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ABSTRACT. Let (), be the cyclic group of order n and set
s4(Cr) as the smallest integer ¢ such that every sequence S in CJ,
of length at least ¢ has an A-zero-sum subsequence of length equal
to exp(C), for A = {—1,1}. In this paper, among other things, we
give estimates for s4(C%), and prove that s4(C3) = 9, s4(Cj) = 21
and 41 < s4(C3) < 45.

Introduction

Let G be a finite abelian group (written additively), and S be a finite
sequence of elements of G and of length m. For simplicity we are going to
write S in a multiplicative form

J4
S=1]]g"
=1

where v; represents the number of times the element g; appears in this
sequence. Hence Ele v; = m.

Let A = {—1,1}. We say that a subsequence aj---as; of § is an
A-zero-sum subsequence, if we can find €q,...,¢e5 € A such that

€1a1+ - +eas =0 in G.

The first two authors were partially supported by a grant from CNPgq-Brazil. The
third author is partially supported by FAP-DF, FEMAT and CNPq-Brazil

2010 MSC: 20D60, 20KO01.

Key words and phrases: Weighted zero-sum, abelian groups.



202 WEIGHTED ZERO-SUM PROBLEMS OVER Cf

Here we are particularly interested in studying the behavior of s4(G)
defined as the smallest integer ¢ such that every sequence S of length
greater than or equal to /¢, satisfies the condition (s4), which states that
there must exist an A-zero-sum subsequence of S of length exp(G) (the
exponent of G).

For this purpose, two other invariants will be defined to help us in
this study. Thus, define 74(G) as the smallest integer ¢ such that every
sequence S of length greater than or equal to ¢, satisfies the condition
(n4), which says that there exists an A-zero-sum subsequence of S of
length at most exp(G). Define also g4(G) as the smallest integer ¢ such
that every sequence S of distinct elements and of length greater than or
equal to ¢, satisfies the condition (g4), which says that there must exist
an A-zero-sum subsequence of S of length exp(G).

The study of zero-sums is a classical area of additive number theory
and goes back to the works of Erdés, Ginzburg and Ziv [6] and Harborth [9].
A very thorough survey up to 2006 can be found on Gao-Geroldinger [7],
where applications of this theory are also given.

In [8], Grynkiewicz established a weighted version of Erdés-Ginzburg-
Ziv theorem, which introduced the idea of considering certain weighted
subsequence sums, and Thangadurai [13] presented many results on a
weighted Davenport’s constant and its relation to s4.

For the particular weight A = {—1,1}, the best results are due to
Adhikari et al [1], where it is proved that s4(C,) = n+ |logy n] (here C),
is a cyclic group of order n) and Adhikari et al [2], where it is proved that
s4(Cp x Cy) = 2n — 1, when n is odd. Recently, Adhikari et al proved
that s4(G) = exp(G) + log, |G| + O(logy logs |G|) when exp(G) is even
and exp(G) — 400 (see [3]).

The aim of this paper is to give estimates for s4(C},), where as usual
Cp =Cy x -+ x Cy (r times), and here are our results.

Theorem 1. Let A={—1,1}, n>1 odd and r > 1. If n =3 and r > 2,
orn > 5 then

P n—1)+1< s4(CT) < (0" —1) (";1) ey

For the case of n = 3 we present a more detailed study and prove
Theorem 2. Let A= {-1,1} and r > 5.
(i) If r is odd then

—1
sa(C3) > 2" + 2<rr_5 ) ~ 1
2
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(ii) If r is even, with m = {%J, then

(a) If r =2 (mod 4), then s4(C%) > 23 1<j<pm (;) + 2(%) +1,
where j takes odd values.

(b) Ifr =0 (mod 4), then sa(C3) > 23 1<j<pm (;)-F(;)—H, where
- 2

j takes odd values.

It is simple to check that s4(C3) = 4, and it follows from Theorem
3 in [2] that s4(C2) = 5. Our next result presents both exact values of
sA(C%), and r = 3,4 as well as estimates for s4(C%.), r = 3,4, 5, for all
a> 1.

Theorem 3. Let A= {-1,1}. Then

(1) 54(C3) =9, s4(C%) =21, 41 < 54(C3) < 45

(ii) s4(C3.) =4 x3*—3, foralla > 1
(iil) 8 x 3% — 7 < 54(C3a) <10x 3% =9, for alla > 1
(iv) 16 x 3% — 15 < s4(C5a) <22 x 3% — 21, for all a > 1

1. Relations between the invariants 14, g4 and s4

We start by proving the following result.
Lemma 1. For A= {-1,1}, we have

(i) na(C3) =2, ga(C3) =3 and s54(C3) = 4, and
(ii) na(C%) > r+1 for any r € N.

Proof. The proof of item (i) is very simple and will be omitted. For
(ii), the proof follows from the fact that the sequence ejes---e, with
ej =(0,...,1,...,0), has no A-zero-sum subsequence. O

Proposition 1. For A= {—1,1}, we have ga(C%) = 2ns(C%) — 1.

Proof. The case r = 1 follows from Lemma 1. Let S = [}, g; of length
m = 74(C%) — 1 which does not satisfy the condition (n4). In particular S
has no A-zero-sum subsequences of length 1 and 2, that is, all elements of
S are nonzero and distinct. Now, let S* be the sequence [[7~; ¢; [Tre; (—gi)-
Observe that S* has only distinct elements, since S has no A-zero-sum
subsequences of length 2. It is easy to see that any A-zero-sum of S* of
length 3 is also an A-zero-sum of S, for A = {—1,1}. Hence ga(C%) >
ma(C3) — 1.
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Let S be a sequence of distinct elements and of length m = 2n4(C%)—1,
and write

t t m
S=1[o]l(-9) II o
=1 =1 i=2i+1

where g, # —gs for 2t+1 <r < s <m. If t = 0, then S has no A-zero-sum
of length 2, and 0 can appear at most once in S. Let S* be the subsequence
of all nonzero elements of S, hence |S*| = 2n4(C%) — 2 > na(C3%), for
r > 2 (see Lemma 1(ii)), hence it must contain an A-zero-sum of length
3.

For the case t > 1, we may assume g; # 0, for every j =2t +1,...,m
since otherwise, g; + (—g¢) + gj, is A-zero-sum subsequence of length 3.
But now, either t > 14(C%), so that [['_; g; has an A—zero-sum of length
3, or m —t > na(C}), so that [T:_;(—g;) [[10:41 ¢; has an A—zero-sum
subsequence of length 3. L

Here we note that by the definition of these invariants and the propo-
sition above, we have

s4(C3) 2 9a(C3) = 2na(C3) — 1. (1)
Proposition 2. For A ={-1,1}, we have ss(C%) = ga(C3), for r > 2.

Proof. From Theorem 3 in [2] we have s4(C%) = 5 and, on the other
hand, the sequence (1,0)(0,1)(2,0)(0,2) does not satisfy the condition
(ga), hence 54(C2) = ga(C3) (see (1)). From now on, let us consider
r>3.

Let S be a sequence of length m = s4(C%) — 1 which does not satisfy
the condition (s4). In particular S does not contain three equal elements,
since 3g = 0. If S contains only distinct elements, then it does not
satisfy also the condition (g4), and then m < g4(C%) — 1, which implies
s4(C%) = ga(C%) (see (1)). Hence, let us assume that S has repeated
elements and write

t m
s=er=1]¢ II o @
i=1  j=2t+1

where g1,...,9t, 92141, - - -, gm are distinct. If for some 1 < j < m we have
g; = 0, then the subsequence of all nonzero elements of S has length
at least equal to s4(C5) —3 > 2n4(C%) — 4 > na(C) for r > 3 (see
Lemma 1 (ii)). Then it must have an A-zero-sum of length 2 or 3. And
if the A-zero-sum is of length 2, together with g; = 0 we would have an
A-zero-sum of length 3 in S, contradicting the assumption that it does
not satisfy the condition (s4).
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Hence let us assume that all elements of S are nonzero. Observe
that we can not have g in € and h in F (see (2)) such that h = —g, for
g+g—h =3g =0, an A-zero-sum of length 3. Therefore the new sequence

t t m
R=11o1l(=9) I @
i=1 =1 i=2t+1

has only distinct elements, length m = s4(C%) — 1, and does not satisfy
the condition (g4). Hence m < g4(C%) — 1, and this concludes the proof
according to (1). O

2. Proof of Theorem 1

2.1. The lower bound for s4(C})

Let ey, ..., e, be the elements of C}, defined as e; = (0,...,0,1,0,...,0),
and for every subset I C {1,...,7}, of odd cardinality, define ef = ;. e;
(e.g., taking I = {1, 3,r}, we have ¢; = (1,0,1,0,...,0,1)), and let .%,
be the collection of all subsets of {1,...,r} of cardinality odd and at most
equal to m.

There is a natural isomorphism between the cyclic groups C] =
(Z/nZ)",and this result here will be proved for (Z/nZ)". Let ¢ : Z — Z/nZ
be the canonical group epimorphism, and define ¢ : Z" — (Z/nZ)" as
olay, -+ ,ar) = (P(ar), -+ ,¢(ar)). f S = g1 - - - g is a sequence over the
group Z", let us denote by ¢(S) the sequence ¢(S) = ¢(g1) - - - ¢(gm) of
same length over the group (Z/nZ)".

Let €7, ..., e’ be the canonical basis (i.e.,e;‘- =(0,...,0,1,0,...,0)) of
the group Z", and define, as above

* *
e = Zei
il

Now consider the sequence

s= T,

€7,

of length 2"1(n — 1). We will prove that the corresponding sequence
p(8) =TI ",
Ic.g,

has no A-zero-sum subsequences of length n, which is equivalent to prove
that given A = {—1,1} and any subsequence R = g; - - - g, of S, it is not
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possible to find €1,...,€es € A such that (with an abuse of notation)

€191+ -+ €ngn = (0,...,0) (modn). (3)
Writing g = (cgk), e 7c,(nk”)), for 1 < k < n, it follows from (3) that, for
every j € {1,...,r}, we have

Z ekcgk) =0 ( mod n). (4)
k=1

For every 1 < j <r, let us define the sets
{4
Aj={e]d) =1},

Since ng) € {0,1} and €¢; € {—1,1} for any j and any ¢, we must have,
according to (4), that either

|Aj| =n or |Aj| is even. (5)

Since g, = ¢y,, for some I, by the definition we have >7%_; ng) = |I| for
all Z, then

Sl =334 =33 = nl+ -+ 0,
j=1

j=1¢=1 (=1j=1

an odd sum of odd numbers. Hence there exists a jg, such that [A;| = n

(see (5)), but then, it follows from (4) that Y p_; ekcy;) = n and therefore
€1 = --- = €, = 1. And the important consequence is that we must have
g1 = -+ = gn, which is impossible since in the sequence § no element

appears more than n — 1 times.

Remark 1. If we consider the sequence ¢(S) = [[;c . ¢1, for n =3, we
see that this does not satisfy the condition (14). So n4(C%) > 271 +1
for any r € N, which is an improvement of the item (ii) of the Lemma 1.

2.2. The upper bound for s4(C})

Let us consider the set of elements of the group C)] as the union
{0} UGT UG, where if g € GT then —g € G~. And write the sequence

S as
S=0" I] (g% (=g)*~+9).
geGt
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First observe that if for some g, v4(S) + v_4(S) > n, then we can find a
subsequence R = ¢ - - - ¢, of S, which is an A-zero-sum, for A = {—1,1},
and any sum of n equal elements is equal to zero in C],. Now consider
m > 1 and m + v4(S) + v—_4(S) > n, then we can find a subsequence
R = hy---hy of S of even length t > n —m with h; € {—g,g}. Since
A = {—1,1}, this is an A-zero-sum. Hence, the subsequence T' = 0™ R
(m* <m) of S is an A-zero-sum of length n.

Thus assume that, for every g in S we have vy(S) + v_4(S) < n —m,
which gives

m+ ”Tz_l(nfm) if m>0 even
S| < m—1+2A(n—m) if m>0 odd
vd(n—1) if m =0,

for |GT| = 5. We observe than in the case m even m + 52 (n —m) <
2+ % 1(n—2) <242+ (n—2)+ % — 1 and ‘Ehe equality only
happens when n = 3 and r = 1. In any case, if |S| > 2 gl(n —1)+1,it
has a subsequence of length n which is an A-zero-sum.

Remark 2. For n = 3, the upper bound for s4(C%) can be improved
using the result of Meshulam[12] as follows. According to Proposition 2,
sa(C5) = ga(C%) for r > 2, and it follows from the definition that
ga(C%) < g(C%), where g(C%) is the invariant g4(C%) with A = {1}. Now
we use the Theorem 1.2 of [12] to obtain s4(C%) = ga(C%) < g(C%) <
2x3"/r.

3. Proof of Theorem 2

Now we turn our attention to prove the following proposition.

Proposition 3. If r > 3 is odd and A = {—1,1} then na(C§) > 2"~ +

("51), where

r=5) ifr=3 (mod 4).

5= 8(r) = { (rgg) if r=1 (mod 4) (6)

Proof. We will prove this proposition by presenting an example of a
sequence of length 2"~ 4 (Tgl) — 1 with no A-zero-sum subsequences of

length smaller or equal to 3. Let £ = (rgl), and consider the sequence

S:E.Q:( II ez) “g1- - g,

1€9r_o
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with
g = (-1,-1,...,-1,1,1,...,1)
1)
g = (=1,1,...,1,—1,...,—1),
4

where ¢; and .#,._5 are defined in the beginning of section 2. Clearly S has
no A-zero-sum subsequences of length 1 or 2 and also sum or difference of
two elements of G will never give another element of G, for no element of
G has zero as one of its coordinates. Now we will consider es — ¢;, where
¢s and ¢; represent the e¢;’s for which s coordinates are equal to 1 and
t coordinates are equal to 1 respectively. Thus, we see that e; — ¢; will
never be an element of G since it necessarily has either a zero coordinate
or it has an odd number of 1’s and -1’s (and § + 1 is even).
Now, if for some s,t we would have

es e = gi,

Then ¢, ¢; would have § + 1 nonzero coordinates at the same positions
(to obtain 0 4+ 1 coordinates -1’s). Hence we would need to have

r+(0+1)=s+t

Which is impossible since s + ¢ is even and r + (§ + 1) is odd, for ¢ is odd
in any of the two cases.

Thus, the only possible A-zero-sum subsequence of length 3 would
necessarily include one element of £ and two elements of G.

Let v, w be elements of G. Now it simple to verify that (the calculations
are modulo 3) either v+w or v —w have two of their entries with opposite
signs (for 6(r) < (r —1)/2) and hence either of them can not be added to
an ey to obtain an A-zero-sum, since all its nonzero entries have the
same sign. ]

Proposition 4. Let r > 4 be even, m = {#J and A ={-1,1}. Then

n4(C5) > i (;) )+ 1,

=1
jodd

where
(:Z2) if r=2 (mod 4),

(55/2 if r=0 (mod 4).
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Proof. Consider the sequence K = g; - - - g with

g = (=1,...,—-1,1,1,...,1)
é
g = (1,1,...,1,-1,...,—1)
0

where

[ L(r) if r=2 (mod4)
T { 20(r) if r=0 (mod 4)

if r=2 (mod 4)

r—2
= 2
, and 0 { 5 if =0 (mod 4),

and rearrange the elements of the sequence IC, and write it as

T/2  T/2

K=T1lg [I(~9:) =K"K".

i=1 =1

It is simple to observe that if » =2 (mod 4), then 7 = £ and £~ = 0.
Now define the sequence

‘s - ( I]: QI) g7
Ie gy,

where G = K if r = 2 (mod4) or G = KT if r = 0 (mod 4), and
m = {37”4_4} a sequence of length |S| = > <T> +4(r) + 1.
J

j=1
jodd

The first important observation is that S has no A-zero-sum subse-
quences of length 1 or 2. And also sum or difference of two elements
of G will never be another element of G, for it necessarily will have a
zero as coordinate. Also e¢; — ey will never be an element of G since it
necessarily has either a zero coordinate or it has an odd number of 1’s
and -1’s (and ¢ is even). Now, if for some s,t (both defined as in the proof
of the Proposition 3) we would have

¢s +¢; = £g;, for some

then e, es would necessarily have § nonzero coordinates at the same
positions (to obtain § coordinates -1’s). But then

3r—2

s+t=r+4§> , for any value of §
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which is impossible since

3r—4
s+t<2m< .

Thus the only A-zero-sum subsequence of length 3 possible necessarily
includes an element ¢; and two elements of G.

Let v, w elements of G. First, observe that if they do not have —1’s
in common positions, then v + w has an even amount of zeros and an
even amount of —1’s (since r and ¢ are both even), i.e., v + w # *ey. If
we make v — w also have an even amount of nonzero coordinates, i.e., we
haven’t +e;. Now, assuming that v, w have at last a —1 in same position,
it simple to verify that (the calculations are modulo 3) either v + w or
v — w have two or more of their entries with opposite signs and hence
either of them can not be added to an +e; to obtain an A-zero-sum, since
all its nonzero entries have the same sign. O

Theorem 2 now follows from propositions 1, 2, 3 and 4.

4. Proof of Theorem 3

We start by proving the following proposition.

Proposition 5. For A ={-1,1}, we have
(i) 74(C3) = 3;
(i) 1a(C3) = 5;
(ii) ma(C) = 11;
(iv) 21 < na(C3) < 23.
Proof. By Propositions 1 and 2, we have that s4(C5) = ga(C}) =
2n4(C%) — 1, for r > 1, and by definition, we have ga(C%) < g¢(C%)

(C )+1

resulting in n4(C%) < ¢ , for r > 1. It follows from

9(C3) =5 ([10)), 9(C3) = 10, 9(C5) = 21 ([11]),9(C3) = 46 ( [5)),

that 74(C2) < 3,14(C3) < 5,14(CF) < 11 and na(C3) < 23. It is easy to
see that the sequences (1,0)(0,1) and (1,0,0)(0,1,0)(0,0,1)(1,1,1) has
no A-zero-sum of length at most three, so 74(C%) = 3 and n4(C3) = 5.
It is also simple to check that following sequences of lengths 10 and 20
respectively do not satisfy the condition (14):

(1,1,0,0) --- (0,0,1,1)(1,1,1,0) --- (0,1,1, 1)
and (7)
(1,1,0,0,0) --- (0,0,0,1,1)(1,1,1,0,0) --- (0,0,1,1,1),
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hence 14(C3) = 11 and 7n4(C3) > 21. O

Proposition 5 together with propositions 1 and 2 gives the proof of
item (i) of Theorem 3. The proof of the remaining three items is given in
Proposition 7 below.

Before going further, we need a slight modification of a result due to
Gao et al for A = {1} in [4]. Here we shall use it in the case A = {—1,1}.
The proof in this case is analogous to the original one, and shall be omit it.

Proposition 6. Let G be a finite abelian group, A ={—1,1} and H < G.
Let § be a sequence in G of length

m > (sa(H) — 1) exp(G/H) + sa(G/H).

Then S has an A-zero-sum subsequence of length exp(H) exp(G/H). In
particular, if exp(G) = exp(H) exp(G/H), then

sA(G) < (sa(H) —1)exp(G/H) + sa(G/H).
Proposition 7. For A ={-1,1}, we have

(i) s4(C3:) =4x3%—3, foralla>1;
(ii) 8 x 37 =7 < 54(C3) <10 x 3% =9, for all a > 1;
(iii) 16 x 3% — 15 < 54(C%) < 22 x 3¢ — 21, for all a > 1.

Proof. Tt follows of (i) from Theorem 3 that s4(C35) =4 x 3 —3 = 9. Now
assume that sA(Cga_l) = 4321 — 3. Thus, Proposition 6 yields

s4(C%) X (54(C3.1) — 1) + 54(C5)

< 3
< 4x3%—3

On the other hand, Theorem 1 gives s4(C3.) > 4 x 3% — 3, concluding
the proof of (i).

Again by (i) from Theorem 3, we have that s4(C4§) =10 x 3 — 9 = 21.
Now, assume that sy (C’ga,l) < 10-3%"1 —9. It follows from Proposition 6
that

54(C4) < 3% (sa(Ciar) — 1) + 54(C3)
< 10x3*—09.

On the other hand, Theorem 1 gives the lower bound s4(Ci.) >
8x3%—7, concluding the proof of (ii). The proof of item (iii) is analogous to
the proof of item (ii), again using (i) of the Theorem 3 and Theorem 1. [
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