On locally nilpotent derivations of Fermat rings
 Paulo Roberto Brumatti and Marcelo Oliveira Veloso

Communicated by V. V. Kirichenko

Abstract

Let $B_{n}^{m}=\frac{\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]}{\left(X_{1}^{m}+\cdots+X_{n}^{m}\right)}$ (Fermat ring), where $m \geq 2$ and $n \geq 3$. In a recent paper D. Fiston and S. Maubach show that for $m \geq n^{2}-2 n$ the unique locally nilpotent derivation of B_{n}^{m} is the zero derivation. In this note we prove that the ring B_{n}^{2} has non-zero irreducible locally nilpotent derivations, which are explicitly presented, and that its ML-invariant is \mathbb{C}.

Introduction

Let $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be the polynomial ring in n variables over complex numbers \mathbb{C}. Define

$$
B_{n}^{m}=\frac{\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]}{\left(X_{1}^{m}+\cdots+X_{n}^{m}\right)}
$$

where $m \geq 2$ and $n \geq 3$. This ring is known as Fermat ring.
In a recent paper [3] D. Fiston and S. Maubach show that for $m \geq n^{2}-2 n$ the unique locally nilpotent derivation of B_{n}^{m} is the zero derivation. Consequently the following question naturally arises: is the unique locally nilpotent derivation of the Fermat ring B_{n}^{m} for $m \geq 2$ and $n \geq 3$ the zero derivation?

In this work we show that the answer to this question is negative for $m=2$ and $n \geq 3$. In other words, there exist nontrivial locally nilpotent derivations over B_{n}^{2} (see examples 1 and 2). Furthemore, we show that

[^0]these derivations are irreducible (see Theorem 2). In the general case, we prove that for certain classes of derivations of B_{n}^{m} the unique locally nilpotent derivation is the zero derivation (see Proposition 2).

The material is organized as follows. Section 1 provides the basic definitions, notations and results that are needed in this paper. In section 2 we present some results on the locally nilpotent derivations of the ring of Fermat. In section 3 we show examples of linear derivations in $\operatorname{LND}\left(B_{n}^{2}\right)$ and some results on these derivations.

1. Generalities

In the following the word "ring" means commutative ring with a unit element and characteristic zero. Furthermore, we denote the group of units of a ring A by A^{*} and the polynomial ring $A\left[X_{1}, \ldots, X_{n}\right]$ by $A^{[n]}$. A "domain" is an integral domain. If A is a subring of $B(A \leq B)$ and B is a domain, then $\operatorname{Frac}(B)$ is its field of fractions and $\operatorname{trdeg} A(B)$ is the transcendence degree of $\operatorname{Frac}(B)$ over $\operatorname{Frac}(A)$.

Let R be a ring. An additive mapping $D: R \rightarrow R$ is said to be a derivation of R if it satisfies the Leibniz rule: $D(a b)=a D(b)+D(a) b$, for all $a, b \in R$. If $A \leq R$ is a subring and D is a derivation of R satisfying $D(A)=0$, we call D an A-derivation. We denote the set of all derivations of R by $\operatorname{Der}(R)$ and the set of all A-derivations of R by $\operatorname{Der}_{A}(R)$. A derivation D is irreducible if it satisfies: given $b \in R, D(R) \subseteq b R$ if and only if $b \in R^{*}$.

A derivation D is locally nilpotent if for each $r \in R$ there is an integer $n \geq 0$ such that $D^{n}(r)=0$. Let us denote by $L N D(R)$ the set of all locally nilpotent derivations of R. If A is a subring of B, we will make use of the following notations

$$
\begin{aligned}
L N D_{A}(B) & =\left\{D \in L N D(B) \mid D \in \operatorname{Der}_{A}(B)\right\} \\
K L N D(B) & =\{A ; A=\operatorname{ker} D, D \in L N D(B)\}
\end{aligned}
$$

Given $D \in L N D(B)$ define $\nu_{D}(b)=\min \left\{n \in \mathbb{N} \mid D^{n+1}=0\right\}$, for $0 \neq b \in B$. In addition, define $\nu_{D}(0)=-\infty$. The degree function ν_{D} induced by a derivation D is a degree function on B (see [2]).

In this note x, y, z, \ldots will represent residue classes of variables X, Y, Z, \ldots module an ideal.

Note that since \mathbb{C} is algebraically closed given $G=\sum_{i=1}^{n} a_{i} X_{i}^{m}$ with $a_{i} \in \mathbb{C}^{*}$ there exists a \mathbb{C}-automorphism φ of $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ such that $\varphi\left(X_{i}\right)=b_{i} X_{i}, \quad b_{i} \in \mathbb{C}^{*}$ and $\varphi\left(X_{1}^{m}+\cdots+X_{n}^{m}\right)=G$. In this case φ
induces a \mathbb{C}-isomorphism of the $\operatorname{Der}_{\mathbb{C}}\left(B_{n}^{m}\right)$ in $\operatorname{Der}_{\mathbb{C}}\left(\frac{\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]}{(G)}\right)$. Thus all the results obtained in this paper about the module $\operatorname{Der}_{\mathbb{C}}\left(B_{n}^{m}\right)$ can be extended to the module $\operatorname{Der}_{\mathbb{C}}\left(\frac{\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]}{(G)}\right)$. In this paper, derivation of Fermat ring means \mathbb{C}-derivation and therefore we will use the notation $\operatorname{Der}\left(B_{n}^{m}\right)$ to denote $\operatorname{Der}_{\mathbb{C}}\left(B_{n}^{m}\right)$.

The following facts are well known (see [1] or [4]).
Lemma 1. Let B be an integral domain and $D_{1}, D_{2} \in L N D(B)$ such that ker $D_{1}=A=\operatorname{ker} D_{2}$. If there exists $s \in B$ such that $0 \neq D_{1}(s) \in A$, then $0 \neq D_{2}(s) \in A$ and $D_{2}(s) D_{1}=D_{1}(s) D_{2}$.

Lemma 2. Let B be a domain satisfying ascending chain condition for principal ideals, let $A \in K L N D(B)$ and consider the set

$$
S=\left\{D \in L N D_{A}(B) \mid D \text { is an irreducible derivation }\right\}
$$

Then $S \neq \emptyset$ and $L N D_{A}(B)=\{a D \mid a \in A$ and $D \in S\}$.
Proposition 1. Let B be a domain and $D \in L N D(B)$ a nonzero derivation. Suppose that $A=\operatorname{ker} D$, then:
a) A is a factorially closed subring of B. In particular $B^{*}=A^{*}$.
b) If K is any field contained in B then D is a K-derivation.
c) If $s \in B$ satisfy $D s=1$ then $B=A[s]=A^{[1]}$.
d) Let $S=A \backslash\{0\}$, then $S^{-1} B=(\text { Frac } A)^{[1]}$ and $\operatorname{trdeg}_{A} B=1$.
e) If $A^{\prime} \in K L N D(B)$ and $A^{\prime} \subseteq A$ then $A^{\prime}=A$

2. The set $L N D\left(B_{n}^{m}\right)$

In this section we obtain some results that state that certain classes of derivations of $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ do not induce derivations of B_{n}^{m} or are not locally nilpotent if they do.

Let K be a field and let $S=\frac{K^{[n]}}{I}$ be a finitely generated K-algebra. Consider the $K^{[n]}$-submodule $\mathcal{D}_{I}=\left\{D \in \operatorname{Der}_{K}\left(K^{[n]}\right) \mid D(I) \subseteq I\right\}$ of the module $\operatorname{Der}_{K}\left(K^{[n]}\right)$. It is well known that the $K^{[n]}$-homomorfism $\varphi: \mathcal{D}_{I} \rightarrow \operatorname{Der}_{K}(S)$ given by $\varphi(D)(g+I)=D(g)+I$ induces a $K^{[n]}$-isomorfism of $\frac{\mathcal{D}_{I}}{I D e r_{K}\left(K^{[n]}\right)}$ in $\operatorname{Der}_{K}(S)$. From this fact we obtain the following result.

Proposition 2. Let d be a derivation of the B_{n}^{m}. If $d\left(x_{1}\right)=a \in \mathbb{C}$ and for each $i, 1<i \leq n, d\left(x_{i}\right) \in \mathbb{C}\left[x_{1}, \ldots, x_{i-1}\right]$, then d is the zero derivation.

Proof. Let F be the Fermat polynomial $X_{1}^{m}+\cdots+X_{n}^{m}$. We know that there exists $D \in \operatorname{Der}\left(\mathbb{C}^{[n]}\right)$ such that $D(F) \in F \mathbb{C}^{[n]}$ and that $d\left(x_{i}\right)=D\left(X_{i}\right)+F \mathbb{C}^{[n]}, \forall i$. Thus we have $D\left(X_{1}\right)-a \in F \mathbb{C}^{[n]}$, and for each $i>1$ there exists $G_{i}=G_{i}\left(X_{1}, \ldots, X_{i-1}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{i-1}\right]$ such that $D\left(X_{i}\right)-G_{i} \in F \mathbb{C}^{[n]}$. Since $D(F)=m \sum_{i=1}^{n} X_{i}^{m-1} D\left(X_{i}\right) \in F \mathbb{C}^{[n]}$ and $D(F)=m \sum_{i=1}^{n} X_{i}^{m-1}\left(D\left(X_{i}\right)-G_{i}\right)+m \sum_{i=1}^{n} X_{i}^{m-1} G_{i}$, where $G_{1}=a$, we obtain $\sum_{i=1}^{n} X_{i}^{m-1} G_{i} \in F \mathbb{C}^{[n]}$ and then obviously $G_{i}=0$ for all i. Thus d is the zero derivation.

Corollary 1. Let d be a locally nilpotent derivation of the Fermat ring B_{n}^{m}. If $d\left(x_{i}\right)=\alpha_{i} x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}$, where $\alpha_{i} \in \mathbb{C}$ for all i, then d is the zero derivation.

Proof. Let ν_{d} be a degree function induced by a derivation d. Since the polynomial F is symmetric we can suppose, without loss of generality, that

$$
\nu_{d}\left(x_{1}\right) \leq \nu_{d}\left(x_{2}\right) \leq \cdots \leq \nu_{d}\left(x_{k}\right) \leq \cdots \leq \nu_{d}\left(x_{n}\right)
$$

Suppose that for some $k \in\{1, \ldots, n\}$ we have $0 \neq d\left(x_{k}\right)$. Thus

$$
\nu_{d}\left(x_{k}\right)-1=m_{1} \nu_{d}\left(x_{1}\right)+m_{2} \nu_{d}\left(x_{2}\right)+\cdots+m_{k} \nu_{d}\left(x_{k}\right)+\cdots+m_{n} \nu_{d}\left(x_{n}\right)
$$

This implies that $m_{n}=m_{n-1}=\cdots=m_{k}=0$. Thus, as d satisfies the conditions of the Proposition 2, we can conclude that d is the zero derivation.

3. Linear derivations

This section is dedicated to the study of the locally nilpotent linear derivation of the Fermat ring.

Definition 1. A derivation d of the ring B_{n}^{m} is called linear if

$$
d\left(x_{i}\right)=\sum_{j=1}^{n} a_{i j} x_{j} \text { for } i=1, \ldots, n, \text { where } a_{i j} \in \mathbb{C}
$$

The matrix $\left[a_{i j}\right]$ is called the associated matrix of the derivation d.

Lemma 3. Let d be a linear derivation of B_{n}^{m} and $\left[a_{i j}\right]$ its associated matrix. Then d is locally nilpotent if and only if $\left[a_{i j}\right]$ is nilpotent.

Proof. The following equality can be verified by induction over s.

$$
\left[\begin{array}{c}
d^{s}\left(x_{1}\right) \tag{1}\\
\vdots \\
d^{s}\left(x_{n}\right)
\end{array}\right]=\left[a_{i j}\right]^{s}\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

We know that d is locally nilpotent if and only if there exists $r \in \mathbb{N}$ such that $d^{r}\left(x_{i}\right)=0$ for all i. As $\left\{x_{1}, \ldots, x_{n}\right\}$ is linearly independent over \mathbb{C} by the equality 1 , we can conclude the result.

Proposition 3. If $d \in L N D\left(B_{n}^{m}\right)$ is linear and $m>2$, then $d=0$.
Proof. Let $A=\left[a_{i j}\right]$ be the associated matrix of d. Thus, for all $i, d\left(x_{i}\right)=$ $\sum_{j=1}^{n} a_{i j} x_{j}$. Since $x_{1}^{m}+\cdots+x_{n}^{m}=0$ we infer that
$x_{1}^{m-1} d\left(x_{1}\right)+\cdots+x_{n}^{m-1} d\left(x_{n}\right)=0$. Then

$$
0=x_{1}^{m-1}\left(\sum_{j=1}^{n} a_{1 j} x_{j}\right)+x_{2}^{m-1}\left(\sum_{j=1}^{n} a_{2 j} x_{j}\right)+\cdots+x_{n}^{m-1}\left(\sum_{j=1}^{n} a_{n j} x_{j}\right)
$$

and as $x_{1}^{m}=-x_{2}^{m}-\cdots-x_{n}^{m}$ we deduce that

$$
\begin{gathered}
0=\left(a_{22}-a_{11}\right) x_{2}^{m}+\cdots+\left(a_{n n}-a_{11}\right) x_{n}^{m}+\sum_{j \neq 1}^{n} a_{1 j} x_{j} x_{1}^{m-1}+ \\
\sum_{j \neq 2}^{n} a_{2 j} x_{j} x_{2}^{m-1}+\cdots+\sum_{j \neq n}^{n} a_{n j} x_{j} x_{n}^{m-1} . \quad(*)
\end{gathered}
$$

Observe that if $m>2$, then the set

$$
\left\{x_{2}^{m-1}, \ldots, x_{n}^{m-1}\right\} \cup\left\{x_{j} x_{i}^{m-1} ; 1 \leq i<j \leq n,\right\} \cup\left\{x_{j} x_{i}^{m-1} ; 1 \leq j<i \leq n\right\}
$$

is linearly independent over \mathbb{C}. Thus, we can conclude that

$$
a_{11}=a_{22}=\cdots=a_{n n}=a \text { and } a_{i j}=0 \text { if } i \neq j
$$

Since $d\left(x_{1}\right)=a x_{1}$ and d is locally nilpotent, we infer that $a=0$. Thus, the matrix $A=\left[a_{i j}\right]$ is null and $d=0$.

The next result characterizes the linear derivations of the $L N D\left(B_{n}^{2}\right)$.
Theorem 1. If $d \in \operatorname{Der}\left(B_{n}^{2}\right)$ is linear, then $d \in L N D\left(B_{n}^{2}\right)$ if and only if its associated matrix is nilpotent and anti-symmetric.

Proof. Let $d \in \operatorname{Der}\left(B_{n}^{2}\right)$ be a linear derivation and $A=\left[a_{i j}\right]$ be the associated matrix of d. Using the same arguments used in Proposition 3 we obtain

$$
0=\left(a_{22}-a_{11}\right) x_{2}^{2}+\cdots+\left(a_{n n}-a_{11}\right) x_{n}^{2}+\sum_{i<j}\left(a_{i j}+a_{j i}\right) x_{i} x_{j}
$$

Since the set $\left\{x_{2}^{2}, \ldots, x_{n}^{2}\right\} \cup\left\{x_{i} x_{j} ; 1 \leq i<j \leq n\right\}$ is linearly independent over \mathbb{C}, we know that

$$
a_{11}=a_{22}=\cdots=a_{n n}=a \text { and } a_{i j}=-a_{j i} \text { if } i<j
$$

but if A is nilpotent then its trace $n a$ is null and thus A is also antisymmetric.

Now we can conclude by Lemma 3 that d is locally nilpotent if and only if A is nilpotent and anti-symmetric.

The next lemma helps us to find nilpotent and anti-symmetric matrices.

First, we introduce some notation. Given a natural number $n>1$, \mathbb{M}_{n} denotes the ring of matrices $n \times n$ with entries in $\mathbb{C}, I_{n} \in \mathbb{M}_{n}$ is the identity matrix and S_{n} is the group of permutations of $\{1, \ldots, n\}$. Let σ be an element of $S_{n}, F_{\sigma}=\{i \in \mathbb{N} ; 1 \leq i \leq n \quad$ and $\quad \sigma(i)=i\}$ and $(-1)^{\sigma}=1$ if σ is even and -1 if σ is odd.

Let $A=\left(a_{i j}\right) \in \mathbb{M}_{n}$. An elementary result involving A and its characteristic polynomial is given by the following lemma:

Lemma 4. Let A be a matrix in \mathbb{M}_{n} and let

$$
f(X)=\operatorname{det}\left(X I_{n}-A\right)=X^{n}+b_{n-1} X^{n-1}+\cdots+b_{1} X+b_{0}
$$

be the characteristic polynomial of A.
a) If $a_{i i}=0$ for every $i, 1 \leq i \leq n$, then for all $j, 0 \leq j \leq n-1$, $b_{j}=\sum_{\sigma \in F_{j}}(-1)^{\sigma}(-1)^{n-j}\left(\prod_{i \neq \sigma(i)} a_{i \sigma(i)}\right)$, where $F_{j}=\left\{\sigma \in S_{n} ; \sharp\left(F_{\sigma}\right)=j\right\}$. In particular $b_{n-1}=0$.
b) If A is anti-symmetric, then $b_{n-2}=\sum_{i<j} a_{i j}^{2}$.

Proof. a) Just observe that if $C=X . I_{n}-A=\left(c_{i j}\right)$ and $\sigma \in S_{n}$, then

$$
(-1)^{\sigma} c_{1 \sigma(1)} \cdots c_{n \sigma(n)}=(-1)^{\sigma}(-1)^{n-\sharp\left(F_{\sigma}\right)}\left(\prod_{i \neq \sigma(i)} a_{i \sigma(i)}\right) \cdot X^{\sharp\left(F_{\sigma}\right)} .
$$

We know that $b_{n-1}=-\operatorname{trace}(A)$ and then $b_{n-1}=0$.
b) If $\sigma \in S_{n}$ then $\sharp\left(F_{\sigma}\right)=n-2$ if and only if σ is a transposition, i.e., $\sigma=(i j), i \neq j$. Hence the result is proved as $(i j)$ is odd and $a_{i j}=-a_{j i}$.

Remark 1. Let \mathbb{R} be the field of the real numbers. From Theorem 1 and Lemma 4 we conclude that the zero derivation is the unique derivation of ring $B=\frac{\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]}{\left(X_{1}^{2}+\cdots+X_{n}^{2}\right)}$ that is locally nilpotent and linear.

In the following we present explicit examples of locally nilpotent derivations of B_{n}^{2} that are linear.

Example 1. Let n be an odd number and $i=\sqrt{-1} \in \mathbb{C}$. Let D_{I} be a linear derivation of $\mathbb{C}^{[n]}$ defined by the anti-symmetric matrix $n \times n$

$$
I=\left[\begin{array}{cccccc}
0 & 0 & \ldots & 0 & 0 & -1 \\
0 & 0 & \ldots & 0 & 0 & -i \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 & -1 \\
0 & 0 & \ldots & 0 & 0 & -i \\
1 & i & \ldots & 1 & i & 0
\end{array}\right]
$$

It is easy to verify that

$$
D_{I}\left(X_{n}\right)=X_{1}+i X_{2}+\cdots+X_{n-2}+i X_{n-1}
$$

and for $k<n$

$$
D_{I}\left(X_{k}\right)=\left\{\begin{array}{cc}
-X_{n}, & \text { if } k \text { is odd. } \\
-i X_{n}, & \text { if } k \text { is even }
\end{array}\right.
$$

But $D_{I}\left(X_{1}^{2}+\cdots+X_{n}^{2}\right)=2 \sum_{i=1}^{n-1} X_{i} D_{I}\left(X_{i}\right)+2 X_{n} D_{I}\left(X_{n}\right)$ and then

$$
D_{I}\left(X_{1}^{2}+\cdots+X_{n}^{2}\right)=-2 X_{n} D_{I}\left(X_{n}\right)+2 X_{n} D_{I}\left(X_{n}\right)=0
$$

Thus, D_{I} induces a linear derivation, d_{I}, of B_{n}^{2} given by

$$
d_{I}\left(x_{n}\right)=x_{1}+i x_{2}+\cdots+x_{n-2}+i x_{n-1}
$$

and for $k<n$

$$
d_{I}\left(x_{k}\right)=\left\{\begin{aligned}
-x_{n}, & \text { if } k \text { is odd. } \\
-i x_{n}, & \text { if } k \text { is even }
\end{aligned}\right.
$$

Now is easy to check that $I^{3}=0$. Thus, d_{I} is a locally nilpotent linear derivation of B_{n}^{2} by Theorem 1 .

Example 2. Let n be an even number and let ε be a primitive $(n-1)$-th root of unity. Let D_{P} be a linear derivation of $\mathbb{C}^{[n]}$ defined by the anti-symmetric matrix $n \times n$

$$
P=\left[\begin{array}{ccccccc}
0 & 0 & \ldots & 0 & \ldots & 0 & -1 \\
0 & 0 & 0 & \ldots & 0 & 0 & -\varepsilon \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & \ldots & 0 & -\varepsilon^{k} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & \ldots & 0 & -\varepsilon^{n-2} \\
1 & \varepsilon & \ldots & \varepsilon^{k} & \ldots & \varepsilon^{n-2} & 0
\end{array}\right]
$$

It is easy to verify that

$$
D_{P}\left(X_{k}\right)=-\varepsilon^{k-1} X_{n}, \text { for } k<n
$$

and

$$
D_{P}\left(X_{n}\right)=X_{1}+\varepsilon X_{2}+\cdots+\varepsilon^{k-1} X_{k}+\cdots+\varepsilon^{n-2} X_{n-1}
$$

As in example 1 it is easy to check that $D_{P}\left(X_{1}^{2}+\cdots+X_{n}^{2}\right)=0$. Thus, D_{P} induces a linear derivation, d_{P}, of B_{n}^{2} given by

$$
d_{P}\left(x_{k}\right)=-\varepsilon^{k-1} x_{n}, \text { for } k<n
$$

and

$$
d_{P}\left(x_{n}\right)=x_{1}+\varepsilon x_{2}+\cdots+\varepsilon^{k-1} x_{k}+\cdots+\varepsilon^{n-2} x_{n-1}
$$

Since $1+\varepsilon+\varepsilon^{2}+\cdots+\varepsilon^{n-2}=0$ and $\left\{1, \varepsilon, \ldots, \varepsilon^{n-2}\right\}=\left\{1, \varepsilon^{2}, \ldots, \varepsilon^{2(n-2)}\right\}$ it is easy to check that $P^{3}=0$. Thus, d_{P} is a locally nilpotent linear derivation of B_{n}^{2} by Theorem 1 .

The next step is to show that the derivations d_{I} and d_{P} are irreducible. But for this we need the following elementary result.

Lemma 5. Let h be an element of the B_{n}^{m}. Then for each $k \in\{1, \ldots, n\}$ there exists a unique $G \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ satisfying

$$
h=G\left(x_{1}, \ldots, x_{n}\right) \text { and } \operatorname{deg}_{X_{k}}(G)<m
$$

Proof. By the Euclidean algorithm for the ring $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ it is sufficient to observe that for all k the polinomial $F=X_{1}^{m}+\cdots+X_{n}^{m}$ is monic in X_{k}.

In the Fermat ring B_{n}^{2} for each $k \in\{1, \ldots, n\}$ define the subring B_{k} of the ring B_{n}^{2} by $\mathbb{C}\left[x_{1}, \ldots, \widehat{x_{k}}, \ldots, x_{n}\right]$ where $\widehat{x_{k}}$ signifies that the element x_{k} was omitted in the ring B_{n}^{2}.

Lemma 6. Let $h \in B_{n} \subset B_{n}^{2}$. Then:

1) $d_{P}(h) \in x_{n} B_{n}$ if n is even, d_{P} defined in example 2;
2) $d_{I}(h) \in x_{n} B_{n}$ if n is odd, d_{I} defined in example 1 .

Proof. Suppose that n is even and let $h \in B_{n}$. Then

$$
\begin{gathered}
h=\sum_{i=\left(i_{1}, \ldots, i_{n-1}\right)} a_{i} x_{1}^{i_{1}} \cdots x_{n-1}^{i_{n-1}}, \text { hence } \\
d_{P}(h)=\frac{\partial h}{\partial x_{1}} d_{P}\left(x_{1}\right)+\cdots+\frac{\partial h}{\partial x_{k}} d_{P}\left(x_{k}\right)+\cdots+\frac{\partial h}{\partial x_{n-1}} d_{P}\left(x_{n-1}\right) \\
=\frac{\partial h}{\partial x_{1}}\left(-x_{n}\right)+\cdots+\frac{\partial h}{\partial x_{k}}\left(-\varepsilon^{k-1} x_{n}\right)+\cdots+\frac{\partial h}{\partial x_{n-1}}\left(-\varepsilon^{n-2} x_{n}\right)
\end{gathered}
$$

then $d_{P}(h) \in x_{n} B_{n}$. The proof of the case n odd is analogous.
Lemma 7. Let $h \in B_{n}^{2}$. Then

1) $d_{P}(h)=0$ if and only if $d_{P}(h)=0$ and $h \in B_{n}$, if n is even;
2) $d_{I}(h)=0$ if and only if $d_{I}(h)=0$ and $h \in B_{n}$, if n is odd.

Proof. Suppose that n is even and let $h \in B_{n}^{2}$. By Lemma 5 there exists a unique $h_{0}, h_{1} \in B_{n}$ such that $h=h_{1} x_{n}+h_{0}$. Assume $h_{1} \neq 0$. Now note that

$$
\begin{equation*}
0=d_{P}(h)=d_{P}\left(h_{1}\right) x_{n}+h_{1} d_{P}\left(x_{n}\right)+d_{P}\left(h_{0}\right) \tag{2}
\end{equation*}
$$

From Lemma 6 we have $d_{P}\left(h_{1}\right), d_{P}\left(h_{0}\right) \in x_{n} B_{n}$. Thus, $d_{P}\left(h_{1}\right)=b x_{n}$ for some $b \in B_{n}$. Hence $d_{P}\left(h_{1}\right) x_{n}=\left(b x_{n}\right) x_{n}=b x_{n}^{2}=b\left(-x_{1}^{2}-\cdots-x_{n-1}^{2}\right)$ $\in B_{n}$. As $d_{P}\left(x_{n}\right)=x_{1}+\varepsilon x_{2}+\cdots+\varepsilon^{i-1} x_{i}+\cdots+\varepsilon^{n-2} x_{n-1}$ we have $h_{1} d_{P}\left(x_{n}\right) \in B_{n}$. Thus $d_{P}\left(h_{1}\right) x_{n}+h_{1} d_{P}\left(x_{n}\right) \in B_{n}$ and by Lemma 6 $d_{P}\left(h_{0}\right)=c x_{n}$ for some $c \in B_{n}$, then by Lemma 5 and (2) we infer that $0=d_{P}\left(h_{1}\right) x_{n}+h_{1} d_{P}\left(x_{n}\right)=d_{P}\left(h_{1} x_{n}\right)$. As $k e r d_{P}$ is factorially closed $x_{n} \in \operatorname{ker} d_{P}$, so $d_{P}\left(x_{n}\right)=0$. But since $d_{P}\left(x_{n}\right) \neq 0$, this is a contradiction. Hence $h_{1}=0$. The proof of the case n odd is analogous.

Lemma 8. Let $n \geq 3$ be a natural number. Then

1) $\operatorname{ker} d_{P}=\mathbb{C}\left[x_{1}-\varepsilon^{(n-2)} x_{2}, \ldots, x_{1}-\varepsilon^{(n-k)} x_{k}, \ldots, x_{1}-\varepsilon x_{n-1}\right]$, if n is even.
2) $\operatorname{ker} d_{I}=\mathbb{C}\left[x_{1}+i x_{2}, x_{1}-x_{3}, \ldots, x_{1}-x_{k-2}, x_{1}-i x_{k-1}\right]$, if n is odd.

Proof. Suppose that n is even and let A be the subring

$$
\mathbb{C}\left[x_{1}-\varepsilon^{(n-2)} x_{2}, \ldots, x_{1}-\varepsilon^{(n-k)} x_{k}, \ldots, x_{1}-\varepsilon x_{n-1}\right]
$$

of B_{2}^{n}. As
$d_{P}\left(x_{1}-\varepsilon^{(n-k)} x_{k}\right)=d_{P} x_{1}-\varepsilon^{(n-k)} d_{P}\left(x_{k}\right)=-x_{n}-\varepsilon^{(n-k)}\left(-\varepsilon^{(k-1)} x_{n}\right)=0$,
for every $k<n$, we deduce that $A \subseteq \operatorname{ker} d_{P}$. Given

$$
y_{2}=x_{1}-\varepsilon^{(n-2)} x_{2}, \ldots, y_{k}=x_{1}-\varepsilon^{(n-k)} x_{k}, \ldots, y_{n-1}=x_{1}-\varepsilon x_{n-1}
$$

observe that

$$
A\left[x_{1}\right]=\mathbb{C}\left[x_{1}, y_{2}, \ldots, y_{n-1}\right]=\mathbb{C}\left[x_{1}, \ldots, x_{n-1}\right]=B_{n},
$$

thus the set $\left\{x_{1}, y_{2}, \cdots, y_{n-1}\right\}$ is algebraically independent over \mathbb{C}.
By Lemma 7 for each $h \in \operatorname{ker} d_{P}$, we have $d_{P}(h)=0$ and $h \in B_{n}$, then we may write $h=\sum_{i=0}^{n} a_{i} x_{1}^{i}$ where $a_{i} \in A \subseteq \operatorname{ker} d_{P}$ for all $i \in\{0, \ldots, n\}$. Assume $n>0$ and remember that $d_{P}\left(x_{1}\right)=-x_{n}$. So

$$
0=d_{P}(h)=-\left[a_{1}+2 a_{2} x_{1}+\cdots+n a_{n} x_{1}^{n-1}\right] x_{n} .
$$

By the uniqueness of Lemma 5 we have $a_{1}+2 a_{2} x_{1}+\cdots+n a_{n} x_{1}^{n-1}=0$ and hence $a_{i}=0$ for $i=1, \ldots, n$. Therefore $h=a_{0} \in A \subseteq \operatorname{ker} d_{P}$. The proof of the case n odd is analogous..

Theorem 2. Let $n \geq 3$ be a natural number.

1) If n is even, then $d_{P} \in \operatorname{LND}\left(B_{n}^{2}\right)$, where d_{P} was defined in the example 2, is irreducible and

$$
\operatorname{LND}_{A}\left(B_{n}^{2}\right)=\left\{a d_{P} \mid a \in A\right\}
$$

where $A=\mathbb{C}\left[x_{1}-\varepsilon^{(n-2)} x_{2}, \ldots, x_{1}-\varepsilon^{(n-k)} x_{k}, \ldots, x_{1}-\varepsilon x_{n-1}\right]$.
2) If n is odd, then $d_{I} \in \operatorname{LND}\left(B_{n}^{2}\right)$, where d_{I} was defined in the example 1, is irreducible and

$$
L N D_{S}\left(B_{n}^{2}\right)=\left\{s d_{I} \mid s \in S\right\}
$$

where $S=\mathbb{C}\left[x_{1}+i x_{2}, x_{1}-x_{3}, \ldots, x_{1}-x_{n-2}, x_{1}-i x_{n-1}\right]$.

Proof. Suppose that n is even and $d \in L N D_{A}\left(B_{n}^{2}\right) \backslash\{0\}$. By Proposition 1 we have $\operatorname{ker} d=A$. Observe that

$$
d_{P}^{2}\left(x_{n}\right)=d_{P}\left(\sum_{k=1}^{n-1} \varepsilon^{k-1} x_{k}\right)=\sum_{k=1}^{n-1} \varepsilon^{k-1} d_{P}\left(x_{k}\right)=x_{n}\left(\sum_{k=1}^{n-1} \varepsilon^{2(k-1)}\right)=0
$$

thus $d_{p}\left(x_{n}\right) \in A$. Then, by Lemma $1, d\left(x_{n}\right) \in A$ and

$$
\begin{equation*}
d_{P}\left(x_{n}\right) d=d\left(x_{n}\right) d_{P} \tag{3}
\end{equation*}
$$

By definition $d_{P}\left(x_{1}\right)=-x_{n}$, so

$$
\begin{equation*}
d_{P}\left(x_{n}\right) d\left(x_{1}\right)=-d\left(x_{n}\right) x_{n} \tag{4}
\end{equation*}
$$

We know that $d\left(x_{1}\right)=g_{1} x_{n}+g_{0}$ with $g_{0}, g_{1} \in B_{n}$. Then, (4) implies that $d_{P}\left(x_{n}\right) g_{1} x_{n}+d_{P}\left(x_{n}\right) g_{0}=-d\left(x_{n}\right) x_{n}$. Since $d_{P}\left(x_{n}\right) \in A \subseteq B_{n}$, by the uniqueness of Lemma 5 we obtain $d\left(x_{n}\right)=-d_{P}\left(x_{n}\right) g_{1}$. As $d\left(x_{n}\right) \in A$ we know that $d_{P}\left(d\left(x_{n}\right)\right)=0$. Thus $0=d_{P}\left(d\left(x_{n}\right)\right)=d_{P}\left(-d_{P}\left(x_{n}\right) g_{1}\right)$ and then $d_{P}\left(g_{1}\right)=0$, i.e., $g_{1} \in A$. Since $d\left(x_{n}\right)=-d_{P}\left(x_{n}\right) g_{1},(3)$ implies that

$$
d_{P}\left(x_{n}\right) d=d\left(x_{n}\right) d_{P}=-d_{P}\left(x_{n}\right) g_{1} d_{P}
$$

Therefore $d=-g_{1} d_{P}$, where $-g_{1} \in A$. The Lemma 2 implies that $d_{P}=h d_{0}$ for some $h \in A$ and some irreducible $d_{0} \in L N D\left(B_{n}^{2}\right)$. As we saw $d_{0}=h_{0} d_{P}$ for some $h_{0} \in A$. So $d_{P}=h d_{0}=h\left(h_{0} d_{P}\right)=\left(h h_{0}\right) d_{P}$. Thus $h \in A^{*}=\mathbb{C}$ and hence d_{P} is irreducible. The proof of the case n odd is analogous.

Let B be a \mathbb{C}-domain and $\theta \in A u t_{\mathbb{C}}(B)$. It is well known that if $D \in L N D(B)$, then $\theta D \theta^{-1} \in L N D(B)$ and $\operatorname{ker} \theta D \theta^{-1}=\theta(\operatorname{ker} D)$.

Let S_{n} be the symmetric group and $\sigma \in S_{n}$. The permutation σ induces a \mathbb{C}-automorphism of $\mathbb{C}^{[n]}=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ which is also called σ and defined by relations $\sigma\left(X_{i}\right)=X_{\sigma(i)}$ for every i. Now since

$$
\sigma\left(X_{1}^{2}+\cdots+X_{n}^{2}\right)=X_{1}^{2}+\cdots+X_{n}^{2}
$$

then σ induces a \mathbb{C}-automorphism of B_{n}^{2} which is also called σ and defined by relations $\sigma\left(x_{i}\right)=x_{\sigma(i)}$ for every i. Suppose that n is even. Given $j<n$ we denote the transposition $(j n) \in S_{n}$ by τ_{j} and the derivation $\tau_{j} d_{P} \tau_{j}{ }^{-1}$ by $d_{P_{j}}$. Hence we have $d_{P_{j}} \in L N D\left(B_{n}^{2}\right)$ and

$$
\operatorname{ker} d_{P_{j}}=\tau_{j}\left(\mathbb{C}\left[x_{1}-\varepsilon^{(n-2)} x_{2}, \ldots, x_{1}-\varepsilon^{(n-k)} x_{k}, \ldots, x_{1}-\varepsilon x_{n-1}\right]\right)
$$

Observe that

$$
\tau_{j}\left(x_{1}-\varepsilon^{(n-k)} x_{k}\right)=\left\{\begin{array}{lc}
x_{n}-\varepsilon^{(n-k)} x_{k}, & \text { if } j=1 \\
x_{1}-\varepsilon^{(n-k)} x_{n}, & \text { if } j=k \\
x_{1}-\varepsilon^{(n-k)} x_{k}, & \text { otherwise }
\end{array}\right.
$$

This implies that $\operatorname{ker} d_{P_{j}} \subset B_{j}$.
Now suppose that n is odd. For each $1 \leq j \leq n$ denote the derivation $\tau_{j} d_{I} \tau_{j}{ }^{-1}$ by $d_{I_{j}}$. Thus we have

$$
\operatorname{ker} d_{I_{j}}=\tau_{j}\left(\mathbb{C}\left[x_{1}+i x_{2}, x_{1}-x_{3}, \ldots, x_{1}-x_{n-2}, x_{1}-i x_{n-1}\right]\right)
$$

if k is odd

$$
\tau_{j}\left(x_{1}-x_{k}\right)=\left\{\begin{array}{lc}
x_{n}-x_{k}, & \text { if } j=1 \\
x_{1}-x_{n}, & \text { if } j=k \\
x_{1}-x_{k}, & \text { otherwise }
\end{array}\right.
$$

If k is even

$$
\tau_{j}\left(x_{1}-i x_{k}\right)=\left\{\begin{array}{lc}
x_{n}-i x_{k}, & \text { if } j=1 \\
x_{1}-i x_{n}, & \text { if } j=k \\
x_{1}-i x_{k}, & \text { otherwise }
\end{array}\right.
$$

Is follows that $\operatorname{ker} d_{I_{j}} \subset B_{j}$.
The concept of $M L$-invariant of the a ring R was introduced by
L. Makar-Limanov. This invariant has proved very useful in studying the group of automorphisms of a ring (see [5]).

Definition 2. Let B be a ring. The intersection of the kernels of all locally nilpotent derivation of B is called the $M L$-invariant of B.

The next result shows that the $M L$-invariant of B_{n}^{2} is \mathbb{C}. Note that for $m \geq n^{2}-2 n$ the $M L$-invariant of B_{n}^{m} is B_{n}^{m}.

Theorem 3. The $M L$-invariant of the ring B_{n}^{2} is \mathbb{C}.
Proof. We define $d_{j}=d_{I_{j}}$ if n is odd, and $d_{j}=d_{P_{j}}$ if n is even. In both cases, by previous observations, we have $\operatorname{ker} d_{j} \subset B_{j}$ and

$$
\cap_{j=1}^{n} \operatorname{ker} d_{j} \subset \cap_{j=1}^{n} B_{j}=\mathbb{C}
$$

Since $\mathbb{C} \subset \operatorname{ker} d_{j}$, for all $j \in\{1, \ldots, n\}$, then the result follows.

References

[1] D. Daigle, Locally nilpotent derivations, Lecture notes for the Setember School of algebraic geometry, Lukȩcin, Poland, Setember 2003, Avaible at http://aix1. uottawa.ca/~ddaigle.
[2] M. Ferreiro, Y. Lequain, A. Nowicki, A note on locally nilpotent derivations, J. Pure Appl. Algebra N.79, 1992, pp.45-50.
[3] D. Fiston, S. Maubach, Constructing (almost) rigid rings and a UFD having infinitely generated Derksen and Makar-Limanov invariant, Canad. Math. Bull. Vol. 53 N.1, 2010, pp.77-86.
[4] G. Freudenberg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences, Vol.136, Springer-Verlag Berlin Heidelberg 2006.
[5] L. Makar-Limanov, On the group of automorphisms of a surface $x^{n} y=P(z)$, Israel J. Math. N.121, 2001, pp.113-123.

Contact information

P. Brumatti	IMECC-Unicamp, Rua Sérgio Buarque de
	Holanda 651, Cx. P. 6065
	13083-859, Campinas-SP, Brazil
	E-Mail: brumatti@ime.unicamp.br
M. Veloso	Defim-UFSJ, Rodovia MG 443 Km 7
	36420-000, Ouro Branco-MG, Brazil
	E-Mail: veloso@ufsj.edu.br

Received by the editors: 06.09.2010
and in final form 05.04.2013.

[^0]: 2010 MSC: 14R10, 13N15, 13A50.
 Key words and phrases: Locally Nilpotente Derivations, ML-invariant, Fermat ring.

