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3
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Abstract. Let Cn be the cyclic group of order n and set
sA(Cr

n) as the smallest integer ℓ such that every sequence S in Cr
n

of length at least ℓ has an A-zero-sum subsequence of length equal
to exp(Cr

n), for A = {−1, 1}. In this paper, among other things, we
give estimates for sA(Cr

3
), and prove that sA(C3

3
) = 9, sA(C4

3
) = 21

and 41 ≤ sA(C5

3
) ≤ 45.

Introduction

Let G be a finite abelian group (written additively), and S be a finite
sequence of elements of G and of length m. For simplicity we are going to
write S in a multiplicative form

S =
ℓ∏

i=1

gvi

i ,

where vi represents the number of times the element gi appears in this
sequence. Hence

∑ℓ
i=1 vi = m.

Let A = {−1, 1}. We say that a subsequence a1 · · · as of S is an
A-zero-sum subsequence, if we can find ǫ1, . . . , ǫs ∈ A such that

ǫ1a1 + · · · + ǫsas = 0 in G.
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Here we are particularly interested in studying the behavior of sA(G)
defined as the smallest integer ℓ such that every sequence S of length
greater than or equal to ℓ, satisfies the condition (sA), which states that
there must exist an A-zero-sum subsequence of S of length exp(G) (the
exponent of G).

For this purpose, two other invariants will be defined to help us in
this study. Thus, define ηA(G) as the smallest integer ℓ such that every
sequence S of length greater than or equal to ℓ, satisfies the condition
(ηA), which says that there exists an A-zero-sum subsequence of S of
length at most exp(G). Define also gA(G) as the smallest integer ℓ such
that every sequence S of distinct elements and of length greater than or
equal to ℓ, satisfies the condition (gA), which says that there must exist
an A-zero-sum subsequence of S of length exp(G).

The study of zero-sums is a classical area of additive number theory
and goes back to the works of Erdös, Ginzburg and Ziv [6] and Harborth [9].
A very thorough survey up to 2006 can be found on Gao-Geroldinger [7],
where applications of this theory are also given.

In [8], Grynkiewicz established a weighted version of Erdös-Ginzburg-
Ziv theorem, which introduced the idea of considering certain weighted
subsequence sums, and Thangadurai [13] presented many results on a
weighted Davenport’s constant and its relation to sA.

For the particular weight A = {−1, 1}, the best results are due to
Adhikari et al [1], where it is proved that sA(Cn) = n + ⌊log2 n⌋ (here Cn

is a cyclic group of order n) and Adhikari et al [2], where it is proved that
sA(Cn × Cn) = 2n − 1, when n is odd. Recently, Adhikari et al proved
that sA(G) = exp(G) + log2 |G| + O(log2 log2 |G|) when exp(G) is even
and exp(G) → +∞ (see [3]).

The aim of this paper is to give estimates for sA(Cr
n), where as usual

Cr
n = Cn × · · · × Cn (r times), and here are our results.

Theorem 1. Let A = {−1, 1}, n > 1 odd and r ≥ 1. If n = 3 and r ≥ 2,

or n ≥ 5 then

2r−1(n − 1) + 1 ≤ sA(Cr
n) ≤ (nr − 1)

(
n − 1

2

)

+ 1.

For the case of n = 3 we present a more detailed study and prove

Theorem 2. Let A = {−1, 1} and r ≥ 5.

(i) If r is odd then

sA(Cr
3) ≥ 2r + 2

(

r − 1
r−5

2

)

− 1.
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(ii) If r is even, with m =
⌊

3r−4
4

⌋

, then

(a) If r ≡ 2 (mod 4), then sA(Cr
3) ≥ 2

∑

1≤j≤m

(r
j

)
+ 2

( r
r−2

2

)
+ 1,

where j takes odd values.

(b) If r ≡ 0 (mod 4), then sA(Cr
3) ≥ 2

∑

1≤j≤m

(r
j

)
+
(r

r
2

)
+1, where

j takes odd values.

It is simple to check that sA(C3) = 4, and it follows from Theorem
3 in [2] that sA(C2

3) = 5. Our next result presents both exact values of
sA(Cr

3), and r = 3, 4 as well as estimates for sA(Cr
3a), r = 3, 4, 5, for all

a ≥ 1.

Theorem 3. Let A = {−1, 1}. Then

(i) sA(C3
3 ) = 9, sA(C4

3 ) = 21, 41 ≤ sA(C5
3 ) ≤ 45

(ii) sA(C3
3a) = 4 × 3a − 3, for all a ≥ 1

(iii) 8 × 3a − 7 ≤ sA(C4
3a) ≤ 10 × 3a − 9, for all a ≥ 1

(iv) 16 × 3a − 15 ≤ sA(C5
3a) ≤ 22 × 3a − 21, for all a ≥ 1

1. Relations between the invariants ηA, gA and sA

We start by proving the following result.

Lemma 1. For A = {−1, 1}, we have

(i) ηA(C3) = 2, gA(C3) = 3 and sA(C3) = 4, and

(ii) ηA(Cr
3) ≥ r + 1 for any r ∈ N.

Proof. The proof of item (i) is very simple and will be omitted. For
(ii), the proof follows from the fact that the sequence e1e2 · · · er with
ej = (0, . . . , 1, . . . , 0), has no A-zero-sum subsequence.

Proposition 1. For A = {−1, 1}, we have gA(Cr
3) = 2ηA(Cr

3) − 1.

Proof. The case r = 1 follows from Lemma 1. Let S =
∏

m

i=1 gi of length
m = ηA(Cr

3) − 1 which does not satisfy the condition (ηA). In particular S
has no A-zero-sum subsequences of length 1 and 2, that is, all elements of
S are nonzero and distinct. Now, let S∗ be the sequence

∏
m

i=1 gi
∏

m

i=1(−gi).
Observe that S∗ has only distinct elements, since S has no A-zero-sum
subsequences of length 2. It is easy to see that any A-zero-sum of S∗ of
length 3 is also an A-zero-sum of S, for A = {−1, 1}. Hence gA(Cr

3) ≥
2ηA(Cr

3) − 1.
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Let S be a sequence of distinct elements and of length m = 2ηA(Cr
3)−1,

and write

S =
t∏

i=1

gi

t∏

i=1

(−gi)
m∏

i=2t+1

gi

where gr 6= −gs for 2t+1 ≤ r < s ≤ m. If t = 0, then S has no A-zero-sum
of length 2, and 0 can appear at most once in S. Let S∗ be the subsequence
of all nonzero elements of S, hence |S∗| = 2ηA(Cr

3) − 2 > ηA(Cr
3), for

r ≥ 2 (see Lemma 1(ii)), hence it must contain an A-zero-sum of length
3.

For the case t ≥ 1, we may assume gj 6= 0, for every  = 2t + 1, . . . ,m
since otherwise, gt + (−gt) + gj0

is A-zero-sum subsequence of length 3.
But now, either t ≥ ηA(Cr

3), so that
∏t

i=1 gi has an A−zero-sum of length
3, or m − t ≥ ηA(Cr

3), so that
∏t

i=1(−gi)
∏

m

i=2t+1 gi has an A−zero-sum
subsequence of length 3.

Here we note that by the definition of these invariants and the propo-
sition above, we have

sA(Cr
3) ≥ gA(Cr

3) = 2ηA(Cr
3) − 1. (1)

Proposition 2. For A = {−1, 1}, we have sA(Cr
3) = gA(Cr

3), for r ≥ 2.

Proof. From Theorem 3 in [2] we have sA(C2
3) = 5 and, on the other

hand, the sequence (1, 0)(0, 1)(2, 0)(0, 2) does not satisfy the condition
(gA), hence sA(C2

3) = gA(C2
3) (see (1)). From now on, let us consider

r ≥ 3.
Let S be a sequence of length m = sA(Cr

3) − 1 which does not satisfy
the condition (sA). In particular S does not contain three equal elements,
since 3g = 0. If S contains only distinct elements, then it does not
satisfy also the condition (gA), and then m ≤ gA(Cr

3) − 1, which implies
sA(Cr

3) = gA(Cr
3) (see (1)). Hence, let us assume that S has repeated

elements and write

S = E2F =
t∏

i=1

g2
i

m∏

j=2t+1

gj (2)

where g1, . . . , gt, g2t+1, . . . , gm are distinct. If for some 1 ≤ j ≤ m we have
gj = 0, then the subsequence of all nonzero elements of S has length
at least equal to sA(Cr

3) − 3 ≥ 2ηA(Cr
3) − 4 ≥ ηA(Cr

3) for r ≥ 3 (see
Lemma 1 (ii)). Then it must have an A-zero-sum of length 2 or 3. And
if the A-zero-sum is of length 2, together with gj = 0 we would have an
A-zero-sum of length 3 in S, contradicting the assumption that it does
not satisfy the condition (sA).
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Hence let us assume that all elements of S are nonzero. Observe
that we can not have g in E and h in F (see (2)) such that h = −g, for
g +g −h = 3g = 0, an A-zero-sum of length 3. Therefore the new sequence

R =
t∏

i=1

gi

t∏

i=1

(−gi)
m∏

i=2t+1

gi

has only distinct elements, length m = sA(Cr
3) − 1, and does not satisfy

the condition (gA). Hence m ≤ gA(Cr
3) − 1, and this concludes the proof

according to (1).

2. Proof of Theorem 1

2.1. The lower bound for sA(Cr
n)

Let e1, . . . , er be the elements of Cr
n defined as ej = (0, . . . , 0, 1, 0, . . . , 0),

and for every subset I ⊂ {1, . . . , r}, of odd cardinality, define eI =
∑

i∈I ei

(e.g., taking I = {1, 3, r}, we have eI = (1, 0, 1, 0, . . . , 0, 1)), and let Im

be the collection of all subsets of {1, . . . , r} of cardinality odd and at most
equal to m.

There is a natural isomorphism between the cyclic groups Cr
n

∼=
(Z/nZ)r, and this result here will be proved for (Z/nZ)r. Let φ : Z → Z/nZ
be the canonical group epimorphism, and define ϕ : Zr → (Z/nZ)r as
ϕ(a1, · · · , ar) = (φ(a1), · · · , φ(ar)). If S = g1 · · · gm is a sequence over the
group Z

r, let us denote by ϕ(S) the sequence ϕ(S) = ϕ(g1) · · · ϕ(gm) of
same length over the group (Z/nZ)r.

Let e∗
1, . . . , e∗

r be the canonical basis (i.e.,e∗
j = (0, . . . , 0, 1, 0, . . . , 0)) of

the group Z
r, and define, as above

e
∗
I =

∑

i∈I

e∗
i

Now consider the sequence

S =
∏

I∈Ir

(e∗
I)n−1,

of length 2r−1(n − 1). We will prove that the corresponding sequence

ϕ(S) =
∏

I∈Ir

e
n−1
I ,

has no A-zero-sum subsequences of length n, which is equivalent to prove
that given A = {−1, 1} and any subsequence R = g1 · · · gn of S, it is not
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possible to find ǫ1, . . . , ǫs ∈ A such that (with an abuse of notation)

ǫ1g1 + · · · + ǫngn ≡ (0, . . . , 0) (mod n). (3)

Writing gk = (c
(k)
1 , . . . , c

(k)
r ), for 1 ≤ k ≤ n, it follows from (3) that, for

every j ∈ {1, . . . , r}, we have

n∑

k=1

ǫkc
(k)
j ≡ 0 ( mod n). (4)

For every 1 ≤ j ≤ r, let us define the sets

Aj = {ℓ | c
(ℓ)
j = 1}.

Since c
(ℓ)
j ∈ {0, 1} and ǫj ∈ {−1, 1} for any j and any ℓ, we must have,

according to (4), that either

|Aj | = n or |Aj | is even. (5)

Since gℓ = eIℓ
, for some I, by the definition we have

∑r
j=1 c

(ℓ)
j = |I| for

all ℓ, then

r∑

j=1

|Aj | =
r∑

j=1

n∑

ℓ=1

c
(ℓ)
j =

n∑

ℓ=1

r∑

j=1

c
(ℓ)
j = |I1| + · · · + |In|,

an odd sum of odd numbers. Hence there exists a 0, such that |Aj0
| = n

(see (5)), but then, it follows from (4) that
∑n

k=1 ǫkc
(k)
j0

= n and therefore
ǫ1 = · · · = ǫn = 1. And the important consequence is that we must have
g1 = · · · = gn, which is impossible since in the sequence S no element
appears more than n − 1 times.

Remark 1. If we consider the sequence ϕ(S) =
∏

I∈Ir
eI , for n = 3, we

see that this does not satisfy the condition (ηA). So ηA(Cr
3) ≥ 2r−1 + 1

for any r ∈ N, which is an improvement of the item (ii) of the Lemma 1.

2.2. The upper bound for sA(Cr
n)

Let us consider the set of elements of the group Cr
n as the union

{0} ∪ G+ ∪ G−, where if g ∈ G+ then −g ∈ G−. And write the sequence
S as

S = 0m
∏

g∈G+

(gvg(S)(−g)v−g(S)).
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First observe that if for some g, vg(S) + v−g(S) ≥ n, then we can find a
subsequence R = c1 · · · cn of S, which is an A-zero-sum, for A = {−1, 1},
and any sum of n equal elements is equal to zero in Cr

n. Now consider
m ≥ 1 and m + vg(S) + v−g(S) > n, then we can find a subsequence
R = h1 · · · ht of S of even length t ≥ n − m with hj ∈ {−g, g}. Since

A = {−1, 1}, this is an A-zero-sum. Hence, the subsequence T = 0m∗

R
(m∗ ≤ m) of S is an A-zero-sum of length n.

Thus assume that, for every g in S we have vg(S) + v−g(S) ≤ n − m,
which gives

|S| ≤







m + nr−1
2 (n − m) if m > 0 even

m − 1 + nr−1
2 (n − m) if m > 0 odd

nr−1
2 (n − 1) if m = 0,

for |G+| = nr−1
2 . We observe than in the case m even m + nr−1

2 (n − m) ≤

2 + nr−1
2 (n − 2) ≤ 2 + nr−1

2 (n − 2) + nr−1
2 − 1 and the equality only

happens when n = 3 and r = 1. In any case, if |S| ≥ nr−1
2 (n − 1) + 1, it

has a subsequence of length n which is an A-zero-sum.

Remark 2. For n = 3, the upper bound for sA(Cr
3) can be improved

using the result of Meshulam[12] as follows. According to Proposition 2,
sA(Cr

3) = gA(Cr
3) for r ≥ 2, and it follows from the definition that

gA(Cr
3) ≤ g(Cr

3), where g(Cr
3) is the invariant gA(Cr

3) with A = {1}. Now
we use the Theorem 1.2 of [12] to obtain sA(Cr

3) = gA(Cr
3) ≤ g(Cr

3) ≤
2 × 3r/r.

3. Proof of Theorem 2

Now we turn our attention to prove the following proposition.

Proposition 3. If r > 3 is odd and A = {−1, 1} then ηA(Cr
3) ≥ 2r−1 +

(r−1
δ

)
, where

δ = δ(r) =

{
(r−3)

2 if r ≡ 1 (mod 4)
(r−5)

2 if r ≡ 3 (mod 4).
(6)

Proof. We will prove this proposition by presenting an example of a
sequence of length 2r−1 +

(r−1
δ

)
− 1 with no A-zero-sum subsequences of

length smaller or equal to 3. Let ℓ =
(r−1

δ

)
, and consider the sequence

S = E .G =




∏

I∈Ir−2

eI



 · g1 · · · gℓ,
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with
g1 = (−1, −1, . . . , −1

︸ ︷︷ ︸

δ

, 1, 1, . . . , 1)

...
gℓ = (−1, 1, . . . , 1, −1, . . . , −1

︸ ︷︷ ︸

δ

),

where eI and Ir−2 are defined in the beginning of section 2. Clearly S has
no A-zero-sum subsequences of length 1 or 2 and also sum or difference of
two elements of G will never give another element of G, for no element of
G has zero as one of its coordinates. Now we will consider es − et, where
es and et represent the eI ’s for which s coordinates are equal to 1 and
t coordinates are equal to 1 respectively. Thus, we see that es − et will
never be an element of G since it necessarily has either a zero coordinate
or it has an odd number of 1’s and -1’s (and δ + 1 is even).

Now, if for some s, t we would have

es + et = gi,

Then et, es would have δ + 1 nonzero coordinates at the same positions
(to obtain δ + 1 coordinates -1’s). Hence we would need to have

r + (δ + 1) = s + t

Which is impossible since s + t is even and r + (δ + 1) is odd, for δ is odd
in any of the two cases.

Thus, the only possible A-zero-sum subsequence of length 3 would
necessarily include one element of E and two elements of G.

Let v, w be elements of G. Now it simple to verify that (the calculations
are modulo 3) either v +w or v −w have two of their entries with opposite
signs (for δ(r) < (r − 1)/2) and hence either of them can not be added to
an ±eI to obtain an A-zero-sum, since all its nonzero entries have the
same sign.

Proposition 4. Let r > 4 be even, m =
⌊

3r−4
4

⌋

and A = {−1, 1}. Then

ηA(Cr
3) ≥

m∑

j=1

j odd

(

r

j

)

+ ℓ(r) + 1,

where

ℓ(r) =

{ ( r
r−2

2

)
if r ≡ 2 (mod 4),

(r
r
2

)
/2 if r ≡ 0 (mod 4).
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Proof. Consider the sequence K = g1 · · · gτ with

g1 = (−1, . . . , −1
︸ ︷︷ ︸

δ

, 1, 1, . . . , 1)

...
gτ = (1, 1, . . . , 1, −1, . . . , −1

︸ ︷︷ ︸

δ

)

where

τ =

{
ℓ(r) if r ≡ 2 (mod 4)
2ℓ(r) if r ≡ 0 (mod 4),

and δ =

{ r−2
2 if r ≡ 2 (mod 4)
r
2 if r ≡ 0 (mod 4),

and rearrange the elements of the sequence K, and write it as

K =

τ/2
∏

i=1

gi

τ/2
∏

i=1

(−gi) = K+K−.

It is simple to observe that if r ≡ 2 (mod 4), then τ = ℓ and K− = ∅.

Now define the sequence

S =




∏

I∈Im

eI



G,

where G = K if r ≡ 2 (mod 4) or G = K+ if r ≡ 0 (mod 4), and

m =
⌊

3r−4
4

⌋

, a sequence of length |S| =
m∑

j=1

j odd

(

r

j

)

+ ℓ(r) + 1.

The first important observation is that S has no A-zero-sum subse-
quences of length 1 or 2. And also sum or difference of two elements
of G will never be another element of G, for it necessarily will have a
zero as coordinate. Also eI − eJ will never be an element of G since it
necessarily has either a zero coordinate or it has an odd number of 1’s
and -1’s (and δ is even). Now, if for some s, t (both defined as in the proof
of the Proposition 3) we would have

es + et = ±gj , for some 

then et, es would necessarily have δ nonzero coordinates at the same
positions (to obtain δ coordinates -1’s). But then

s + t = r + δ ≥
3r − 2

2
, for any value of δ
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which is impossible since

s + t ≤ 2m ≤
3r − 4

2
.

Thus the only A-zero-sum subsequence of length 3 possible necessarily
includes an element et and two elements of G.

Let v, w elements of G. First, observe that if they do not have −1’s
in common positions, then v + w has an even amount of zeros and an
even amount of −1’s (since r and δ are both even), i.e., v + w 6= ±eI . If
we make v − w also have an even amount of nonzero coordinates, i.e., we
haven’t ±eI . Now, assuming that v, w have at last a −1 in same position,
it simple to verify that (the calculations are modulo 3) either v + w or
v − w have two or more of their entries with opposite signs and hence
either of them can not be added to an ±eI to obtain an A-zero-sum, since
all its nonzero entries have the same sign.

Theorem 2 now follows from propositions 1, 2, 3 and 4.

4. Proof of Theorem 3

We start by proving the following proposition.

Proposition 5. For A = {−1, 1}, we have

(i) ηA(C2
3 ) = 3;

(ii) ηA(C3
3 ) = 5;

(iii) ηA(C4
3 ) = 11;

(iv) 21 ≤ ηA(C5
3 ) ≤ 23.

Proof. By Propositions 1 and 2, we have that sA(Cr
3) = gA(Cr

3) =
2ηA(Cr

3) − 1, for r > 1, and by definition, we have gA(Cr
3) ≤ g(Cr

3)

resulting in ηA(Cr
3) ≤

g(Cr
3

)+1
2 , for r > 1. It follows from

g(C2
3 ) = 5 ([10]), g(C3

3 ) = 10, g(C4
3 ) = 21 ([11]), g(C5

3 ) = 46 ( [5]),

that ηA(C2
3 ) ≤ 3, ηA(C3

3 ) ≤ 5, ηA(C4
3 ) ≤ 11 and ηA(C5

3 ) ≤ 23. It is easy to
see that the sequences (1, 0)(0, 1) and (1, 0, 0)(0, 1, 0)(0, 0, 1)(1, 1, 1) has
no A-zero-sum of length at most three, so ηA(C2

3) = 3 and ηA(C3
3) = 5.

It is also simple to check that following sequences of lengths 10 and 20
respectively do not satisfy the condition (ηA):

(1, 1, 0, 0) · · · (0, 0, 1, 1)(1, 1, 1, 0) · · · (0, 1, 1, 1)
and

(1, 1, 0, 0, 0) · · · (0, 0, 0, 1, 1)(1, 1, 1, 0, 0) · · · (0, 0, 1, 1, 1),
(7)
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hence ηA(C4
3 ) = 11 and ηA(C5

3 ) ≥ 21.

Proposition 5 together with propositions 1 and 2 gives the proof of
item (i) of Theorem 3. The proof of the remaining three items is given in
Proposition 7 below.

Before going further, we need a slight modification of a result due to
Gao et al for A = {1} in [4]. Here we shall use it in the case A = {−1, 1}.
The proof in this case is analogous to the original one, and shall be omit it.

Proposition 6. Let G be a finite abelian group, A = {−1, 1} and H ≤ G.

Let S be a sequence in G of length

m ≥ (sA(H) − 1) exp(G/H) + sA(G/H).

Then S has an A-zero-sum subsequence of length exp(H) exp(G/H). In

particular, if exp(G) = exp(H) exp(G/H), then

sA(G) ≤ (sA(H) − 1) exp(G/H) + sA(G/H).

Proposition 7. For A = {−1, 1}, we have

(i) sA(C3
3a) = 4 × 3a − 3, for all a ≥ 1;

(ii) 8 × 3a − 7 ≤ sA(C4
3a) ≤ 10 × 3a − 9, for all a ≥ 1;

(iii) 16 × 3a − 15 ≤ sA(C5
3a) ≤ 22 × 3a − 21, for all a ≥ 1.

Proof. It follows of (i) from Theorem 3 that sA(C3
3 ) = 4 × 3 − 3 = 9. Now

assume that sA(C3
3a−1) = 4 · 3a−1 − 3. Thus, Proposition 6 yields

sA(C3
3a) ≤ 3 × (sA(C3

3a−1) − 1) + sA(C3
3 )

≤ 4 × 3a − 3.

On the other hand, Theorem 1 gives sA(C3
3a) ≥ 4 × 3a − 3, concluding

the proof of (i).
Again by (i) from Theorem 3, we have that sA(C4

3 ) = 10 × 3 − 9 = 21.
Now, assume that sA(C4

3a−1) ≤ 10 · 3a−1 − 9. It follows from Proposition 6
that

sA(C4
3a) ≤ 3 × (sA(C4

3a−1) − 1) + sA(C4
3 )

≤ 10 × 3a − 9.

On the other hand, Theorem 1 gives the lower bound sA(C4
3a) ≥

8×3a−7, concluding the proof of (ii). The proof of item (iii) is analogous to
the proof of item (ii), again using (i) of the Theorem 3 and Theorem 1.
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