© Journal "Algebra and Discrete Mathematics"

On modular representations of semigroups $S_p \times T_p$

Vitaliy M. Bondarenko, Elina M. Kostyshyn

Communicated by V. V. Kirichenko

ABSTRACT. Let p be simple, and let S_p and T_p be the symmetric group and the symmetric semigroup of degree p, respectively. The theorem of this paper says that the direct product $S_p \times T_p$ are of wild representation type over any field of characteristic p. The main case is p=2.

Let k be a field. A semigroup is called of tame representation type (resp. of wild representation type) over k if so is the problem of classifying its representations (see precise general definitions in [1]).

We give the precise definition of semigroups of wild representation type in matrix language.

For a semigroup S and a k-algebra Λ , we denote by $R_{\Lambda}(S)$ the set of all matrix representations of S over Λ ; $R_k(\Lambda)$ denotes the category of matrix representations of Λ over k.

A semigroup S is called of wild representation type (or simply wild) over k if there exists a matrix representation M of S over $\Lambda = K_2 = k < x, y > \text{such that the following conditions hold:}$

- 1) the matrix representation $M \otimes X$ (of S over k) with $X \in R_k(\Lambda)$ is indecomposable if so is X;
- 2) the matrix representations $M \otimes X$ and $M \otimes X'$ are nonequivalent if so are X and X'.

²⁰¹⁰ MSC: 16G, 20M30.

Key words and phrases: matrix, wild, transformation, symmetric semigroup, modular representations.

Here $K_2 = k < x, y >$ denotes the free associative k-algebra in two noncommuting variables x and y.

We call such an M a perfect representation of S over Λ .

In practice, to simplify the proofs of wildness (not only semigroup but also other objects) one can replace K_2 by any wild k-algebra.

The main result of this paper is the following theorem.

Theorem. Let k be a field of characteristic $p \neq 0$ and let S_p and T_p be the symmetric group and the symmetric semigroup of degree p, respectively. Then the semigroup $S_p \times T_p$ is wild over k.

Here \times denotes, as usual, the sign of the direct product.

Note that T_p and $S_p \times T_p$ are monoids.

Since the factor semigroup of T_p by its only maximal two-sided ideal (generated by all the non-invertible elements) is isomorphic to S_p , the semigroup $S_p \times T_p$ is wild for $p \neq 2$ by the criterion of tameness and wildness of finite groups [2]. In case p=2 we will indicate a perfect representation of $S_p \times T_p$ over the k-algebra $\Lambda = k\Gamma$ of paths of the quiver Γ with two vertices p_1, p_2 and two arrows $x: p_1 \to p_1, y: p_1 \to p_2$ (this quiver is wild [3, 4]).

The monoid T_2 of transformations of the set $\{1,2\}$ is generated by the elements a, b, where a(1) = 2, a(2) = 1, b(1) = 2, b(2) = 2, with defining relations $a^2 = 1$, $b^2 = b$, ab = b [5]. Obviously that the monoid $S_2 \times T_2$ is generated by the elements g, a, b with the additional relations $g^2 = 1$, ga = ag, gb = bg (g denotes the non-identity element of S_2).

Consider the next matrix representation γ of $S_2 \times T_2$ over the algebra $\Lambda = k\Gamma$:

 $(\gamma(1))$ is equal to the identity matrix.

We will prove that γ is a perfect representation.

Let φ , φ' be representations of Λ over k having the same dimension s and let $G = (\gamma \otimes \varphi)(g)$, $A = (\gamma \otimes \varphi)(a)$, $B = (\gamma \otimes \varphi)(b)$, $G' = (\gamma \otimes \varphi')(g)$, $A' = (\gamma \otimes \varphi')(a)$, $B' = (\gamma \otimes \varphi')(b)$. Consider the matrix equalities (in the variable X)

$$GX = XG', \quad AX = XA', \quad BX = XB',$$
 (*)

viewing all their matrices as $s \times s$ block ones.

The equalities (of the $s \times s$ ij-blocks)

$$(GX)_{ij} = (XG')_{ij}, \quad (AX)_{ij} = (XA')_{ij}, \quad (BX)_{ij} = (XB')_{ij},$$

 $i, j \in \{1, 2, 3, 4\}$ are denoted by (1; ij), (2; ij), (3; ij), respectively.

We first write down all equalities of the forms (2; ij) and (3; ij) besides the trivial identities 0 = 0 and $X_{ii} = X_{ii}$:

From these equalities it follows that

$$X = \left(\begin{array}{cccc} X_{11} & 0 & 0 & 0\\ 0 & X_{11} & 0 & 0\\ 0 & X_{32} & X_{33} & X_{34}\\ 0 & 0 & 0 & X_{33} \end{array}\right).$$

Then from the equalities

$$(1;3,2): \varphi(y)X_{11} = X_{33}\varphi'(y), \quad (1;3,4): \varphi(x)X_{33} = X_{33}\varphi'(x) \quad (**)$$

(the only two nontrivial equalities of the form (1;ij) modulo the equalities (2;ij) and (3;ij)) we have that the matrix k-representations φ and φ' of $\Lambda = k\Gamma$ are equivalent if so are the matrix k-representations $\gamma \otimes \varphi$ and $\gamma \otimes \varphi'$ of $S_2 \times T_2$ (because X_{11} and X_{33} are invertible if so is X).

Thus, for the representation γ condition 2) of the definition of wild semigroups holds.

From the form of the matrix X it follows that the endomorphism algebra of $\gamma \otimes \varphi$ is local if and only if so is the endomorphism algebra of φ (these algebras are defined, respectively, by (*) and (**) with $\varphi = \varphi'$). Therefore $\gamma \otimes \varphi$ is indecomposable if φ is indecomposable, and consequently γ satisfies condition 1) of the mentioned definition too.

The theorem is proved.

Because as a perfect matrix representation of the quiver Γ over the algebra $K_2'=k< x',y'>$ one can take the representation

$$x \to \begin{pmatrix} 0 & x' \\ 1 & y' \end{pmatrix}, \quad y \to \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

it follows from the proof of our theorem that the following representation λ of the semigroup $S_2 \times T_2$ over K_2' is perfect:

$$\lambda(g) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & x' \\ 0 & 0 & 0 & 1 & 1 & y' \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad \lambda(a) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

References

- Yu. A. Drozd, Tame and wild matrix problems, Lecture Notes in Math. 832 (1980), pp. 242-258.
- [2] V. M. Bondarenko, Ju. A. Drozd, Representation type of finite groups, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 71 (1977), pp. 24-42 (in Russian); English trans. in J. Soviet Math. 20 (1982), pp. 2515-2528.
- [3] L. A. Nazarova, Representations of quivers of infinite type, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), pp. 752-791 (in Russian); English trans. in Math. USSR-Izv. 7 (1973), pp. 749-792.
- [4] P. Donovan, M.-R. Freislich, The representation theory of finite graphs and associated algebras, Carleton Math. Lecture Notes, No. 5. Carleton University, Ottawa, Ont., 1973, 83 pp.
- [5] V. M. Bondarenko, E. M. Kostyshyn, Modular representations of the semigroup T₂, Nauk. Visn. Uzhgorod. Univ., Ser. Mat. Inform. 22 (2011), pp. 26-34 (in Ukrainian).

CONTACT INFORMATION

V. M. Bondarenko Institute of Mathematics, NAS, Kyiv, Ukraine *E-Mail:* vitalij.bond@gmail.com

E. M. Kostyshyn Department of Mechanics and Mathematics, Kyiv National Taras Shevchenko Univ., Volodymyrska str., 64, 01033 Kyiv, Ukraine E-Mail: elina.kostyshyn@mail.ru

Received by the editors: 17.07.2013 and in final form 17.07.2013.