On modular representations of semigroups $S_{p} \times T_{p}$

Vitaliy M. Bondarenko, Elina M. Kostyshyn

Communicated by V. V. Kirichenko

Abstract. Let p be simple, and let S_{p} and T_{p} be the symmetric group and the symmetric semigroup of degree p, respectively. The theorem of this paper says that the direct product $S_{p} \times T_{p}$ are of wild representation type over any field of characteristic p. The main case is $p=2$.

Let k be a field. A semigroup is called of tame representation type (resp. of wild representation type) over k if so is the problem of classifying its representations (see precise general definitions in [1]).

We give the precise definition of semigroups of wild representation type in matrix language.

For a semigroup S and a k-algebra Λ, we denote by $R_{\Lambda}(S)$ the set of all matrix representations of S over $\Lambda ; R_{k}(\Lambda)$ denotes the category of matrix representations of Λ over k.

A semigroup S is called of wild representation type (or simply wild) over k if there exists a matrix representation M of S over $\Lambda=K_{2}=$ $k<x, y>$ such that the following conditions hold:

1) the matrix representation $M \otimes X$ (of S over k) with $X \in R_{k}(\Lambda)$ is indecomposable if so is X;
2) the matrix representations $M \otimes X$ and $M \otimes X^{\prime}$ are nonequivalent if so are X and X^{\prime}.

2010 MSC: 16G, 20M30.
Key words and phrases: matrix, wild, transformation, symmetric semigroup, modular representations.

Here $K_{2}=k<x, y>$ denotes the free associative k-algebra in two noncommuting variables x and y.

We call such an M a perfect representation of S over Λ.
In practice, to simplify the proofs of wildness (not only semigroup but also other objects) one can replace K_{2} by any wild k-algebra.

The main result of this paper is the following theorem.
Theorem. Let k be a field of characteristic $p \neq 0$ and let S_{p} and T_{p} be the symmetric group and the symmetric semigroup of degree p, respectively. Then the semigroup $S_{p} \times T_{p}$ is wild over k.

Here \times denotes, as usual, the sign of the direct product.
Note that T_{p} and $S_{p} \times T_{p}$ are monoids.
Since the factor semigroup of T_{p} by its only maximal two-sided ideal (generated by all the non-invertible elements) is isomorphic to S_{p}, the semigroup $S_{p} \times T_{p}$ is wild for $p \neq 2$ by the criterion of tameness and wildness of finite groups [2]. In case $p=2$ we will indicate a perfect representation of $S_{p} \times T_{p}$ over the k-algebra $\Lambda=k \Gamma$ of paths of the quiver Γ with two vertices p_{1}, p_{2} and two arrows $x: p_{1} \rightarrow p_{1}, y: p_{1} \rightarrow p_{2}$ (this quiver is wild $[3,4]$).

The monoid T_{2} of transformations of the set $\{1,2\}$ is generated by the elements a, b, where $a(1)=2, a(2)=1, b(1)=2, b(2)=2$, with defining relations $a^{2}=1, b^{2}=b, a b=b$ [5]. Obviously that the monoid $S_{2} \times T_{2}$ is generated by the elements g, a, b with the additional relations $g^{2}=1$, $g a=a g, g b=b g\left(g\right.$ denotes the non-identity element of $\left.S_{2}\right)$.

Consider the next matrix representation γ of $S_{2} \times T_{2}$ over the algebra $\Lambda=k \Gamma$:

$$
\gamma(g)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & y & 1 & x \\
0 & 0 & 0 & 1
\end{array}\right), \gamma(a)=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \gamma(b)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$(\gamma(1)$ is equal to the identity matrix).
We will prove that γ is a perfect representation.
Let $\varphi, \varphi^{\prime}$ be representations of Λ over k having the same dimension s and let $G=(\gamma \otimes \varphi)(g), A=(\gamma \otimes \varphi)(a), B=(\gamma \otimes \varphi)(b), G^{\prime}=\left(\gamma \otimes \varphi^{\prime}\right)(g)$, $A^{\prime}=\left(\gamma \otimes \varphi^{\prime}\right)(a), B^{\prime}=\left(\gamma \otimes \varphi^{\prime}\right)(b)$. Consider the matrix equalities (in the variable X)

$$
\begin{equation*}
G X=X G^{\prime}, \quad A X=X A^{\prime}, \quad B X=X B^{\prime} \tag{*}
\end{equation*}
$$

viewing all their matrices as $s \times s$ block ones.

The equalities (of the $s \times s i j$-blocks)

$$
(G X)_{i j}=\left(X G^{\prime}\right)_{i j}, \quad(A X)_{i j}=\left(X A^{\prime}\right)_{i j}, \quad(B X)_{i j}=\left(X B^{\prime}\right)_{i j}
$$

$i, j \in\{1,2,3,4\}$ are denoted by $(1 ; i j),(2 ; i j),(3 ; i j)$, respectively.
We first write down all equalities of the forms $(2 ; i j)$ and $(3 ; i j)$ besides the trivial identities $0=0$ and $X_{i i}=X_{i i}$:
$(2 ; 1,1): X_{21}=0$,
$(2 ; 1,2): X_{22}=X_{11}$,
$(2 ; 1,3): X_{23}=0$,
$(2 ; 1,4): X_{24}=X_{13}, \quad(2 ; 2,2): 0=X_{21}, \quad(2 ; 2,4): 0=X_{23}$,
$(2 ; 3,1): X_{41}=0, \quad(2 ; 3,2): X_{42}=X_{31}, \quad(2 ; 3,3): X_{43}=0$,
$(2 ; 3,4): X_{44}=X_{33}, \quad(2 ; 4,2): 0=X_{41}, \quad(2 ; 4,4): 0=X_{43}$,
$(3 ; 1,2): X_{12}=0, \quad(3 ; 1,3): X_{13}=0, \quad(3 ; 1,4): X_{14}=0$,
$(3 ; 2,1): 0=X_{21}, \quad(3 ; 3,1): 0=X_{31}, \quad(3 ; 4,1): 0=X_{41}$.

From these equalities it follows that

$$
X=\left(\begin{array}{cccc}
X_{11} & 0 & 0 & 0 \\
0 & X_{11} & 0 & 0 \\
0 & X_{32} & X_{33} & X_{34} \\
0 & 0 & 0 & X_{33}
\end{array}\right)
$$

Then from the equalities

$$
(1 ; 3,2): \varphi(y) X_{11}=X_{33} \varphi^{\prime}(y), \quad(1 ; 3,4): \varphi(x) X_{33}=X_{33} \varphi^{\prime}(x) \quad(* *)
$$

(the only two nontrivial equalities of the form $(1 ; i j)$ modulo the equalities $(2 ; i j)$ and $(3 ; i j))$ we have that the matrix k-representations φ and φ^{\prime} of $\Lambda=k \Gamma$ are equivalent if so are the matrix k-representations $\gamma \otimes \varphi$ and $\gamma \otimes \varphi^{\prime}$ of $S_{2} \times T_{2}$ (because X_{11} and X_{33} are invertible if so is X).

Thus, for the representation γ condition 2) of the definition of wild semigroups holds.

From the form of the matrix X it follows that the endomorphism algebra of $\gamma \otimes \varphi$ is local if and only if so is the endomorphism algebra of φ (these algebras are defined, respectively, by $(*)$ and $(* *)$ with $\left.\varphi=\varphi^{\prime}\right)$. Therefore $\gamma \otimes \varphi$ is indecomposable if φ is indecomposable, and consequently γ satisfies condition 1) of the mentioned definition too.

The theorem is proved.
Because as a perfect matrix representation of the quiver Γ over the algebra $K_{2}^{\prime}=k<x^{\prime}, y^{\prime}>$ one can take the representation

$$
x \rightarrow\left(\begin{array}{cc}
0 & x^{\prime} \\
1 & y^{\prime}
\end{array}\right), \quad y \rightarrow\binom{1}{0}
$$

it follows from the proof of our theorem that the following representation λ of the semigroup $S_{2} \times T_{2}$ over K_{2}^{\prime} is perfect:

$$
\begin{gathered}
\lambda(g)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & x^{\prime} \\
0 & 0 & 0 & 1 & 1 & y^{\prime} \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad \lambda(a)=\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \\
\lambda(b)=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

References

[1] Yu. A. Drozd, Tame and wild matrix problems, Lecture Notes in Math. 832 (1980), pp. 242-258.
[2] V. M. Bondarenko, Ju. A. Drozd, Representation type of finite groups, Zap. Nauc̆n. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 71 (1977), pp. 24-42 (in Russian); English trans. in J. Soviet Math. 20 (1982), pp. 2515-2528.
[3] L. A. Nazarova, Representations of quivers of infinite type, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), pp. 752-791 (in Russian); English trans. in Math. USSR-Izv. 7 (1973), pp. 749-792.
[4] P. Donovan, M.-R. Freislich, The representation theory of finite graphs and associated algebras, Carleton Math. Lecture Notes, No. 5. Carleton University, Ottawa, Ont., 1973, 83 pp.
[5] V. M. Bondarenko, E. M. Kostyshyn, Modular representations of the semigroup T_{2}, Nauk. Visn. Uzhgorod. Univ., Ser. Mat. Inform. 22 (2011), pp. 26 -34 (in Ukrainian).

Contact information

V. M. Bondarenko Institute of Mathematics, NAS, Kyiv, Ukraine E-Mail: vitalij.bond@gmail.com
E. M. Kostyshyn Department of Mechanics and Mathematics, Kyiv National Taras Shevchenko Univ., Volodymyrska str., 64, 01033 Kyiv, Ukraine E-Mail: elina.kostyshyn@mail.ru

Received by the editors: 17.07.2013
and in final form 17.07.2013.

