Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)

A. I. Kashu

ABSTRACT. In this work the closure operators of a category of modules *R*-Mod are studied. Every closure operator *C* of *R*-Mod defines two functions \mathcal{F}_1^c and \mathcal{F}_2^c , which in every module *M* distinguish the set of *C*-dense submodules $\mathcal{F}_1^c(M)$ and the set of *C*-closed submodules $\mathcal{F}_2^c(M)$. By means of these functions three types of closure operators are described: 1) weakly hereditary; 2) idempotent; 3) weakly hereditary and idempotent.

1. Introduction and preliminary facts

The subjects of this paper are deeply rooted in the theory of radicals and torsions in modules ([1, 2, 3, 4, 5]). Every idempotent radical (torsion) r of R-Mod defines a closure operator in the lattice of submodules $\mathbb{L}(_R M)$ of every module $M \in R$ -Mod: if $N \subseteq M$, then the closure \bar{N} of N in M is defined by $\bar{N}/N = r(M/N)$. This aspect was studied by the author in the works [5, 6, 7], where the notion of *radical closure* of R-Mod was introduced as a function which in every lattice $\mathbb{L}(_R M)$ determines a closure operator and it is compatible with the R-morphisms.

The more general notion of closure operator of a category was investigated, in particular, in the works [8, 9, 10], where the relations of closure operators with some notions and constructions in categories and in topology were shown.

²⁰¹⁰ MSC: 16D90, 16S90, 06B23.

Key words and phrases: ring, module, lattice, preradical, closure operator, lattice of submodules, dense submodule, closed submodule.

The purpose of this work is the systematic investigation of the closure operators in module categories: properties, main types, their characterization by various methods, relations with preradicals, operations, etc.

In Part I three important types of closure operators in R-Mod are analyzed: weakly hereditary, idempotent and weakly hereditary idempotent. Such closure operators C are described by the associated functions \mathcal{F}_1^C and \mathcal{F}_2^C , which are defined by C-dense and C-closed submodules. In the theory of radicals these facts correspond to the characterization of idempotent preradicals and radicals by means of classes of torsion or torsion-free modules ([1], [5]).

Let R be an arbitrary ring with unit. We denote by R-Mod the category of unitary left R-modules. For every module $M \in R$ -Mod the lattice of submodules of M is denoted by $\mathbb{L}(_R M)$. A preradical of R-Mod is a subfunctor r of identity functor of R-Mod, i.e. for every $M \in R$ -Mod a submodule $r(M) \subseteq M$ is defined such that $f(r(M)) \subseteq r(M')$ for any R-morphism $f: M \to M'$. The preradical r of R-Mod defines two classes of modules:

1) $\Re(r) = \{M \in R \text{-Mod} \mid r(M) = M\}$ – the class of *r*-torsion modules;

2) $\mathcal{P}(r) = \{M \in R\text{-Mod} \mid r(M) = 0\}$ - the class of *r*-torsion-free modules. The preradical *r* is called *idempotent* if r(r(M)) = r(M) for every $M \in R\text{-Mod}$; *r* is called *radical* if r(M/r(M)) = 0 for every $M \in R\text{-Mod}$. Any idempotent preradical *r* can be re-established by the class $\mathcal{R}(r)$: $r(M) = \sum \{N_{\alpha} \subseteq M \mid N_{\alpha} \in \mathcal{R}(r)\}$; similarly, any radical *r* can be restored by the class $\mathcal{P}(r)$: $r(M) = \cap \{N_{\alpha} \subseteq M \mid M/N_{\alpha} \in \mathcal{P}(r)\}$ ([1], [5]).

We remind also that the class of all preradicals of *R*-Mod can be transformed in a "big lattice" $\mathbb{PR}(\wedge, \vee)$ by the rules:

$$\left(\bigwedge_{\alpha\in\mathfrak{A}}r_{\alpha}\right)(M)=\bigcap_{\alpha\in\mathfrak{A}}r_{\alpha}(M),\qquad \left(\bigvee_{\alpha\in\mathfrak{A}}r_{\alpha}\right)(M)=\sum_{\alpha\in\mathfrak{A}}r_{\alpha}(M).$$

The principal notion of this work is the following (see [8, 9, 10]):

Definition 1.1. A closure operator of *R*-Mod is a function *C* which associates to every pair $N \subseteq M$, where $N \in \mathbb{L}(_{R}M)$, a submodule of *M* denoted by $C_{M}(N)$ such that the following conditions are satisfied:

- (c₁) $N \subseteq C_M(N);$
- (c₂) if $N \subseteq P$, where $N, P \in \mathbb{L}(_{\mathbb{R}}M)$, then $C_{M}(N) \subseteq C_{M}(P)$;
- (c₃) if $f: M \to M'$ is an *R*-morphism and $N \subseteq M$, then $f(C_M(N)) \subseteq C_{M'}(f(N))$.

The submodule $C_M(N)$ of M will be called the *C*-closure of N in M. For $C_M(N)$ the module M is the superior term, and N is the inferior term. The condition (c₂) is the monotony in the inferior term, while the monotony in the superior term follows from (c₃):

(c'_2) if
$$N \subseteq P \subseteq M$$
, then $C_P(N) \subseteq C_M(N)$.

Indeed, if $f : P \to M$ is the inclusion, then from (c₃) we have $f(C_P(N)) \subseteq C_M(f(N))$, i.e. $C_P(N) \subseteq C_M(N)$.

We denote by \mathbb{CO} the class of all closure operators of *R*-Mod. The partial order in \mathbb{CO} is defined by:

$$C \leq D \Leftrightarrow C_M(N) \subseteq D_M(N)$$
 for every $N \subseteq M$.

Moreover, as in the case of preradicals the class \mathbb{CO} can be considered as a "big lattice" by the rules:

$$\left(\bigwedge_{\alpha\in\mathfrak{A}}C_{\alpha}\right)_{M}(N)=\bigcap_{\alpha\in\mathfrak{A}}(C_{\alpha})_{M}(N),\qquad \left(\bigvee_{\alpha\in\mathfrak{A}}C_{\alpha}\right)_{M}(N)=\sum_{\alpha\in\mathfrak{A}}(C_{\alpha})_{M}(N),$$

for every family $\{C_{\alpha} \mid \alpha \in \mathfrak{A}\} \subseteq \mathbb{CO}$ and every pair $N \subseteq M$.

Further, in the class \mathbb{CO} of closure operators of *R*-Mod two operations are introduced ([8, 9, 10]):

1) the product $C \cdot D$, where $C, D \in \mathbb{CO}$, is defined by

$$(C \cdot D)_M(N) = C_M(D_M(N))$$
 for every $N \subseteq M$;

2) the coproduct C # D is defined by

$$(C \# D)_M(N) = C_{D_M(N)}(N)$$
 for every $N \subseteq M$.

The most important types of closure operators are the following.

Definition 1.2. The closure operator C of R-Mod is called:

- a) weakly hereditary if $C_M(N) = C_{C_M(N)}(N)$ for every $N \subseteq M$;
- b) idempotent if $C_M(N) = C_M(C_M(N))$ for every $N \subseteq M$.

Remark. If C is an idempotent closure operator of R-Mod, then for any $M \in R$ -Mod the function $C_M(-)$ is a closure operator of the lattice $\mathbb{L}(_R M)$. The construction is well known by which to every closure operator C of R-Mod "the nearest" weakly hereditary or idempotent closure operator is associated. It is realized by the product and coproduct of closure operators and consists in the following ([8]).

Let $C \in \mathbb{CO}$. We define the ascending chain of closure operators C^{α} by:

$$C^1 = C, \quad C^{\alpha+1} = C \cdot C^{\alpha} \text{ and } C^{\beta} = \lor \{C^{\alpha} \mid \alpha < \beta\}$$

for every ordinal α and every limit ordinal β . Then $C^* = \bigvee \{C^{\alpha}\}$ is an idempotent closure operator such that for every idempotent closure operator $D \ge C$ we have $D \ge C^*$. The closure operator C^* is called the *idempotent hull* of C.

Dually, for $C \in \mathbb{CO}$ we can consider the descending chain C_{α} of closure operators defined by:

$$C_1 = C, \quad C_{\alpha+1} = C \ \# \ C^{\alpha} \quad \text{and} \quad C_{\beta} = \wedge \{C_{\alpha} \mid \alpha < \beta\}.$$

Then $C_* = \wedge \{C_\alpha\}$ is a weakly hereditary closure operator of *R*-Mod such that for every weakly hereditary closure operator $D \leq C$ we have $D \leq C_*$. The closure operator C_* is called the *weakly hereditary core* of *C*.

The main role in the further investigations is played by the following two types of submodules defined by a closure operator C of R-Mod.

Definition 1.3. Let $C \in \mathbb{CO}$. The submodule $N \in \mathbb{L}(_RM)$ is called:

- a) C-dense in M if $C_M(N) = M$;
- b) C-closed in M if $C_M(N) = N$.

For $C \in \mathbb{CO}$ and $M \in R$ -Mod we denote:

 $\mathcal{F}_1^C(M) = \{ N \subseteq M \mid C_M(N) = M \} - \text{the set of } C \text{-dense submodules of } M;$ $\mathcal{F}_2^C(M) = \{ N \subseteq M \mid C_M(N) = N \} - \text{the set of } C \text{-closed submodules of } M.$

It is obvious that $\mathcal{F}_1^C(M) \cap \mathcal{F}_2^C(M) = \{M\}.$

In that way any closure operator $C \in \mathbb{CO}$ defines two functions \mathcal{F}_1^C and \mathcal{F}_2^C , which associate to every module M the sets of submodules $\mathcal{F}_1^C(M)$ and $\mathcal{F}_2^C(M)$. In continuation we will prove that if $C \in \mathbb{CO}$ is weakly hereditary, then it can be re-established by the function \mathcal{F}_1^C ; similarly, if C is idempotent, then it is completely determined by the function \mathcal{F}_2^C . These facts permit to describe the named types of closure operators by the functions of indicated form.

2. Weakly hereditary closure operators

Let $C \in \mathbb{CO}$. For every module $M \in R$ -Mod we consider the set of C-dense submodules:

$$\mathcal{F}_1^C(M) = \{ N \subseteq M \mid C_M(N) = M \},\$$

and the function \mathcal{F}_1^C which in every module M separates the set of submodules $\mathcal{F}_1^C(M)$. It is obvious that the mapping $C \longmapsto \mathcal{F}_1^C$ is monotone: if $C \leq D$, then $\mathcal{F}_1^C \leq \mathcal{F}_1^D$.

Now for convenience we consider an abstracts function \mathcal{F} which determine for every $M \in R$ -Mod a non-empty set of submodules $\mathcal{F}(M)$ of M such that it is compatible with isomorphisms and $M \in \mathcal{F}(M)$. We will use the following conditions (properties) of \mathcal{F} :

- 1) If $N \in \mathcal{F}(M_{\alpha}), \ M_{\alpha} \subseteq M \ (\alpha \in \mathfrak{A}), \text{ then } N \in \mathcal{F}(\sum_{\alpha \in \mathfrak{A}} M_{\alpha});$
- 2) If $N \subseteq P \subseteq M$ and $N \in \mathcal{F}(P)$, then for every $K \subseteq M$ we have $N + K \in \mathcal{F}(P + K)$;
- 3) If $f: M \to M'$ is an *R*-morphism and $N \in \mathcal{F}(M)$, then $f(N) \in \mathcal{F}(f(M))$;
- 4) If $N \subseteq P \subseteq M$ and $N \in \mathcal{F}(M)$, then $P \in \mathcal{F}(M)$.

Remark. The implication $2) \Rightarrow 4$) is obvious, since if $N \subseteq P \subseteq M$ and $N \in \mathcal{F}(M)$, then by 2) $N + P \in \mathcal{F}(M + P)$, i.e. $P \in \mathcal{F}(M)$.

Proposition 2.1. Let C be an arbitrary closure operator of R-Mod. Then the associated function \mathcal{F}_1^c satisfies the conditions 1), 2) and 3).

Proof. 1) Let $N \in \mathcal{F}_{1}^{C}(M_{\alpha}), M_{\alpha} \subseteq M, \alpha \in \mathfrak{A}$. Then $C_{M_{\alpha}}(N) = M_{\alpha}$ for every $\alpha \in \mathfrak{A}$ and by the monotony (c'_{2}) we have $C_{M_{\alpha}}(N) \subseteq C_{\sum_{\alpha \in \mathfrak{A}} M_{\alpha}}(N)$. Therefore $M_{\alpha} \subseteq C_{\sum_{\alpha \in \mathfrak{A}} M_{\alpha}}(N)$ for every $\alpha \in \mathfrak{A}$ and $\sum_{\alpha \in \mathfrak{A}} M_{\alpha} \subseteq C_{\sum_{\alpha \in \mathfrak{A}} M_{\alpha}}(N)$, i.e. $\sum_{\alpha \in \mathfrak{A}} M_{\alpha} = C_{\sum_{\alpha \in \mathfrak{A}} M_{\alpha}}(N)$ and $N \in \mathcal{F}_{1}^{C}(\sum_{\alpha \in \mathfrak{A}} M_{\alpha})$.

2) Let $N \subseteq P \subseteq M$ and $N \in \mathcal{F}_1^C(P)$. Then $C_P(N) = P$ and for every $K \subseteq M$ we have $C_P(N) + K = P + K$. From the monotony of C in both terms it follows that $C_P(N) + K \subseteq C_{P+K}(N+K)$, therefore $P + K \subseteq C_{P+K}(N+K)$, i.e. $P + K = C_{P+K}(N+K)$ and $N + K \in \mathcal{F}_1^C(P+K)$. 3) Let $f: M \to M'$ be an arbitrary *R*-morphism and $N \in \mathcal{F}_1^C(M)$, i.e. $C_M(N) = M$. From (c_3) it follows that $f(C_M(N)) \subseteq C_{f(M)}(f(N))$ and so $f(M) \subseteq C_{f(M)}(f(N))$, i.e. $f(M) = C_{f(M)}(f(N))$ and $f(N) \in \mathcal{F}_1^C(f(M))$. \Box

Further we will study the inverse transition: from the abstract function \mathcal{F} of *R*-Mod to a closure operator of \mathbb{CO} . For that we introduce the following notation: if \mathcal{F} is an abstract function of *R*-Mod, let $C^{\mathcal{F}}$ be the operator defined by the rule

$$(C^{\mathcal{F}})_{M}(N) = \sum \{ M_{\alpha} \subseteq M \mid N \subseteq M_{\alpha}, \ N \in \mathcal{F}(M_{\alpha}) \}$$
(2.1)

for every $N \subseteq M$. Since $N \in \mathcal{F}(N)$, the definition is correct.

It is easy to see that the mapping $\mathcal{F} \longmapsto C^{\mathcal{F}}$ is monotone: if $\mathcal{F}' \leq \mathcal{F}''$, then $C^{\mathcal{F}'} \leq C^{\mathcal{F}''}$.

Proposition 2.2. Let \mathcal{F} be an abstract function of *R*-Mod, which satisfies the conditions 1), 2) and 3). Then the operator $C^{\mathcal{F}}$ defined by the rule (2.1) is a closure operator of *R*-Mod.

Proof. (c₁) By definition $N \subseteq (C^{\mathfrak{F}})_M(N)$, since $N \subseteq M_{\alpha}$ for every $\alpha \in \mathfrak{A}$. (c₂) Let $N \subseteq P \subseteq M$. Then $(C^{\mathfrak{F}})_M(N)$ is defined by (2.1) and

$$(C^{\mathfrak{F}})_M(P) = \sum \{ L_\alpha \subseteq M \mid P \subseteq L_\alpha, P \in \mathfrak{F}(L_\alpha) \}.$$

Since $N \in \mathcal{F}(M_{\alpha})$ $(\alpha \in \mathfrak{A})$ by condition 2) of \mathcal{F} we obtain $N + P \in \mathcal{F}(M_{\alpha} + P)$, i.e. $P \in \mathcal{F}(M_{\alpha} + P)$. Denoting $L_{\alpha} = M_{\alpha} + P$ we have $M_{\alpha} \subseteq L_{\alpha}$ and $P \in \mathcal{F}(L_{\alpha})$. Therefore $\sum_{\alpha \in \mathfrak{A}} M_{\alpha} \subseteq \sum_{\alpha \in \mathfrak{A}} L_{\alpha}$, i.e. $(C^{\mathcal{F}})_{M}(N) \subseteq (C^{\mathcal{F}})_{M}(P)$.

(c₃) If $f: M \to M'$ is an *R*-morphism and $N \subseteq M$, then from the condition 3) of \mathcal{F} we have:

$$f((C^{\mathcal{F}})_M(N)) = f(\sum_{\alpha \in \mathfrak{A}} M_\alpha) = \sum_{\alpha \in \mathfrak{A}} f(M_\alpha).$$

Since $N \in \mathcal{F}(M_{\alpha})$ ($\alpha \in \mathfrak{A}$), by condition 3) of \mathcal{F} we obtain $f(N) \in \mathcal{F}(f(M_{\alpha}))$. By definition

$$(C^{\mathcal{F}})_{M'}(f(N)) = \sum \{ L_{\alpha} \subseteq M' \mid f(N) \subseteq L_{\alpha}, \ f(N) \in \mathcal{F}(L_{\alpha}) \},\$$

therefore $f(M_{\alpha})$ coincides with some L_{α} , so $f(M_{\alpha}) \subseteq \sum_{\alpha \in \mathfrak{A}} L_{\alpha}$ for every $\alpha \in \mathfrak{A}$. This means that $\sum_{\alpha \in \mathfrak{A}} f(M_{\alpha}) \subseteq \sum_{\alpha \in \mathfrak{A}} L_{\alpha}$, i.e. $f((C^{\mathfrak{F}})_{M}(N)) \subseteq (C^{\mathfrak{F}})_{M'}(f(N))$.

Proposition 2.3. Let \mathcal{F} be an abstract function of R-Mod which satisfies the conditions 1), 2) and 3). Then the associated closure operator $C^{\mathfrak{F}}$ (Proposition 2.2) is weakly hereditary and the corresponding function $\mathcal{F}_{1}^{C^{\mathcal{F}}}$ coincides with \mathcal{F} (i.e. $\mathcal{F} = \mathcal{F}_1^{C^{\mathcal{F}}}$).

Proof. The submodule $(C^{\mathcal{F}})_M(N)$ is defined by (2.1) and

$$(C^{\mathcal{F}})_{\sum_{\alpha \in \mathfrak{A}} M_{\alpha}}(N) = \sum \{ L_{\alpha} \subseteq \sum_{\alpha \in \mathfrak{A}} M_{\alpha} \mid N \subseteq L_{\alpha}, N \in \mathcal{F}(L_{\alpha}) \}$$

From the condition 1) of \mathcal{F} and from the relations $N \in \mathcal{F}(M_{\alpha})$ ($\alpha \in \mathfrak{A}$) it follows that $N \in \mathcal{F}(\sum_{\alpha \in \mathfrak{A}} M_{\alpha})$. Therefore $\sum_{\alpha \in \mathfrak{A}} M_{\alpha}$ coincides with some L_{α} from the definition of $(C^{\mathcal{F}})_{\sum_{\alpha \in \mathfrak{A}} M_{\alpha}}(N)$, so $\sum_{\alpha \in \mathfrak{A}} M_{\alpha} \subseteq \sum_{\alpha \in \mathfrak{A}} L_{\alpha}$. This means that $(C^{\mathcal{F}})_M(N) \subseteq (C^{\mathcal{F}})_{(C^{\mathcal{F}})_M(N)}(N)$ and by monotony $(C^{\mathcal{F}})_{M}(N) = (C^{\mathcal{F}})_{(C^{\mathcal{F}})_{M}(N)}(N), \text{ i.e. } C^{\mathcal{F}} \text{ is weakly hereditary.}$

Now we will prove that $\mathcal{F} = \mathcal{F}_1^{C^{\mathcal{F}}}$. The relation $\mathcal{F} \leq \mathcal{F}_1^{C^{\mathcal{F}}}$ is true always and follows from the definitions: if $N \in \mathcal{F}(M)$, then from (2.1) it is clear

and follows from the demittions. If $X \in \mathcal{C}_{1}^{C^{\mathcal{F}}}(M)$, that $(C^{\mathcal{F}})_{M}(N) = M$, i.e. $N \in \mathcal{F}_{1}^{C^{\mathcal{F}}}(M)$. The inverse relation $\mathcal{F}_{1}^{C^{\mathcal{F}}} \leq \mathcal{F}$ follows from the property 1) of \mathcal{F} : if $N \in \mathcal{F}_{1}^{C^{\mathcal{F}}}(M)$, then $(C^{\mathcal{F}})_{M}(N) = M$, i.e. $\sum_{\alpha \in \mathfrak{A}} M_{\alpha} = M$, and from 1) we have $N \in \mathcal{F}(\sum_{\alpha \in \mathfrak{A}} M_{\alpha})$, i.e. $N \in \mathcal{F}(M)$.

In continuation the consecutive use of the mappings $C \mapsto \mathfrak{F}_1^C$ and $\mathcal{F} \mapsto C^{\mathcal{F}}$ we will consider. If $C \in \mathbb{CO}$, then by Proposition 2.1 \mathcal{F}_1^C is a function with the properties 1, 2) and 3). Therefore by Proposition 2.2 the function \mathcal{F}_1^C determines the closure operator $C^{\mathcal{F}_1^C}$. We denote $C_* = C^{\mathcal{F}_1^C}.$

Proposition 2.4. For every closure operator $C \in \mathbb{CO}$ we have:

- a) $C_* \leq C;$
- b) C_* is weakly hereditary;
- c) C_* is the greatest weakly hereditary closure operator which is contained in C.

Proof. a) By definition

$$(C_*)_M(N) = \sum \{ M_\alpha \subseteq M \mid N \subseteq M_\alpha, \ N \in \mathcal{F}_1^C(M_\alpha) \}.$$

Since \mathcal{F}_{1}^{C} satisfies the property 1) (Proposition 2.1), from the relations $N \in \mathcal{F}_{1}^{C}(M_{\alpha})$ ($\alpha \in \mathfrak{A}$) it follows that $N \in \mathcal{F}_{1}^{C}(\sum_{\alpha \in \mathfrak{A}} M_{\alpha})$. Therefore $C_{\sum_{\alpha \in \mathfrak{A}} M_{\alpha}}(N) = \sum_{\alpha \in \mathfrak{A}} M_{\alpha}$ and by monotony $C_{\sum_{\alpha \in \mathfrak{A}} M_{\alpha}}(N) \subseteq C_{M}(N)$, i.e. $\sum_{\alpha \in \mathfrak{A}} M_{\alpha} \subseteq C_{M}(N)$. So $(C_{*})_{M}(N) \subseteq C_{M}(N)$ for every $N \subseteq M$, i.e. $C_{*} \leq C$.

b) Since \mathcal{F}_1^C satisfies the conditions 1), 2) and 3) (Proposition 2.1), the closure operator $C_* = C^{\mathcal{F}_1^C}$ is weakly hereditary by Proposition 2.3.

c) Let D be a weakly hereditary closure operator and $D \leq C$. We must verify that $D \leq C_*$, where $C_* = C^{\mathcal{F}_1^C}$. By definition $(C_*)_M(N) = \sum_{\alpha \in \mathfrak{A}} M_\alpha$, where $N \subseteq M_\alpha$ and $N \in \mathcal{F}_1^C(M_\alpha)$. Since D is weakly hereditary and $D \leq C$, we obtain:

$$D_M(N) = D_{D_M(N)}(N) \subseteq C_{D_M(N)}(N) \subseteq D_M(N),$$

therefore $C_{D_M(N)}(N) = D_M(N)$, i.e. $N \in \mathcal{F}_1^C(D_M(N))$. So $D_M(N)$ is one of M_α from the definition of $(C_*)_M(N)$, therefore $D_M(N) \subseteq \sum_{\alpha \in \mathfrak{A}} M_\alpha =$ $(C_*)_M(N)$ for every $N \subseteq M$. This means that $D \leq C_*$.

Corollary 2.5. The closure operator $C \in \mathbb{CO}$ is weakly hereditary if and only if $C = C_*$, where $C_* = C^{\mathcal{F}_1^C}$.

In Section 1 we indicated the method of construction of a *weakly* hereditary core C_* of an arbitrary closure operator $C \in \mathbb{CO}$. From the previous results it follows that there is another way of construction of this closure operator: it can be obtained by the rule $C_* = C^{\mathcal{F}_1}$.

The main result of this section is the following

Theorem 2.6. The mappings $C \mapsto \mathfrak{F}_1^C$ and $\mathfrak{F} \mapsto C^{\mathfrak{F}}$ define a monotone bijection between the weakly hereditary closure operators C of a category R-Mod and the abstract functions \mathfrak{F} of this category which satisfy the conditions 1), 2) and 3).

Proof. If C is a weakly hereditary closure operator of R-Mod, then $C = C^{\mathcal{F}_1^C}$ (Corollary 2.5). On the other hand, if \mathcal{F} is an abstract function of R-Mod with the properties 1), 2) and 3), then $\mathcal{F} = \mathcal{F}_1^{C^{\mathcal{F}}}$ (Proposition 2.3).

Further we will call the abstract functions \mathcal{F} of *R*-Mod with the properties 1), 2) and 3) the functions of type \mathcal{F}_1 .

3. Idempotent closure operators

The results of this section in some sense are dual to the statements of Section 2. We will show the characterization of *idempotent* closure operators C of R-Mod by the function \mathcal{F}_2^C associated to C, which in every module $M \in R$ -Mod separates the set of C-closed submodules:

$$\mathcal{F}_2^C(M) = \{ N \in \mathbb{L}(_R M) \mid C_M(N) = N \}.$$

It is easy to observe that the mapping $C \mapsto \mathcal{F}_2^C$ is antimonotone: if $C \leq D$, then $\mathcal{F}_2^C \geq \mathcal{F}_2^D$.

As in the previous case, for convenience we firstly formulate some conditions (properties) of an abstract function \mathcal{F} of *R*-Mod (they are dual to the conditions 1) - 4) of Section 2):

1*) If
$$N_{\alpha} \in \mathcal{F}(M)$$
, $N_{\alpha} \subseteq M$ ($\alpha \in \mathfrak{A}$), then $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \in \mathcal{F}(M)$;

- 2^{*}) If $N \subseteq P \subseteq M$ and $N \in \mathcal{F}(P)$, then for every submodule $K \subseteq M$ the relation $N \cap K \in \mathcal{F}(P \cap K)$ is true;
- 3*) If $g : M \to M'$ is an *R*-morphism and $N' \in \mathcal{F}(g(M))$, then $g^{-1}(N') \in \mathcal{F}(M)$;
- 4*) If $N \subseteq P \subseteq M$ and $N \in \mathcal{F}(M)$, then $N \in \mathcal{F}(P)$.

The implication 2^*) $\Rightarrow 4^*$) is obvious: if $N \subseteq P \subseteq M$ and $N \in \mathcal{F}(M)$, then by 2^*) we have $N \cap P \in \mathcal{F}(M \cap P)$, i.e. $N \in \mathcal{F}(P)$.

Proposition 3.1. Let C be an arbitrary closure operator of R-Mod. Then the associated function \mathcal{F}_2^C satisfies the conditions 1^*), 2^*) and 3^*).

Proof. 1*) Let $N_{\alpha} \in \mathcal{F}_{2}^{C}(M)$, $N_{\alpha} \subseteq M$, $\alpha \in \mathfrak{A}$. Then $C_{M}(N_{\alpha}) = N_{\alpha}$ for every $\alpha \in \mathfrak{A}$ and by monotony the inclusion $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \subseteq N_{\alpha}$ implies $C_{M}(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}) \subseteq C_{M}(N_{\alpha}) = N_{\alpha}$ for every $\alpha \in \mathfrak{A}$. Therefore $C_{M}(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}) \subseteq$ $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$, i.e. $C_{M}(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}) = \bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$ and $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \in \mathcal{F}_{2}^{C}(M)$.

2*) Let $N \subseteq P \subseteq M$ and $N \in \mathcal{F}_2^C(P)$, i.e. $C_P(N) = N$. Then for every submodule $K \subseteq M$ from the monotony it follows that $C_{P\cap K}(N\cap K) \subseteq C_P(N) = N$. On the other hand, the monotony implies $C_{P\cap K}(N\cap K) \subseteq C_K(N\cap K) \subseteq K$. Therefore $C_{P\cap K}(N\cap K) \subseteq N\cap K$, i.e. $C_{P\cap K}(N\cap K) = N \cap K$ and $N \cap K \in \mathcal{F}_2^C(P \cap K)$.

3*) Let $g: M \to M'$ be an *R*-morphism and $N' \in \mathcal{F}_2^C(g(M))$, i.e. $C_{g(M)}(N') = N'$. Using the condition (c_3) and the relation N' = $g(g^{-1}(N))$, we obtain:

$$g(C_M(g^{-1}(N'))) \subseteq C_{g(M)}(g(g^{-1}(N'))) = C_{g(M)}(N') = N'.$$

Therefore $C_M(g^{-1}(N')) \subseteq g^{-1}(N')$, i.e. $C_M(g^{-1}(N')) = g^{-1}(N')$ and $g^{-1}(N') \in \mathcal{F}_2^C(M)$.

Following the scheme of the previous case, now we will show the inverse transition from an abstract function \mathcal{F} of *R*-Mod to a closure operator of *R*-Mod. For that we define the operator $C_{\mathcal{F}}$ by the rule:

$$(C_{\mathcal{F}})_M(N) = \cap \{ N_\alpha \in \mathbb{L}(_R M) \mid N \subseteq N_\alpha, \ N_\alpha \in \mathcal{F}(M) \}$$
(3.1)

for every $N \subseteq M$. Since $M \in \mathcal{F}(M)$, the definition is correct.

We remark that the mapping $\mathcal{F} \mapsto C_{\mathcal{F}}$ is antimonotone: if $\mathcal{F}' \leq \mathcal{F}''$, then $C_{\mathcal{F}'} \geq C_{\mathcal{F}''}$.

Proposition 3.2. Let \mathcal{F} be an abstract function of *R*-Mod which satisfies the conditions 1^*), 2^*) and 3^*). Then the associated operator $C_{\mathcal{F}}$ defined by the rule (3.1) is a closure operator of *R*-Mod.

Proof. (c₁) Since $N \subseteq N_{\alpha}$ for every $\alpha \in \mathfrak{A}$, we have $N \subseteq (C_{\mathfrak{F}})_M(N)$.

(c₂) Let $N \subseteq P \subseteq M$. The submodule $(C_{\mathcal{F}})_M(N)$ is defined by (3.1) and $(C_{\mathcal{F}})_M(P) = \bigcap \{P_\alpha \subseteq M \mid P \subseteq P_\alpha, P_\alpha \in \mathcal{F}(M)\}$. So we have $N \subseteq P \subseteq P_\alpha$ and $P_\alpha \in \mathcal{F}(M)$, therefore P_α is some N_α from the definition of $(C_{\mathcal{F}})_M(N)$. This means that $\bigcap_{\alpha \in \mathfrak{A}} N_\alpha \subseteq P_\alpha$ for every $\alpha \in \mathfrak{A}$ and so

 $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \subseteq \bigcap_{\alpha \in \mathfrak{A}} P_{\alpha}, \text{ i.e. } (C_{\mathcal{F}})_{M}(N) \subseteq (C_{\mathcal{F}})_{M}(P).$

(c₃) Let $f: M \to M'$ be an *R*-morphism and $N \subseteq M$. Then $(C_{\mathcal{F}})_M(N)$ is defined by (3.1) and

$$(C_{\mathcal{F}})_{M'}(f(N)) = \bigcap \{N'_{\alpha} \subseteq M' \mid f(N) \subseteq N'_{\alpha}, N'_{\alpha} \in \mathcal{F}(M')\}.$$

By the property 3^{*}) of \mathcal{F} , from $N'_{\alpha} \in \mathcal{F}(M')$ ($\alpha \in \mathfrak{A}$) it follows that $f^{-1}(N'_{\alpha}) \in \mathcal{F}(M)$, where $N'_{\alpha} \supseteq f(N)$, therefore $f^{-1}(N'_{\alpha}) \supseteq$ $f^{-1}(f(N)) \supseteq N$. This means that $f^{-1}(N'_{\alpha})$ is some N_{α} from the definition of $(C_{\mathcal{F}})_M(N)$, so $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \subseteq f^{-1}(N'_{\alpha})$ for every $\alpha \in \mathfrak{A}$. Therefore $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \subseteq \bigcap \{f^{-1}(N'_{\alpha}) \mid f(N) \subseteq N'_{\alpha}, N'_{\alpha} \in \mathcal{F}(M')\}$. Using this relation we obtain:

$$f((C_{\mathcal{F}})_{M}(N)) = f(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}) \subseteq f(\bigcap_{\alpha \in \mathfrak{A}} f^{-1}(N_{\alpha}')) \subseteq \bigcap_{\alpha \in \mathfrak{A}} f(f^{-1}(N_{\alpha}')) =$$
$$= \bigcap_{\alpha \in \mathfrak{A}} (N_{\alpha}' \cap Im f) \subseteq \bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}' = (C_{\mathcal{F}})_{M'}(f(N)). \qquad \Box$$

Proposition 3.3. Let \mathcal{F} be an abstract function of *R*-Mod which satisfies the conditions 1^{*}), 2^{*}) and 3^{*}). Then the associated closure operator $C_{\mathcal{F}}$ (Proposition 3.2) is idempotent and the corresponding function $\mathcal{F}_{2}^{C_{\mathcal{F}}}$, defined by

$$\mathcal{F}_2^{C_{\mathcal{F}}}(M) = \{ N \subseteq M \mid (C_{\mathcal{F}})_M(N) = N \}$$

coincides with \mathcal{F} (i.e. $\mathcal{F} = \mathcal{F}_2^{C_{\mathcal{F}}}$).

Proof. For a function \mathcal{F} with 1^*), 2^*) and 3^*) the submodule $(C_{\mathcal{F}})_M(N)$ is defined by (3.1) and

$$(C_{\mathcal{F}})_M[(C_{\mathcal{F}})_M(N)] = \cap \{L_\alpha \subseteq M \mid (C_{\mathcal{F}})_M(N) \subseteq L_\alpha, \ L_\alpha \in \mathcal{F}(M)\}.$$

From the property 1^{*}) of \mathcal{F} and $N_{\alpha} \in \mathcal{F}(M)$ ($\alpha \in \mathfrak{A}$) it follows that $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \in \mathcal{F}(M)$. Therefore $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$ is some L_{α} , so $\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha} \subseteq \bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$. This means that $(C_{\mathcal{F}})_M[(C_{\mathcal{F}})_M(N)] \subseteq (C_{\mathcal{F}})_M(N)$, the inverse inclusion being trivial, therefore $C_{\mathcal{F}}$ is idempotent.

Further we prove that $\mathcal{F} = \mathcal{F}_2^{C_{\mathcal{F}}}$. The relation $\mathcal{F} \leq \mathcal{F}^{C_{\mathcal{F}}}$ follows from the construction: if $N \in \mathcal{F}(M)$, then N is some N_{α} from the definition of $(C_{\mathcal{F}})_M(N)$, therefore $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} = N$, i.e. $(C_{\mathcal{F}})_M(N) = N$ and $N \in \mathcal{F}_2^{C_{\mathcal{F}}}(M)$.

The inverse relation $\mathcal{F}_{2}^{C_{\mathcal{F}}} \leq \mathcal{F}$ follows from the property 1^{*}) of \mathcal{F} : if $N \in \mathcal{F}_{2}^{C_{\mathcal{F}}}(M)$, then $\cap \{N_{\alpha} \subseteq M \mid N \subseteq N_{\alpha}, N_{\alpha} \in \mathcal{F}(M)\} = N$ and by 1^{*}) from $N_{\alpha} \in \mathcal{F}(M)$ ($\alpha \in \mathfrak{A}$) we have $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \in \mathcal{F}(M)$, so $N \in \mathcal{F}(M)$. \Box

Now we will consider the combination of the mappings $C \mapsto \mathcal{F}_2^C$ and $\mathcal{F} \mapsto C_{\mathcal{F}}$ which were defined by the rules: $\mathcal{F}_2^C(M) =$ $\{N \subseteq M \mid C_M(N) = N\}$ and $(C_{\mathcal{F}})_M(N) = \cap \{N_\alpha \subseteq M \mid N \subseteq N_\alpha, N_\alpha \in \mathcal{F}(M)\}$. If C is an arbitrary closure operator of R-Mod, then \mathcal{F}_2^C is a function with the properties 1^{*}), 2^{*}) and 3^{*}) (Proposition 3.1). In its turn the function \mathcal{F}_2^C defines the closure operator $C_{\mathcal{F}_2^C}$ (Proposition 3.2). We denote $C^* = C_{\mathcal{F}_2^C}$.

Proposition 3.4. For every closure operator C of R-Mod we have:

- a) $C^* \ge C;$
- b) C^{*} is an *idempotent* closure operator;
- c) C^* is the least idempotent closure operator containing C.

Proof. a) By definition

$$(C^*)_M(N) = \cap \{ N_\alpha \subseteq M \mid N \subseteq N_\alpha, \ N_\alpha \in \mathcal{F}_2^C(M) \}.$$

By property 1^{*}) of \mathcal{F}_{2}^{C} we have $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \in \mathcal{F}_{2}^{C}(M)$, i.e. $C_{M}(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}) = \bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$. By monotony the inclusion $N \subseteq \bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$ implies $C_{M}(N) \subseteq C_{M}(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}) = \bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}$. This means that $C_{M}(N) \subseteq (C^{*})_{M}(N)$ for every $N \subseteq M$, i.e. $C \leq C^{*}$.

b) The function \mathcal{F}_2^c satisfies the properties 1^{*}), 2^{*}) and 3^{*}) (Proposition 3.1), therefore by Proposition 3.3 the operator $C^* = C_{\mathcal{F}_2^c}$ is idempotent.

c) Let D be an idempotent closure operator of R-Mod and $D \ge C$. We will verify that $C^* \le D$. By definition:

$$(C^*)_M(N) = \left(C_{\mathcal{F}_2^C}\right)_M(N) = \cap \{N_\alpha \subseteq M \mid N \subseteq N_\alpha, \ N_\alpha \in \mathcal{F}_2^C(M)\}.$$

Since D is idempotent and $D \ge C$ we obtain:

$$D_M(N) = D_M(D_M(N)) \geq C_M(D_M(N)) \geq D_M(N),$$

therefore $D_M(N) = C_M(D_M(N))$, i.e. $D_M(N) \in \mathcal{F}_2^C(M)$. So $D_M(N)$ is some N_α from the definition of $(C^*)_M(N)$, therefore $\bigcap_{\alpha \in \mathfrak{A}} N_\alpha \subseteq D_M(N)$. In this way $(C^*)_M(N) \subseteq D_M(N)$ for every $N \subseteq M$, i.e. $C^* \leq D$. \Box

Corollary 3.5. The closure operator C of R-Mod is idempotent if and only if $C = C^*$.

In Section 1 the method of construction of *idempotent hull* C^* of an arbitrary closure operator C of R-Mod was shown. From Proposition 3.4 another way to obtain the idempotent hull of C follows, namely $C^*=C_{\pi C}$.

Totalizing the results of this section we obtain

Theorem 3.6. The mappings $C \mapsto \mathcal{F}_2^C$ and $\mathcal{F} \mapsto C_{\mathcal{F}}$ define an antimonotone bijection between the idempotent closure operators C of R-Mod and the abstract functions \mathcal{F} of R-Mod, which satisfy the conditions 1^*), 2^*) and 3^*).

The abstract functions \mathcal{F} of *R*-Mod with the properties 1^*), 2^*) and 3^*) will be called in continuation the functions of type \mathcal{F}_2 .

4. Weakly hereditary and idempotent closure operators

Using the previous results, now we will describe the closure operators of R-Mod which simultaneously are weakly hereditary and idempotent (in radical theory this corresponds to the characterization of idempotent radicals by the classes of torsion or torsion-free modules).

Let C be a weakly hereditary and idempotent closure operation of R-Mod. Then the operator C can be re-established both by the function \mathcal{F}_1^C (Theorem 2.6) and by the function \mathcal{F}_2^C (Theorem 3.6). We will show what property the abstract function \mathcal{F} of R-Mod must satisfy so that the associated closure operators $C^{\mathcal{F}}$ and $C_{\mathcal{F}}$ should be weakly hereditary and idempotent. For that we consider the following condition of an abstract function \mathcal{F} of R-Mod:

 $(5) = 5^*$) If $N \subseteq P \subseteq M$, $N \in \mathcal{F}(P)$ and $P \in \mathcal{F}(M)$, then $N \in \mathcal{F}(M)$.

This condition will be named the property of transitivity of \mathcal{F} (it is autodual).

Proposition 4.1. If C is an *idempotent* closure operator of R-Mod, then the associated function \mathcal{F}_1^C (where $\mathcal{F}_1^C(M) = \{N \subseteq M \mid C_M(N) = M\}$) satisfies the property of transitivity 5).

Proof. Let $N \subseteq P \subseteq M$, $N \in \mathcal{F}_1^C(P)$ and $P \in \mathcal{F}_1^C(M)$. Then $C_P(N) = P$ and $C_M(P) = M$. By monotony from $P \subseteq M$ it follows that $C_P(N) \subseteq C_M(N)$, therefore $P \subseteq C_M(N)$. Since C is monotone and idempotent, we obtain $C_M(P) \subseteq C_M(C_M(N)) = C_M(N)$, i.e. $M \subseteq C_M(N)$. So $C_M(N) = M$ and $N \in \mathcal{F}_1^C(M)$.

Proposition 4.2. Let \mathcal{F} be an abstract function of *R*-Mod of the type \mathcal{F}_1 (i.e. with the conditions 1), 2), 3)) which satisfies the property of transitivity 5). Then the associated closure operator $C^{\mathcal{F}}$ defined by the rule

$$(C^{\mathfrak{F}})_{M}(N) = \sum \{ M_{\alpha} \subseteq M \mid N \subseteq M_{\alpha}, N \in \mathfrak{F}(M_{\alpha}) \}$$

is idempotent.

Proof. If \mathcal{F} is a function of the type \mathcal{F}_1 , then $C^{\mathcal{F}}$ is a closure operator (Proposition 2.2). By definition

$$(C^{\mathcal{F}})_M[(C^{\mathcal{F}})_M(N)] = \sum \{ L_\alpha \subseteq M \mid (C^{\mathcal{F}})_M(N) \subseteq L_\alpha, \ (C^{\mathcal{F}})_M(N) \in \mathcal{F}(L_\alpha) \}.$$

From the definition of $(C^{\mathcal{F}})_M(N)$ we have $N \in \mathcal{F}(M_\alpha)$ $(\alpha \in \mathfrak{A})$ and by the property 1) of \mathcal{F} we obtain $N \in \mathcal{F}(\sum_{\alpha \in \mathfrak{A}} M_\alpha)$. Since we have also the relation $\sum_{\alpha \in \mathfrak{A}} M_{\alpha} \in \mathcal{F}(L_{\alpha})$, by the transitivity of \mathcal{F} we obtain $N \in \mathcal{F}(L_{\alpha})$ for every $\alpha \in \mathfrak{A}$. Using once again the condition 1) of \mathcal{F} , we have $N \in \mathcal{F}(\sum_{\alpha \in \mathfrak{A}} L_{\alpha})$. Therefore $\sum_{\alpha \in \mathfrak{A}} L_{\alpha}$ is some submodule M_{α} from the definition of $(C^{\mathfrak{F}})_{M}(N)$, so $\sum_{\alpha \in \mathfrak{A}} L_{\alpha} \subseteq \sum_{\alpha \in \mathfrak{A}} M_{\alpha}$. This means that $(C^{\mathfrak{F}})_{M}[(C^{\mathfrak{F}})_{M}(N)] \subseteq (C^{\mathfrak{F}})_{M}(N)$, the inverse inclusion being trivial, so $C^{\mathfrak{F}}$ is idempotent.

Corollary 4.3. The mappings $C \mapsto \mathcal{F}_1^C$ and $\mathcal{F} \mapsto C^{\mathcal{F}}$ define a monotone bijection between the weakly hereditary and idempotent closure operators of *R*-Mod and the abstract functions \mathcal{F} of type \mathcal{F}_1 (with the conditions 1), (2), (3)) of *R*-Mod with satisfy the property of transitivity 5).

Proof. By Theorem 2.6 the indicated mappings define a monotone bijection between the weakly hereditary closure operators C of R-Mod and abstract functions \mathcal{F} of type \mathcal{F}_1 . In this bijection if C is idempotent, then the function \mathcal{F}_1^C is transitive (Proposition 4.1). On the other hand, if the function \mathcal{F} of type \mathcal{F}_1 is transitive, then the weakly hereditary closure operator $C^{\mathcal{F}}$ is idempotent (Proposition 4.2).

Thus the weakly hereditary and idempotent closure operators C of R-Mod are completely described by the abstract functions \mathcal{F} of R-Mod which satisfy the conditions 1), 2), 3), 5).

Dually the characterization of weakly hereditary and idempotent closure operation C of R-Mod by abstract functions \mathcal{F} of type \mathcal{F}_2 can be obtained.

Proposition 4.4. If C is a weakly hereditary closure operator of R-Mod, then the associated function \mathcal{F}_2^C , where $\mathcal{F}_2^C(M) = \{N \subseteq M \mid C_M(N) = N\}$, satisfies the condition of transitivity $5) = 5^*$).

Proof. Let $N \subseteq P \subseteq M$, $N \in \mathcal{F}_2^C(P)$ and $P \in \mathcal{F}_2^C(M)$, where C is a weakly hereditary closure operator of R-Mod. Then $C_P(N) = N$ and $C_M(P) = P$. From $N \subseteq M$ by monotony it follows that $C_M(N) \subseteq$ $C_M(P) = P$, i.e. $C_M(N) \subseteq P$. Using the monotony once again, we obtain $C_{C_M(N)}(N) \subseteq C_P(N) = N$. Since C is weakly hereditary, we have $C_{C_M(N)}(N) = C_M(N)$, therefore $C_M(N) \subseteq N$, i.e. $C_M(N) = N$ and $N \in \mathcal{F}_2^C(M)$. This proves that \mathcal{F}_2^C is transitive. \Box **Proposition 4.5.** If \mathcal{F} is an abstract function of *R*-Mod of the type \mathcal{F}_2 (*i.e.* with the conditions 1^*), 2^*), 3^*)) which satisfies the transitivity property 5^*), then the corresponding closure operator $C_{\mathcal{F}}$, defined by the rule

$$(C_{\mathcal{F}})_M(N) = \cap \{ N_\alpha \subseteq M \mid N \subseteq N_\alpha, \ N_\alpha \in \mathcal{F}(M) \},\$$

is weakly hereditary.

Proof. By definition

$$(C_{\mathcal{F}})_{(C_{\mathcal{F}})_M(N)}(N) = \cap \{ L_{\alpha} \subseteq M \mid N \subseteq L_{\alpha} \subseteq (C_{\mathcal{F}})_M(N), L_{\alpha} \subseteq \mathcal{F}((C_{\mathcal{F}})_M(N)) \}.$$

From the definition of $(C_{\mathcal{F}})_M(N)$ we have $N_{\alpha} \subseteq \mathcal{F}(M)$ ($\alpha \in \mathfrak{A}$) and by condition 1^{*}) of \mathcal{F} it follows that $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \in \mathcal{F}(M)$, i.e. $(C_{\mathcal{F}})_M(N) \in \mathcal{F}(M)$.

On the other hand, from the relations $L_{\alpha} \in \mathcal{F}((C_{\mathcal{F}})_M(N))$ $(\alpha \in \mathfrak{A})$ by condition 1*) of \mathcal{F} we have $\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha} \in \mathcal{F}((C_{\mathcal{F}})_M(N))$. Using the transitivity in the situation $\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha} \subseteq (C_{\mathcal{F}})_M(N) \subseteq M$, we obtain $\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha} \in \mathcal{F}(M)$. Therefore the submodule $\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha}$ is some N_{α} from the definition of $(C_{\mathcal{F}})_M(N)$, so $\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \subseteq \bigcap_{\alpha \in \mathfrak{A}} L_{\alpha}$. This means that $(C_{\mathcal{F}})_M(N) \subseteq$ $(C_{\mathcal{F}})_{(C_{\mathcal{F}})_M(N)}(N)$. The inverse inclusion follows from $M \supseteq (C_{\mathcal{F}})_M(N)$. This proves that $C_{\mathcal{F}}$ is weakly hereditary. \Box

From Propositions 4.4 and 4.5, using Theorem 3.6, we obtain

Corollary 4.6. The mappings $C \mapsto \mathcal{F}_2^C$ and $\mathcal{F} \mapsto C_{\mathcal{F}}$ define an antimonotone bijection between the weakly hereditary and idempotent closure operators C of R-Mod and the abstract functions \mathcal{F} of R-Mod which satisfy the conditions 1^*), 2^*), 3^*), 5^*) (i.e. the transitive functions \mathcal{F} of type \mathcal{F}_2).

Combining Corollaries 4.3 and 4.6, is obvious the

Corollary 4.7. The mappings

 $\mathcal{F}\longmapsto C^{\mathcal{F}}\longmapsto \mathcal{F}_{2}{}^{C^{\mathcal{F}}}, \quad \mathcal{F}\longmapsto C_{\mathcal{F}}\longmapsto \mathcal{F}_{1}{}^{C_{\mathcal{F}}}$

define an antimonotone bijection between the transitive abstract functions of type \mathcal{F}_1 and the transitive abstract functions of type \mathcal{F}_2 .

Let C be a weakly hereditary and idempotent closure operator of R-Mod. For any module $M \in R$ -Mod we can indicate a direct way to obtain the sets of submodules $\mathcal{F}_1^C(M)$ and $\mathcal{F}_2^C(M)$ one by another ([6], Proposition 2.3):

 $\begin{aligned} \mathcal{F}_1^C(M) &= \{ N \subseteq M \,|\, P \notin \mathcal{F}_2^C(M) \text{ for every } P \text{ such that } N \subseteq P \subsetneqq M \}, \\ \mathcal{F}_2^C(M) &= \{ N \subseteq M \,|\, N \notin \mathcal{F}_1^C(P) \text{ for every } P \text{ such that } N \subsetneqq P \subseteq M \}. \end{aligned}$

References

- L. Bican, T. Kepka, P. Nemec, *Rings, modules and preradicals*, Marcel Dekker, New York, 1982.
- [2] A.P. Mišina, L.A. Skornjakov, *Abelian groups and modules*, A.M.S. Translations, series 2, v. 107, A.M.S., Providence, 1976.
- [3] B. Stenström, Rings of quotients, Springer Verlag, 1975.
- [4] J.S. Golan, Torsion theories, Longman Scientific and Technical, New York, 1976.
- [5] A.I. Kashu, Radicals and torsions in modules, Kishinev, Ştiinţa, 1983 (in Russian).
- [6] A.I. Kashu, Radical closures in categories of modules, Matem. issled. (Kishinev), v. V, No 4(18), 1970, pp. 91-104 (in Russian).
- [7] A.I. Kashu, On some characterizations of torsions and stable radicals of modules, Matem. issled. (Kishinev), v. VIII, No 2(28), 1973, pp. 176-182 (in Russian).
- [8] D. Dikranjan, E. Giuli, Factorizations, injectivity and compactness in categories of modules, Commun. in Algebra, v. 19, No 1, 1991, pp. 45–83.
- [9] D. Dikranjan, E. Giuli, *Closure operators* I, Topology and its Applications, v. 27, 1987, pp. 129–143.
- [10] D. Dikranjan, E. Giuli, W. Tholen, *Closure operators* II, Proc. Intern. Conf. on Categorical Topology, Prague, 1988 (World Scientific Publ., Singapore, 1989).

CONTACT INFORMATION

Institute of Mathematics and Computer
Science, Academy of Sciences of Moldova,
5 Academiei str., Chişinău,
MD - 2028 MOLDOVA
E-Mail: kashuai@math.md

Received by the editors: 19.02.2013 and in final form 25.05.2013.