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Abstract. We consider a continuum family of subspaces
of the Besicovitch–Hamming space on some alphabet B, naturally
parametrized by supernatural numbers. Every subspace is defined
as a diagonal limit of finite Hamming spaces on the alphabet B.
We present a convenient representation of these subspaces. Using
this representation we show that the completion of each of these
subspace coincides with the completion of the space of all periodic
sequences on the alphabet B. Then we give answers on two questions
formulated in [1].

Introduction

Let B = {b1, . . . , bq} be an alphabet, q ≥ 2. Denote by Hn(q) the
Hamming space of dimension n on the alphabet B. This space consists
of all n-tuples (a1, . . . , an), ai ∈ B, 1 ≤ i ≤ n, where the distance dHn

between two n-tuples is equal to the number of coordinates where they
differ. The scaled Hamming space Ĥn(q) have the same set of points, but
the distance is defined as 1

n
dHn

. A natural generalization of the scaled
Hamming space is the Besicovitch space (in other terms, the Besicovitch–
Hamming space), consisting of all infinite sequences on the alphabet B
([2], [3]). This space is used since the 1960s in symbolic dynamics and
ergodic theory.

In this article we consider a family of subspaces of the Besicovitch–
Hamming space on alphabet B, naturally parametrized by infinite su-
pernatural numbers. The space corresponding to a supernatural number
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u is called the u-periodic Hamming space. For every u the u-periodic
Hamming space is isometric to the direct limits of finite scaled Hamming
spaces with respect to diagonal embeddings.

If the alphabet B consists of two elements, i.e. B = {0, 1}, then u-
periodic Hamming spaces were characterized in [1] and [5]. In [1] the
2∞-periodic Hamming space was considered as the space of finite unions of
half-open subintervals of the interval [0, 1) with binary-rational endpoints.
In [5] u-periodic Hamming spaces were regarded as the spaces of clopen
subsets of the boundaries of spherically homogeneous rooted trees. The
completion of every space from these family is isometric to the completion
of the space of 2∞-periodic (0, 1)-sequences [1] or of all periodic (0, 1)-
sequences [5].

In this paper we consider the case q > 2. In [1] P. J. Cameron and S.
Tarzi formulated the questions:

(A) Is there a convenient representation of 2∞-periodic Hamming space
on alphabet B and its completion?

(B) Are completions of u-periodic Hamming spaces on alphabet B
independent of choice of u?

We give answers to these questions. Namely, for every infinite supernatural
numbers u we represent the u-periodic Hamming space on alphabet B
and its completion as the spaces of functions defined in a special way on
the boundaries of spherically homogeneous rooted trees. These functions
define a measurable partition in sense of [4]. Using this representation
we prove that the completion of every u-periodic Hamming space is
independent of choice of u and coincides with the completion of the space
of 2∞-periodic sequences or of all periodic sequences.

1. Preliminaries

1. Let P be the set of all primes. A supernatural number (or Steinitz
number) is an infinite formal product of the form

∏

p∈P

pkp

where kp ∈ N∪ {0,∞}. Denote by SN the set of all supernatural numbers.
The set N is a natural subset of SN. The elements of the set SN \ N are
called infinite supernatural numbers. A supernatural number v divides
a supernatural number u if there exists t ∈ SN, such that u = v · t. The
divisibility relation | transforms the set SN into a partially ordered set
with the greatest element I =

∏

p∈P p
∞ and the least element 1. Moreover,

the poset (SN, |) is a complete lattice.
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A sequence of positive integers τ = (m1,m2, . . .) is called divisible
if ki|ki+1 for all i ∈ N. For divisible sequence τ = (m1,m2, . . .) the
supernatural number

m1 ·
m2

m1
·
m3

m2
. . .

is called the characteristic of the sequence τ and denoted by char(τ). It is
easy to see that the sequence τ is a strictly increasing divisible sequence
iff char(τ) is an infinite supernatural number.

2. Let X be a nonempty set, Σ1 = {Xi, 1 ≤ i ≤ q} and Σ2 = {Yi, 1 ≤
i ≤ q} be ordered partitions of the set X. These partitions decompose the
set X into q (possibly empty) blocks. Introduce the symmetric difference
of partitions Σ1 and Σ2 as the set Σ1 △ Σ2 defined by the equation

Σ1 △ Σ2 =
⋃

i6=j

(Xi ∩ Yj). (1)

Then Σ1 △ Σ2 ⊂ X. We can formulate some properties of the symmetric
difference of partitions which are not difficult to verify.

Lemma 1. Let Σ1 = {Xi, 1 ≤ i ≤ q}, Σ2 = {Yi, 1 ≤ i ≤ q} and
Σ3 = {Zi, 1 ≤ i ≤ q} be ordered partitions of the set X. Then the
following properties hold.

1) Σ1 △ Σ2 = ∅ iff Σ1 = Σ2.

2) Σ1 △ Σ2 = Σ2 △ Σ1.

3) (Σ1 △ Σ2) △ Σ3 = Σ1 △ (Σ2 △ Σ3).

4) Σ1 △ Σ2 ⊆ (Σ1 △ Σ3) ∪ (Σ2 △ Σ3).

2. The periodic Hamming space

Let τ = (m1,m2, . . .) be an increasing divisible sequence, Ĥm1
(q),

Ĥm2
(q), . . . be the corresponding infinite sequence of scaled Hamming

spaces on alphabet B. Denote by (s1, s2, . . .) the sequence of ratios of the
sequence τ , i. e.

s1 = m1, si+1 =
mi+1

mi
, i ≥ 1. (2)

For any i ≥ 1 define an isometric embedding ψsi
: Ĥmi

(q) → Ĥmi+1
(q)

by the rule:

ψsi
(x1, . . . , xmi

) = (x1, . . . , xmi
|x1, . . . , xmi

| . . . |x1, . . . , xmi
︸ ︷︷ ︸

si·mi

). (3)
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Then the sequence τ determines the directed system of scaled Ham-
ming spaces on the alphabet B

〈Ĥmi
(q), ψsi

〉i∈N (4)

with the diagonal embeddings ψsi
, i ≥ 1, defined by (3).

The limit space of the directed system (4)

H(τ, q) = lim
−→

〈Ĥmi
(q), ψsi

〉

is called a diagonal limit of spaces Ĥmi
.

Proposition 1. Let τ1, τ2 be increasing divisible sequences. Then the
spaces H(τ1, q) and H(τ2, q) are isometric iff char(τ1) = char(τ2).

The diagonal limit H(τ, q) admits a natural description using super-
natural numbers.

The infinite sequence a = (a1, a2, . . .), ai ∈ B is said to be periodic if
there exists a natural number k such that the equality ai = ai+k holds for
all i ∈ N. In this case the number k is called a period of the sequence a.
A periodic sequence a is called u-periodic for some supernatural number
u if its minimal period divides u.

Let u be some infinite supernatural number and H(u, q) be the set
of all u-periodic sequences on B. In particular, the space H(I, q) is the
space of all periodic sequences on B. We can introduce a natural metric
on H(u, q) putting

dH(u,q)((x1, x2, . . .), (y1, y2, . . .)) =
1

l
dHl

((x1, . . . , xl), (y1, . . . , yl)), (5)

where l is a common period of sequences (x1, x2, . . .) and (y1, y2, . . .) from
H(u, q). It is clear that definition (5) is independent of choice of a common
period. We call the metric space (H(u, q), dH(u,q)) the u-periodic Hamming
space over the alphabet B. It is not difficult to verify

Proposition 2. Let τ be an increasing divisible sequence, u be some
infinite supernatural number. Then the spaces H(τ, q) and H(u, q) are
isometric iff char(τ) = u.

3. Representations on boundaries of rooted trees

Let T be an infinite locally finite rooted tree with the root v0, n be
some nonnegative integer. The n-th level of the tree T is the set Ln of all
vertices v of T such that the length of the unique simple path connecting
v and v0 in T equals n.
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A rooted tree (T, v0) is called spherically homogeneous if for every
nonnegative integer n the degrees of all vertices from Ln are equal. A
spherically homogeneous rooted tree T is uniquely defined by its spherical
index, i.e. by an infinite sequence of positive integers [s1; s2; . . . , ] such
that si is the number of edges joining a vertex of the (i− 1)th level with
vertices of the ith level, i ≥ 1. If the tree (T, v0) has the spherical index
[s1; s2; . . . , ] then the sequence mi = s1 · s2 · . . . · si, i ≥ 1, is divisible and
additionally |Li| = mi, i ≥ 1.

The boundary ∂T of a tree T is the set of infinite rooted paths, i.e.
the set of infinite sequences of pairwise distinct vertices (v0, v1, v2, . . .)
such that the vertices vi, vi+1 are connected by an edge for every i, i ≥ 0.
These paths are also called the ends of T . Define a distance ρ on the set
∂T as

ρ(γ1, γ2) =

{
1

k+1 , if γ1 6= γ2

0, if γ1 = γ2
, (6)

where k is the length of the common beginning of rooted paths γ1 and γ2.
The space (∂T, ρ) is an ultrametric totally disconnected compact space
with diameter 1.

Let as before τ = (m1,m2, . . .) be an increasing divisible sequence
with the sequence of its ratios (s1, s2, . . .) defined by (2). Assume that Tτ
is a spherically homogeneous rooted tree with spherical index [s1; s2; . . .]
and ρτ is a metric defined by (6) on ∂Tτ . The set of all rooted paths from
∂Tτ passing through a vertex v is denoted

Cv = {γ ∈ ∂Tτ | v ∈ γ}

and called the cylindrical set Cv corresponding to v.

The metric ρτ induces a topology on ∂Tτ . The clopen subsets are finite
unions of cylindrical sets. Denote by ΩTτ the set of all clopen subsets of
∂Tτ . Define the Bernoulli measure µ on the Borel σ-algebra of ∂Tτ by
the rule:

µ(Cv) =
1

nv
,

where nv is the number of vertices of Tτ on the level containing the vertex
v. The space (∂Tτ , µ) is isomorphic as a measure space to the space
([0, 1], l), where l is the Lebesgue measure (see [6] for instance).

Introduce the discrete metric ̺ on the set B, i.e.

̺(bi, bj) =

{

1, if i 6= j

0, if i = j
,
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for all 1 ≤ i, j ≤ q. The metric ̺ induces the discrete topology on B.
Denote by C(∂Tτ , B) the set of all continuous functions from the space
∂Tτ to the space B. Note that for every f ∈ C(∂Tτ , B) the subsets
{f−1(bi), 1 ≤ i ≤ q} form an ordered partition of the set ∂Tτ . Define a
mapping dµ : C(∂Tτ , B) × C(∂Tτ , B) → R

+ by putting

dµ(f, g) = µ(Σf △ Σg), (7)

where f, g ∈ C(∂Tτ , B) and the symmetric difference of Σf = {f−1(bi),
1 ≤ i ≤ q} and Σg = {g−1(bi), 1 ≤ i ≤ q} is determined by (1). The proof
of the next proposition follows from Lemma 1.

Lemma 2. The function dµ is a metric on the set C(∂Tτ , B).

Theorem 1. Let B = {b1, . . . , bq} be some alphabet, q > 2, τ =
(m1,m2, . . .) be an increasing divisible sequence with the sequence of
its ratios (s1, s2, . . .). Assume that Tτ is a spherically homogeneous rooted
tree with spherical index [s1; s2; . . .] and u is a supernatural number with
char(τ) = u. Then the u-periodic Hamming space H(u, q) on the alphabet
B is isometric to the space of all continuous functions C(∂Tτ , B) with
the metric dµ defined by (7).

Proof. Let n be a positive integer. A function f : ∂Tτ → B is called
n-determined if for every v ∈ Ln there exists i, 1 ≤ i ≤ q, such that the
equality f(x) = bi holds for any x ∈ Cv. We write f(Cv) = bi in this case.
Note that every n-determined function is continuous. Conversely, for any
continuous function f ∈ C(∂Tτ , B) there exists a level l such that for
every n ≥ l the function f is n-determined.

Denote by Fun(n) the set of all n-determined function. Enumerate
all vertices in Ln and assume that Ln = {v1, . . . , vmn}. Define a mapping
ϕn : Fun(n) → Hmn(q) by the rule:

ϕn(f) = (f(Cv1
), . . . , f(Cvmn

)).

The mapping ϕn is bijective. We are going to show that ϕn preserves
distances between points. Let f, g ∈ Fun(n). The sets f−1(bi) and g−1(bi)
are unions of cylindrical sets for all 1 ≤ i ≤ q. Hence, from the definitions
of the measure µ and the metric dµ we obtain

dµ(f, g) = µ(Σf △ Σg) =
1

mn

mn∑

i=1

(f(Cvi
) ⊕ g(Cvi

)), (8)

where

f(Cvi
) ⊕ g(Cvi

) =

{

1, if f(Cvi
) 6= g(Cvi

)

0, if f(Cvi
) = g(Cvi

)
.
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Since

1

mn

mn∑

i=1

f(Cvi
) ⊕ g(Cvi

) =

= dHmn
((f(Cv1

), . . . , f(Cvmn
)), (g(Cv1

), . . . , g(Cvmn
))),

using (8) we have

dµ(f, g) = dHmn
((f(Cv1

), . . . , f(Cvmn
)), (g(Cv1

), . . . , g(Cvmn
))).

Hence the mapping ϕn is an isometry between (Fun(n), dµ) and Hmn(q).
Every cylindrical set corresponding to a vertex of the n-th level splits

into the union of sn+1 cylindrical subsets corresponding to vertices of the
(n+ 1)th level in Tτ . Every n-determined function is (n+ 1)-determined.
Thus we can define an injection ψn : Fun(n) → Fun(n+ 1). Let us define
an isometric embedding χn : Hmn(q) →֒ Hmn+1

(q) by the rule:

χn(x1, . . . , xmn) = (x1, . . . , x1
︸ ︷︷ ︸

sn+1

, . . . , xmn , . . . , xmn
︸ ︷︷ ︸

sn+1

).

Then for any positive integer n the diagram

Fun(n)

ϕn

��

ψn
// Fun(n+ 1)

ϕn+1

��

Ĥmn(q)
χn

// Ĥmn+1
(q)

is commutative. Therefore, the spaces

∞⋃

n=1

Fun(n) = C(∂Tτ , B) and lim
−→

〈Ĥmi
(q), ψsi

〉 = H(τ, q)

are isometric. The proof of the theorem is complete.

Define an equivalence ∼ on the set of all measurable functions
Measurable(∂Tτ , B). Let f ∼ g iff for every Y ⊆ B the sets f−1(Y )
and g−1(Y ) coincide up to measure zero sets.

The following statement is the answer to the question (A).

Corollary 1. Let B = {b1, . . . , bq} be an alphabet, q > 2, τ = (m1,m2, . . .)
be an increasing divisible sequence with the sequence of its ratios (s1, s2, . . .).
Assume that Tτ is a spherically homogeneous rooted tree of the spherical
index [s1; s2; . . .] and u is a supernatural number with char(τ) = u. Then
the completion of the u-periodic Hamming space H(u, q) on the alphabet B
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is isometric to the space of all measurable functions Measurable(∂Tτ , B)
(well-defined up to measure zero sets) with the metric dµ defined by (7).

As the space (∂Tτ , µ) is a standard probability space and independent
of the choice of a divisible sequence τ , the space of all measurable functions
Measurable(∂Tτ , B) (well-defined up to measure zero sets) with metric
dµ independent of the choice of a divisible sequence too. Thus we get an
answer to the question (B) formulated in [1].

Corollary 2. For every infinite strictly increasing divisible sequence
τ = (m1,m2, . . .) the completion of the space H(τ, q) is isometric to the
completion of the space H(2∞, q) or completion of the space H(I, q) of
all periodic sequences over the alphabet B.
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