of C[Xy,...,X,] such that
o(X;) = b;X;, bj € C" and (X" + -+ X)) = G. In this case ¢
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induces a C-isomorphism of the Derc(B]") in Derd%). Thus all
the results obtained in this paper about the module Derc(B]") can be

extended to the module Derd%). In this paper, derivation of

Fermat ring means C-derivation and therefore we will use the notation
Der(B)") to denote Derc(B]").
The following facts are well known (see [1] or [4]).

Lemma 1. Let B be an integral domain and Dy,Ds € LND(B) such
that ker Dy = A = ker Ds. If there exists s € B such that 0 # Di(s) € A,
then O 7é DQ(S) € A and DQ(S)Dl =D (S)DQ. O

Lemma 2. Let B be a domain satisfying ascending chain condition for
principal ideals, let A € KLND(B) and consider the set

S ={D € LND4(B) | D is an irreducible derivation}.

Then S # (0 and LND4(B) ={aD |a € A and D € S}. O

Proposition 1. Let B be a domain and D € LN D(B) a nonzero deriva-
tion. Suppose that A = ker D, then:

a) A is a factorially closed subring of B. In particular B* = A*.

b) If K is any field contained in B then D is a K-derivation.

¢) If s € B satisfy Ds =1 then B = A[s] = Alll,

d) Let S = A\ {0}, then S™'B = (Frac A)Y and trdegsB = 1.

e) If A € KLND(B) and A’ C A then A’ = A O

2. The set LND(B")

In this section we obtain some results that state that certain classes
of derivations of C[X1,...,X,] do not induce derivations of B]* or are
not locally nilpotent if they do.

Let K be a field and let S = @ be a finitely generated K-algebra.
Consider the K[™-submodule D; = {D € Derg(KM™) | D(I) C I} of
the module Derg(K[). It is well known that the K[™-homomorfism
¢ : Dr — Derg(S) given by ¢(D)(g + I) = D(g) + I induces a
KM-isomorfism of ——2L_— in Dery(S). From this fact we obtain

IDer (Kn])
the following result.

Proposition 2. Let d be a derivation of the B]"'. If d(x1) = a € C and for
each i, 1 <i<n, d(z;) € Clzy,...,z,—1] , then d is the zero derivation.



P. BrRumATTI, M. VELOSO 23

Proof. Let F be the Fermat polynomial X{* + --- + X". We know
that there exists D € Der(C") such that D(F) € FC™ and that
d(z;) = D(X;) + FCI", Vi. Thus we have D(X;) —a € FCM, and
for each i > 1 there exists G; = G;(X1,...,X;—1) € C[Xy, ..., X;_1] such

that D(X;) — G; € FCI". Since D(F) = mZXim_lD(Xi) c FC and

i=1
n n
D(F) = mZXim_l(D(Xi) - G;) + mZXZm_lGi, where G = a, we
i=1 i=1
n
obtain Z leflGi ¢ FC and then obviously GG; = 0 for all 7. Thus d
i=1
is the zero derivation. ]

Corollary 1. Let d be a locally nilpotent derivation of the Fermat ring
B, If d(xz;) = aga{" - - -z, where «; € C for all i, then d is the zero
derivation.

Proof. Let vg be a degree function induced by a derivation d. Since the
polynomial F' is symmetric we can suppose, without loss of generality,
that

va(r1) <wg(za) < -+ <wglag) < - < wglan).

Suppose that for some k € {1,...,n} we have 0 # d(zj). Thus

va(zk) — 1 = mivg(z1) + movg(za) + - - - + myvg(zr) + - - - + mpva(zy).

This implies that m, = m,_1 = --- = my = 0. Thus, as d satisfies
the conditions of the Proposition 2, we can conclude that d is the zero
derivation. O

3. Linear derivations

This section is dedicated to the study of the locally nilpotent linear
derivation of the Fermat ring.

Definition 1. A derivation d of the ring B is called linear if
n
d(w;) = Z a;jxj for i =1,...,n, where a;; € C.
j=1

The matrix [a;;] is called the associated matrix of the derivation d. [
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Lemma 3. Let d be a linear derivation of B]' and [a;;] its associated
matriz. Then d is locally nilpotent if and only if [a;j] is nilpotent.

Proof. The following equality can be verified by induction over s.

ds(fL‘l) T
: = layg]” | ¢ |- (1)
d*(zy,) Tn

We know that d is locally nilpotent if and only if there exists » € N such
that d"(z;) = 0 for all i. As {z1,...,z,} is linearly independent over C
by the equality 1, we can conclude the result. O

Proposition 3. If d € LND(B") is linear and m > 2, then d = 0.

n

Proof. Let A = [a;;] be the associated matrix of d. Thus, for all i, d(z;) =
n
Z a;jxj. Since 7" + -+ - + x;' = 0 we infer that

j=1
2" Yd(zy) + -+ 27 d(x,) = 0. Then

n n n
0=a" (Y arjay) + a5 (O agiag) + oy (Y angay)
j=1 j=1 j=1
and as 27" = —a5" — -+ — 27" we deduce that
0= (age —a11)23" + - + (apn — an)zy’ + 204 a4
—1 _

S0 gy Tt e+ Y0, gy (%)
Observe that if m > 2, then the set
{1 e N U e 1 <i < <n JU{zge T 1< < i <}
is linearly independent over C. Thus, we can conclude that

ai] = agy = -+ = Gpp = @ and a;; =0 if ¢ # j.

Since d(x1) = ax; and d is locally nilpotent, we infer that a = 0. Thus,
the matrix A = [a;;] is null and d = 0. O

The next result characterizes the linear derivations of the LN D(B2).

Theorem 1. If d € Der(B2) is linear, then d € LND(B2) if and only
if its associated matriz is nilpotent and anti-symmetric.
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Proof. Let d € Der(B2) be a linear derivation and A = [a;j] be the
associated matrix of d. Using the same arguments used in Proposition 3
we obtain

0= (CLQQ — all)mg + -+ (ann — all)x% + Z(ai]‘ + aji)xi:cj

1<j
Since the set {z3,...,22} U{x;x;; 1 <i < j < n} is linearly independent
over C, we know that
ai] = agy = -+ - = Gpp = @ and a;; = —ay; if @ < g,

but if A is nilpotent then its trace na is null and thus A is also anti-
symmetric.

Now we can conclude by Lemma 3 that d is locally nilpotent if and
only if A is nilpotent and anti-symmetric. O

The next lemma helps us to find nilpotent and anti-symmetric matri-
ces.

First, we introduce some notation. Given a natural number n > 1,
M, denotes the ring of matrices n x n with entries in C, I, € M, is the
identity matrix and S,, is the group of permutations of {1,...,n}. Let
o be an element of S, F ={i € N; 1<i<n and o(i) =1} and
(=1)? =1if o is even and —1 if ¢ is odd.

Let A = (a;j) € M,,. An elementary result involving A and its charac-
teristic polynomial is given by the following lemma:

Lemma 4. Let A be a matriz in Ml,, and let
f(X)=det(XI, — A) = X"+ b, 1 X" 1+ 45X + by
be the characteristic polynomial of A.

a) If aj; = 0 for every i, 1 < i < n, then for all j, 0 < j < n —1,
bj = EUEFj(_l)U(_l)nij (Hz;ﬁa(z) aia(i))7 where
F; ={o € Sy #(F,) = j}. In particular b,—; = 0.

b) If A is anti-symmetric, then b,_o = i< a?j.

Proof. a) Just observe that if C'= X.I, — A = (¢;;) and 0 € S,,, then

(_1)0010(1) * Cpg(n) = (_1)0 n #Eo) H Qi Xﬂ FG)
z;éa(z)
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We know that b,_1 = —trace(A) and then b, 1 =0 .

b) If ¢ € S,, then §(F,) = n — 2 if and only if ¢ is a transposition,
ie., 0 = (ij), i # j. Hence the result is proved as (ij) is odd and
Aj5 = —Aj4- ]

Remark 1. Let R be the field of the real numbers. From Theorem 1 and
Lemma 4 W([e Conclu]de that the zero derivation is the unique derivation of
. _ R[Xy,..,Xn . . .
ring B = XP41X2) that is locally nilpotent and linear.
In the following we present explicit examples of locally nilpotent
derivations of B2 that are linear.

Example 1. Let n be an odd number and ¢ = v/—1 € C. Let D be a
linear derivation of CI" defined by the anti-symmetric matrix n x n

[0 0 ... 00 -1
00 ... 00 —2

I = :
00 0 0 -1
0 ... 00 —
1 i ... 1 i 0 |

It is easy to verify that
Di(X,)=X1+iXo+ 4+ Xp_o+1X,_1,
and for k <n

—X,, if kisodd.
Di(Xy) = { —iX,, if Fkis even.

But Dr(X?+---+ X2) =2" ' X;Dr(X;) + 2X,,Dr(X,) and then
Di(X? 4+ X2 = —2X,,D;(X,) +2X,Dr(X,) = 0.
Thus, D; induces a linear derivation, d;, of B2 given by
dr(zy) = x1 +ix9 + -+ Tp_o + iTp_1,

and for k <n
—Ty, if kis odd.
—ixy, if kis even.

d[(ack) = {

Now is easy to check that I3 = 0. Thus, d; is a locally nilpotent linear
derivation of B2 by Theorem 1.
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Example 2. Let n be an even number and let ¢ be a primitive
(n — 1)-th root of unity . Let Dp be a linear derivation of C" defined
by the anti-symmetric matrix n X n

00 ... 0 ... 0 —1 7
00 0 ... 0 0 —e

P=|00 . 0 0 —gk
00 ... 0 ... 0 —egn2
1 e ... koL en2 ]

It is easy to verify that
Dp(Xy) = —eb=lx,, for k <n
and
Dp(Xn) =X1+eXo+ -+ X+ + "2 X, 0.

As in example 1 it is easy to check that Dp(X?+---+ X2) = 0. Thus,
Dp induces a linear derivation, dp, of B2 given by

k—1

dp(zy) = —€" "xy, for k<n

and
dp(xn) =x1 +exe + -+ + el 4 e 2, .

Since 1+e4e2+---+e" 2 =0and {1,e,...,e" 2} = {1,¢2,...,e2n2)}
it is easy to check that P? = 0. Thus, dp is a locally nilpotent linear
derivation of B2 by Theorem 1.

The next step is to show that the derivations d; and dp are irreducible.
But for this we need the following elementary result.

Lemma 5. Let h be an element of the B]''. Then for each k € {1,...,n}
there exists a unique G € C[X1,...,Xy] satisfying

h=G(z1,...,2,) and degx, (G) < m.

Proof. By the Euclidean algorithm for the ring C[X}, ..., X,,] it is suf-
ficient to observe that for all £ the polinomial F' = X{" + --- + X" is
monic in Xy. ]
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In the Fermat ring B2 for each k € {1,...,n} define the subring By, of
the ring B2 by C[z1,..., %k, ..., o, where 7y, signifies that the element
7 was omitted in the ring B2 .

Lemma 6. Let h € B,, C B2. Then:

1) dp(h) € x, By, if n is even, dp defined in example 2;
2) di(h) € xp, By, if n is odd, dr defined in example 1.

Proof. Suppose that n is even and let h € B,,. Then

h= > aaf- .z~ hence
= (i1 mmsin_1)
oh oh oh
dp(h) = —-d e g . dp(,_
p(h) gz, @) ot gde(@) o 4 5 dp ()

_ 0Oh oh . .4 oh "2

— 37331( xn)+...+87$k( e )+ 8:cn_1( e 22,
then dp(h) € x,By,. The proof of the case n odd is analogous. O

Lemma 7. Let h € B2. Then
1) dp(h) =0 if and only if dp(h) =0 and h € B,, , if n is even;
2) dr(h) =0 if and only if di(h) =0 and h € By, if n is odd.

Proof. Suppose that n is even and let h € B2. By Lemma 5 there exists
a unique hg, h1 € B, such that h = hyx,, + hg. Assume h; # 0. Now note
that

0= dp(h) = dp(hl)xn + hldp(l'n) + dp(h()). (2)
From Lemma 6 we have dp(h1),dp(ho) € 2, By. Thus, dp(hy) = bz, for
some b € B,,. Hence dp(h1)z, = (bxp)r, = bx? = b(—22 — - —22_,)

€ By. Asdp(zy) = 21+ ey + -+ oy + -+ + e 21,1 we have
hidp(xzy,) € By,. Thus dp(h1)x, + hidp(z,) € B, and by Lemma 6
dp(hy) = cxy, for some ¢ € B, then by Lemma 5 and (2) we infer that
0 = dp(h1)zp + hidp(x,) = dp(hixy). As kerdp is factorially closed
xn € kerdp, so dp(x,) = 0. But since dp(x,,) # 0, this is a contradiction.
Hence h; = 0. The proof of the case n odd is analogous. O

Lemma 8. Let n > 3 be a natural number. Then
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1) kerdp = Clx; — =g g — e Ry — ETp_1], if n
18 even.
2) kerd; = Clxy +ixe, 21 — x3,...,21 — T2, 1 — iTk_1], if n is odd.

Proof. Suppose that n is even and let A be the subring

n—Fk)

n—2
(C[:cl—s( Vg, ..., x1 — &l Thyovoy T — ETp—1]

of BY. As
dp(z1—c" M) = dpay—e"Pdp(zy) = —a,—e"H (=t Da,) =0,
for every k < n, we deduce that A C ker dp. Given

(n—2) (n—k)

Y2 =T1 — € T2, ..y Yo =21 — € Tky -y Yn—1 = X1 — ETp—-1

observe that
A[xl] - C[$1>y27 cee 7yn71] - C[ﬂfl, ey xnfl] - Bna

thus the set {z1,y2, -+ ,yn—1} is algebraically independent over C.
By Lemma 7 for each h € ker dp, we have dp(h) = 0 and h € B,,, then

we may write h = Zaixi where a; € A C kerdp for all i € {0,...,n}.

i=0
Assume n > 0 and remember that dp(z1) = —x,. So

0= dp(h) = —[(Ll + 2@2.%1 +---+ nana:?_l]:cn.

By the uniqueness of Lemma 5 we have ay + 2aox1 + - - - + nanas’f*l =0
and hence a; = 0 for ¢ = 1,...,n. Therefore h = a9 € A C kerdp. The
proof of the case n odd is analogous.. O

Theorem 2. Let n > 3 be a natural number.

1) If n is even, then dp € LND(B2), where dp was defined in the
example 2, is irreducible and

LNDA(B?) = {adp | a € A},

where A = Clzy — =g g — e Ry — ETp_1].

2) If n is odd, then df € LND(B2), where d; was defined in the
example 1, is irreducible and

LNDs(B;) = {sdr | s € S},

where S = Clzy + ixe, 21 — T3,...,T] — Tp_2,T] — iTp_1].
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Proof. Suppose that n is even and d € LN D 4(B2)\ {0}. By Proposition 1
we have ker d = A. Observe that

n—1 n—1 n—1

A3 (zn) = dp(Y_ ¥ ay) = 3" e dp(ap) = (3 2F ) =0

k=1 k=1 k=1

thus d,(x,) € A. Then, by Lemma 1, d(z,) € A and
dp(xp)d = d(z,)dp. (3)
By definition dp(z1) = —xp, so
dp(zn)d(z1) = —d(zp)xy. (4)

We know that d(x1) = g1, + go with go, 91 € By,. Then, (4) implies that
dp(zp)g12n + dp(xn)go = —d(xy)xy,. Since dp(x,) € A C By, by the
uniqueness of Lemma 5 we obtain d(z,) = —dp(zy)g1. As d(x,) € A we
know that dp(d(zy,)) = 0. Thus 0 = dp(d(z,)) = dp(—dp(x,)g1) and
then dp(g1) =0, i.e., g1 € A. Since d(z,,) = —dp(zy)g1, (3) implies that

dp(xn)d = d(zp)dp = —dp(zn)g1dp.

Therefore d = —gi1dp, where —g; € A. The Lemma 2 implies that
dp = hdy for some h € A and some irreducible dy € LND(B2). As
we saw dy = hodp for some hg € A. So dp = hdy = h(hodp) = (hhy)dp.
Thus h € A* = C and hence dp is irreducible. The proof of the case n
odd is analogous. O

Let B be a C-domain and § € Autc(B). It is well known that if
D € LND(B), then §D0~! € LND(B) and ker 0D~ = 0(ker D).

Let S, be the symmetric group and ¢ € S,. The permutation o
induces a C-automorphism of Cl"l = C[X7, ..., X,,] which is also called &
and defined by relations o(X;) = X, ;) for every i. Now since

o(Xi+ -+ XH=X{+ -+ X2

then ¢ induces a C-automorphism of B2 which is also called o and defined
by relations o(z;) = x,(;) for every i. Suppose that n is even. Given j < n
we denote the transposition (jn) € S, by 7; and the derivation 7;dp7; ™
by dp,. Hence we have dp, € LND(B?) and

n—k)

kerdp, = 7j(Clx — 5(”_2):62, ce T — el Ty ooy T1 — ETp—1])-
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Observe that

Ty — e Ry ifj=1
Tp) =1 X1 — e=Kg  ifj=k
z1 — e Ky, otherwise.

Tj(l‘l — 6(n_k)

This implies that ker dp; C B;.
Now suppose that n is odd. For each 1 < j7 < n denote the derivation
Tjdﬂjfl by d[j . Thus we have

ker d[j = Tj(C[ﬂ?1 + ixg, Tl —T3y...,L] —Tp—92,T] — z'xn_l]).
if k£ is odd
Ty — T, ifj=1
Tj(.%‘l—l'k): T1 — T, iijk
r1 — T, otherwise.

If k is even
T, — 1T, ifj=1
Tj(l‘l - Z$k) = xr1 — ’iiL‘n, ifj =k
r1 — ixR, otherwise.
Is follows that ker d[j C Bj.
The concept of M L-invariant of the a ring R was introduced by
L. Makar-Limanov. This invariant has proved very useful in studying the
group of automorphisms of a ring (see [5]) .

Definition 2. Let B be a ring. The intersection of the kernels of all
locally nilpotent derivation of B is called the M L-invariant of B.

The next result shows that the M L-invariant of B2 is C. Note that
for m > n? — 2n the M L-invariant of B™ is B™.

Theorem 3. The M L-invariant of the ring B2 is C.

Proof. We define d; = dr; if n is odd, and d; = dp; if n is even. In both
cases, by previous observations, we have ker d; C B;j and

Nj—qkerd; C Nj_1B; =C.

Since C C kerdj, for all j € {1,...,n}, then the result follows. O
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