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Abstract. Let p be simple, and let Sp and Tp be the sym-
metric group and the symmetric semigroup of degree p, respectively.
The theorem of this paper says that the direct product Sp × Tp are
of wild representation type over any field of characteristic p. The
main case is p = 2.

Let k be a field. A semigroup is called of tame representation type

(resp. of wild representation type) over k if so is the problem of classifying
its representations (see precise general definitions in [1]).

We give the precise definition of semigroups of wild representation
type in matrix language.

For a semigroup S and a k-algebra Λ, we denote by RΛ(S) the set
of all matrix representations of S over Λ; Rk(Λ) denotes the category of
matrix representations of Λ over k.

A semigroup S is called of wild representation type (or simply wild)
over k if there exists a matrix representation M of S over Λ = K2 =
k < x, y > such that the following conditions hold:

1) the matrix representation M ⊗ X (of S over k) with X ∈ Rk(Λ) is
indecomposable if so is X;

2) the matrix representations M ⊗ X and M ⊗ X ′ are nonequivalent
if so are X and X ′.

2010 MSC: 16G, 20M30.
Key words and phrases: matrix, wild, transformation, symmetric semigroup,

modular representations.



V. Bondarenko, E. Kostyshyn 17

Here K2 = k < x, y > denotes the free associative k-algebra in two
noncommuting variables x and y.

We call such an M a perfect representation of S over Λ.
In practice, to simplify the proofs of wildness (not only semigroup but

also other objects) one can replace K2 by any wild k-algebra.

The main result of this paper is the following theorem.
Theorem. Let k be a field of characteristic p 6= 0 and let Sp and Tp be

the symmetric group and the symmetric semigroup of degree p, respectively.

Then the semigroup Sp × Tp is wild over k.

Here × denotes, as usual, the sign of the direct product.
Note that Tp and Sp × Tp are monoids.
Since the factor semigroup of Tp by its only maximal two-sided ideal

(generated by all the non-invertible elements) is isomorphic to Sp, the
semigroup Sp × Tp is wild for p 6= 2 by the criterion of tameness and
wildness of finite groups [2]. In case p = 2 we will indicate a perfect
representation of Sp × Tp over the k-algebra Λ = kΓ of paths of the quiver
Γ with two vertices p1, p2 and two arrows x : p1 → p1, y : p1 → p2 (this
quiver is wild [3, 4]).

The monoid T2 of transformations of the set {1, 2} is generated by the
elements a, b, where a(1) = 2, a(2) = 1, b(1) = 2, b(2) = 2, with defining
relations a2 = 1, b2 = b, ab = b [5]. Obviously that the monoid S2 × T2

is generated by the elements g, a, b with the additional relations g2 = 1,
ga = ag, gb = bg (g denotes the non-identity element of S2).

Consider the next matrix representation γ of S2 × T2 over the algebra
Λ = kΓ:

γ(g) =











1 0 0 0
0 1 0 0
0 y 1 x

0 0 0 1











, γ(a) =











1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1











, γ(b) =











1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0











(γ(1) is equal to the identity matrix).
We will prove that γ is a perfect representation.
Let ϕ, ϕ′ be representations of Λ over k having the same dimension s

and let G = (γ ⊗ ϕ)(g), A = (γ ⊗ ϕ)(a), B = (γ ⊗ ϕ)(b), G′ = (γ ⊗ ϕ′)(g),
A′ = (γ ⊗ ϕ′)(a), B′ = (γ ⊗ ϕ′)(b). Consider the matrix equalities (in the
variable X)

GX = XG′, AX = XA′, BX = XB′, (∗)

viewing all their matrices as s × s block ones.



18 On modular representations of semigroups Sp × Tp

The equalities (of the s × s ij-blocks)

(GX)ij = (XG′)ij , (AX)ij = (XA′)ij , (BX)ij = (XB′)ij ,

i, j ∈ {1, 2, 3, 4} are denoted by (1; ij), (2; ij), (3; ij), respectively.

We first write down all equalities of the forms (2; ij) and (3; ij) besides
the trivial identities 0 = 0 and Xii = Xii:

(2; 1, 1) : X21 = 0, (2; 1, 2) : X22 = X11, (2; 1, 3) : X23 = 0,
(2; 1, 4) : X24 = X13, (2; 2, 2) : 0 = X21, (2; 2, 4) : 0 = X23,
(2; 3, 1) : X41 = 0, (2; 3, 2) : X42 = X31, (2; 3, 3) : X43 = 0,
(2; 3, 4) : X44 = X33, (2; 4, 2) : 0 = X41, (2; 4, 4) : 0 = X43,
(3; 1, 2) : X12 = 0, (3; 1, 3) : X13 = 0, (3; 1, 4) : X14 = 0,
(3; 2, 1) : 0 = X21, (3; 3, 1) : 0 = X31, (3; 4, 1) : 0 = X41.

From these equalities it follows that

X =











X11 0 0 0
0 X11 0 0
0 X32 X33 X34

0 0 0 X33











.

Then from the equalities

(1; 3, 2) : ϕ(y)X11 = X33ϕ′(y), (1; 3, 4) : ϕ(x)X33 = X33ϕ′(x) (∗∗)

(the only two nontrivial equalities of the form (1; ij) modulo the equalities
(2; ij) and (3; ij)) we have that the matrix k-representations ϕ and ϕ′ of
Λ = kΓ are equivalent if so are the matrix k-representations γ ⊗ ϕ and
γ ⊗ ϕ′ of S2 × T2 (because X11 and X33 are invertible if so is X).

Thus, for the representation γ condition 2) of the definition of wild
semigroups holds.

From the form of the matrix X it follows that the endomorphism
algebra of γ ⊗ ϕ is local if and only if so is the endomorphism algebra of
ϕ (these algebras are defined, respectively, by (∗) and (∗∗) with ϕ = ϕ′).
Therefore γ⊗ϕ is indecomposable if ϕ is indecomposable, and consequently
γ satisfies condition 1) of the mentioned definition too.

The theorem is proved.

Because as a perfect matrix representation of the quiver Γ over the
algebra K ′

2 = k < x′, y′ > one can take the representation

x →

(

0 x′

1 y′

)

, y →

(

1
0

)

,
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it follows from the proof of our theorem that the following representation
λ of the semigroup S2 × T2 over K ′

2 is perfect:

λ(g) =



















1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 x′

0 0 0 1 1 y′

0 0 0 0 1 0
0 0 0 0 0 1



















, λ(a) =



















1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1



















,

λ(b) =



















1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



















.
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