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Automorphic equivalence of the representations
of Lie algebras

I. Shestakov, A. Tsurkov

ABSTRACT. In this paper we research the algebraic geom-
etry of the representations of Lie algebras over fixed field k. We
assume that this field is infinite and char (k) = 0. We consider the
representations of Lie algebras as 2-sorted universal algebras. The
representations of groups were considered by similar approach: as
2-sorted universal algebras - in [3] and [2]. The basic notions of the
algebraic geometry of representations of Lie algebras we define simi-
lar to the basic notions of the algebraic geometry of representations
of groups (see [2]). We prove that if a field k has not nontrivial
automorphisms then automorphic equivalence of representations
of Lie algebras coincide with geometric equivalence. This result is
similar to the result of [4], which was achieved for representations
of groups. But we achieve our result by another method: by con-
sideration of 1-sorted objects. We suppose that our method can be
more perspective in the further researches.

1. Introduction: representations of Lie algebras
as 2-sorted universal algebras

In this paper we research the algebraic geometry of the representations
of Lie algebras.

We consider the Lie algebras over the field k. And we say that we have
the representation of Lie algebra (L, V) if the elements of the Lie algebra
L act on the vector space V over the field k£ as linear transformations
and the mapping f : L — Endy (V') which we define by § (1) (v) =l o v,
where | € L, v € V, o is acting of the elements of the algebra L over
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elements of V', is a homomorphism from the Lie algebra L to the Lie

algebra End,i_) (V) = endg (V). Some time we will omit the symbol o. In
this paper we assume that k is infinite and char (k) = 0.

We consider a representation of Lie algebra as 2-sorted universal
algebra. Particularly the homomorphisms of representations we define by
this definition:

Definition 1.1. We say that we have a homomorphism (p,1) from
the representation (L1,V}) to the representation (Lg, V2) if we have a
homomorphism of Lie algebras ¢ : L1 — Lo and a linear map ¢ : Vi — Vs

such that
e()oy(v)=v(ov) (1.1)
holds for every [ € L1 and every v € V.

We denote (¢, ) : (L1, V1) — (Lo, V).

It means that the field k is fixed in our considerations. But algebras
Lie and theirs modules me can change and we can compare the algebraic
geometry of representations (L, V}) and (Lo, Va) such that Ly # Lo and
V1 # Vs. Therefore the multiplication by scalars of the elements of the
algebra Lie L and the elements of its module V' we can consider as unary
operations: for every scalar A € k we have two unary operations. But
the acting of the elements of the algebra Lie L over the elements of its
module V' we must consider as one binary 2-sorted operation.

If (p,¢) : (L, V) = (P,Q) is a homomorphism of the representations,
than ker ¢ is an ideal of the Lie algebra L, ker ¢ is a L-submodule of the
L-module V, (ker ¢, ker 1)) is a representation and a congruence in (L, V).

If H=(L,V) is a representation of Lie algebra and 71 C L, T, C V
we will denote (77,73) C H. If also P, C L, P, C V we will denote
(Tl,TQ) N (Pl, PQ) = (T1 NP, To N Pz)

2. Basic notions of the algebraic geometry
of representations of Lie algebras

We denote by = the variety of the all representations of Lie algebras
over the fixed field k.

Definition 2.1. We say that the representation (L, V) is a free represen-
tation with the pair of sets of the free generators (X,Y)if X C L, Y CV
and for every representation (P, U) and every pair of mappings ¢ : X — P,
¢ : Y — U there exists a homomorphism (p,1) : (L, V) — (P,U) such

that o x = ¥1x, Yx = Yx-
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From this one we will denote the mappings ¢ and ¢, 1; and 1 by same
letters.

We will denote this representation by W = W (X, Y"). It is well known
that W (X,Y) = (L(X),A(X)Y), where L(X) = L is the free Lie
algebra with the set X of free generators, A (X) is the free associative
algebra with unit which has the set X of free generators, A(X)Y =

P A(X)y = V is the free A(X) module with the basis Y. In this
yey
notation the symbol o of the action is omitted. In particular, if X = @

then L (X) ={0}, A(X) =k, if Y =@ then A(X)Y = {0}, if X = {z}
then L (X) = kx, A(X) = k[z].

X0 Y0 will be infinite countable sets of symbols. We consider the
category 2. ObZ? = {W (X,Y) | |X]| < 00, |YV]| < 00, X C X° Y C Y°}.
Morphisms of this category are homomorphisms of its objects. The cat-
egory Z¥ is a small category: ObZ" and MorZC are sets. So we can tell
about elements and subsets of ObZ" and MorZY.

We will take our equations from the representations W = W (X,Y) =
(L(X),A(X)Y) € Ob=". We have two sorts of equations: the equations
in the Lie algebra - t; € L(X) and the action type equations - ¢ty €
A(X)Y. We can resolve our equations in arbitrary H = (L,V) € E.
The homomorphism (p,) : W (X,Y) — H will be the solution of the
equation t; € L (X) if ¢ (t1) = 0 and will be the solution of the equation
to € A(X)Y if ¢ (t2) = 0.

We can consider the system of equations T' = (T3, T5), where 17 C
L(X), T CA(X)Y. We can consider this system as a set T'=T; U Th
but it is not natural because the subsets 71 and T, have different origins:
T, C L(X), T, € A(X)Y. So it is natural to consider the system of
equations T = (T1,T») as a pair of sets. However for the sake of brevity
we will some time write "the set (71,7%)". The set of solutions of the
system (71,75) in the representation H = (L, V) is

(Th, T2)y = {(p,¢) € Hom (W (X,Y), H) | Ty C ker o, Tp C ker ¢} .

Vice versa, for every set A C Hom (W (X,Y"), H) we can consider the set

}I:( ﬂ ker ¢, ﬂ kemb).
(

o P)EA (p0)eA

This set will be the maximal system of equations, such that A is a subset
of the set of its solutions. Also we can consider the algebraic closer of the
system (71, T5):
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(1, Tg);/{ = ﬂ ker ¢, ﬂ kerey | =
(o) E(T1,T2) Yy (pp)e(T1,To)y

= ﬂ ker ¢, ﬂ ker ¢

(p,9)eHom(W,H), (¢,9)eHom(W,H),
Ty Cker ¢, T Cker 9 T1 Cker ¢, To Cker 9

It will be the maximal system of equations which have the same solutions
as (Tl, Tg)

It is clear that (71,T%) C (71, T»)’; holds for every W (X,Y) € ObZY,
every (T1,T5) C W (X,Y) and every H € E.

Definition 2.2. The set (T1,72) C W (X,Y) is H-closed if (T1,Ts)}; =
(T, Ty).

It is clear that the closed sets are congruences. The family of the
all H-closed sets in the free representation W = W (X,Y) € ObZ" we
denote by Cly (W).

Definition 2.3. Hy, Hy, € =Z. Hy, Hy are called geometrically equivalent
if (Tl,Tg)/IIJ1 = (Tl,Tg)}'{2 holds for every W (X,Y) € Ob=" and every
(Th,T3) C W (X,Y).

We consider Wi = W (X1,Y7), Wa = W (X, Y2) € ObZY and (Ty,Th)
some congruence in Wy. We denote by 8 = Bw, w, (T1,T2) the following
relation in Hom (W1, Wa): ((¢1,v¢1), (p2,12)) € B if and only if ¢ (1) =
2 (1) (mod T7) holds for every [ € L(X;) and v (v) = 12 (v) (mod 1)
holds for every v € A(X;)Y;. This relation is a 2-sorted analog of the
relation 3 from [1, Subsection 3.3]. Now we define as in [1, Subsection 3.4]

Definition 2.4. Hy, Hy € =. Hy, H» are called automorphically equivalent
if these 3 conditions hold:

1) There exists an automorphism ® : 20 — =0.

2) There exists a function a = a (®) such that « (®)y, : Cly, (W) —
Cly, (® (W)) is a bijection for every W € ObZ=C.

3) ® (B, ws (T1,T2)) = Bagws) aws) (@ (@)yy, (Th, 7)) holds for ev-
ery Wy, Wy € ObZY and every (T3, Ty) € Cly, (Wa).

Here @ ((¢01,91), (02,92)) = (@ (1,91) , P (02, ¥2)).
It can be proved as in [1, Proposition 8| that if H; and Hs are auto-

morphically equivalent then function « is uniquely determined by auto-
morphism .
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3. Some facts about the closed congruences in the free
representations of Lie algebras

In this Section we assume that X; € Xy ¢ X%, V7 C Yy, C YO,
(L,V) = H € =. We denote (L(X;),A(X;)Y;) = W(X,.Y;) =W,
where i = 1, 2.

If (Th,T>) C W, then, because W7 C Wy, we can consider the sets

(T, o)y, g = {(,0) : Wi = H | Tt Ckerp, Ty C ker ¢}

!/

and we will denote <(T1’T2)/W1-,H)H = (Tl,Tg)’éVhH, where i = 1,2. We

say that (T1,Ty) is H-closed in Wj if (11, T)yy, g = (T1,T2). In all other
sections of this paper it is clear what kind of algebraic closer of the system
of equations we consider. But in this Section we must fine distinguish
between the different features.

Proposition 3.1. We assume that (T1,T5) C Wa,
() e (ThNL(X1),ToaNA(Xy) Yl)%/Vl,H' We denote
()] = {(%W € (Tl’TZ)}{ | Plx; = M|X1a¢|yl = V\Y1}~

Then

(( N ker<p> NL(Xy), ( N ker¢> ﬁA(Xl)Y1> =
(p)El()] (P ) El()]

= (ker u, ker v)

holds.

Proof. If t; € ( N kergo) N L(X1), then w(t1) = ¢ (t1) = 0 for
(P)El(pv)]

every ¢ such that (¢,v) € [(p,v)]. If ta € < N ker 1/)) NA(Xy) Y,
() €l(pv)]
then v (t2) = 9 (t2) = 0 for every ® such that (p,) € [(u,v)].

If t1 € kerpu, then t; € L(Xy), s0 ¢(t1) = p(t1) = 0 holds for
every ¢ such that (p,¢) € [(u,v)]. If to € kerv, then t2 € A (X1) Y3, so
¥ (t2) = v (t2) = 0 holds for every 9 such that (¢,v) € [(u, v)]. O

Proposition 3.2. If (T},T;) C Wy is H-closed, then

(Tl,TQ) NWy = (Tl N L (Xl) ,Th N A (Xl) Yl)
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is H-closed in W7.

Proof.
(Th, )}y = N ker ¢, N kery | = (T1,T3).
(507¢)€(T17T2)}1 (QO,IZJ)E(T1 7T2)}—I
(TN L(X1), TaNA(X) Y1)y, i =
ﬂ ker p, ﬂ ker v
(h)€(TINL(X1), T2NAX 1) Y1)y, 1 (n)€(TINL(X1), T2NAX1) Y1)y, g

We will consider (¢,9) € (T1,Ts);. There exists only one (u,v) €
Hom (W1, H) such that o x, = px,, Yy, = Vy;- lf t1 € TiN L (X1), then
o (tl) = (tl) =0,iftoeToNA (Xl) Y7, then v (tg) = (tg) = 0. Hence
(n,v) € (i N L(X1),TaNA(X1) Y1)y, - So by Proposition 3.1

(( N kercp) NL(X), ( N kem/)) ﬂA(Xl)Yl) =
(pp)el(pv)] () €l(p.1)]

= (ker u,kerv).

The set (T3, T%); can by presented as union of the disjoint sets [(1, /)],
where (1, v) € Hom (W7, H) such that exists (¢, ) € (11, T2)"y, for which
(0, 9) € [(p, V)] holds.

(TiNL(Xy), TaNA(Xy) Yl)/vlvl,H B

C ﬂ ker p, ﬂ ker v

() €(TINL(X 1), TeNA(X1)Y1) s () €(TINL(X1),ToNA(X1) Y1)y,
() e(T1,T2) ;| () El(1,v)] ) (T1,T2) 1 (p) (1)

ﬂ ker p =

(,LL,ZI)G(T1OL(X1),TQOA(Xl)Yl)/I_I,
) E(T1,12) () El(1v)]

= ﬂ (( ﬂ kergo) ﬂL(Xl)) =
() E(TINL(X1),ToNA(X1) Y1) () El(p,v)]

3(@1#0 € (Tl 7T2)/H | ((,0,7/))6 [(;L,l/)]
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- ﬂ kerp | NL(Xy) =T1NL(Xy).
(P W)E(T1T2)y

ﬂ kerv =

() E(TINL(X 1), T2NA(X1) Y1)y,
() e(T1,T2) g (@) E[(1,0)]

= N (( N kew) mA(Xl)YI) =
() E(TINL(X1) TNAX 1)), \ \(e)El(un)]

3(90711&)6(711 1T2);-I | (90771’) € [(Hal’)]

= N kery) | NA(X)) Y1 =ToNA(X) Y. O
(p:)E(T1,To)y

Proposition 3.3. If (T1,T5) C Wy is H-closed in W1, then

(Tl,TQ) = (Tl,TQ)sz’H N Wi.

Proof. In (Tl,TQ);,V%H = {(¢,%) € Hom (Wa, H) | ker ¢ D Ty, ker ) D Tb}

we can define equivalence: (¢1,91) ~ (p2,2) if and only if ) x, = @9 x,,
Y1]y; = Yajy;- As in the proof of Proposition 3.2, for every class of this

equivalence there exist only one (u,v) € (11, T 2)/W1, g such that this class
coincide with [(u,v)]. Vice versa, for every (u,v) € (T17T2)§/V1,H there
exist only one class of elements of the set (77, TQ);/sz 17> Which coincide

with [(u, v)].
(T17 TQ);V%H nw (X17 Yl) -

N kero | NL(X1), N kery) | NA(X1)Y;
() E(T1,T2) vy, 1 () E(T1,T2) vy, 1

By Proposition 3.1 we have

ﬂ kero | NL(X,) =
(p)E(T,T2) vy 1

= ﬂ (( ﬂ kergo) ﬂL(Xl)) =
(p,v)e(Th ,T2)§4/1,H (p)El(p,v)]
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— ﬂ ker p =1T7.
(M?V)G(Tl 7T2)§/V1,H

N kery) | NA(X1)Y) =
(e)E(T1,T2) vy 1

= N (( N kerz/z) mA(Xl)YI) =
() E(T1 )iy, i \ \(P)El()]

= ﬂ kerv =T, O
(L)E(T1T2) ) 1

Theorem 3.1. If (L1,V1) = Hi, (L2, Vo) = Hy € = and Cly, (Ws) =
CZH2 (Wg), then ClH1 (Wl) = CZH2 (Wl)

Proof. We consider (T7,T») € Cly, (Wh). By Proposition 3.3 (T1,15) =
(T1, To)yy, i, VWi (T, T2y, 1, € Cli, (Wa) = Clp, (Wa). Therefore,
by Proposition 3.2, (T1, Ta)yy, g, N W1 = (T1, T2) € Clu, (W1). O

4. Representations of Lie algebras and Lie algebras with

projection-derivation

It is well known that if we have a representation of the Lie algebra
(L, V) then in the k-linear space M = L & V we can define the structure
of Lie algebra if we define the new Lie brackets [,],, by this formula

[ll—f-vl,lg—l-vg]M:[ll,l2]+llovg—lgovl, (4.1)

where [1,ls € L, v1,v2 € V.
We will denote by p the projection of M on the linear subspace V.
p(l+v)=wvforevery l € L, v € V. We have

p[ll—|—U1,l2+U2]M:p([ll,l2]+l101}2—l20U1):llovg—lgovl,

o (L +v1),le + vl + [l +v1,0(l2 +v2)] ) =
= [v1,la + va]y; + [l1 +v1,02) ), = —loovr + 11 0wy

for every ly,lo € L, v1,v9 € V. Therefore in the new Lie algebra p will be a
derivation. The projection p we consider as an additional unary operation
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defined on the Lie algebra M. We call these algebras: Lie algebras with
projection-derivation and denote (M, p).

Vice versa, if we assume that we have a Lie algebra with projection-
derivation (M, p) then we have the decomposition of the k-linear space
M = kerp @ imp. If we denote kerp = L, imp = V, then we can prove
this proposition:

Proposition 4.1. If we consider L with the Lie brackets inducted from
M then L is a Lie algebra. If we define

lov=]l,v] (4.2)

for every l € L and every v € V then (L,V) is a representations of the
Lie algebra L over the linear space V', for every vi,va € V' the [v1,v2] =0
holds.

Proof. If l1,ls € kerp then pliy,la] = [p(l1),l2] + [l1,p(l2)] = 0, so
L = kerp is a Lie algebra.

If ] € kerp, v € imp then p[l,v] = [p(l),v] + [I,p(v)] = [I,], so
[[,v] =1lowv € imp.

If I1,15 € kerp, v € imp then

[, le] ov = [[l1, o] ,v] = —[[l2,v] , 4] — [[v, la] , lo] =
= [ll, [lg,’l)]] — [lz, [ll,v]] = ll ©) (lg e} ’U) - lg ©) (l1 e} ’U) .

Also we have for vy, vy € imp that p[vi,ve] = [p(v1),v2] + [v1,p (v2)] =
[v1, v2] + [v1,v2]. char (k) # 2, so [v1,v2] € imp, p[v1,ve] = [v1,v2] and
[1)1, '02] =0. O

Proposition 4.2. We assume that (p,v¢) : (L1,V1) — (L2,V2) is a
homomorphism of representations. Then f = @& : (L1 & Vi,py,) —
(Lo & Vo, pvy, ), which define by formula f (I +v) = ¢ (1) + ¢ (v) for every
l € Ly, v eVyisahomomorphism of the Lie algebras with projection-
derivation and ker f = ker p@ker1p. Vice versa, if f : (My,p1) — (Ma, p2)
18 a homomorphism of the Lie algebras with projection-derivation then
(rofri,pafir) : (kerpi,impi) — (ker pa,imps), where ro = idyr, — p2 and
K1 : kerpy — My, 11 : imp; — My are embeddings, is a homomorphism
of the representations of the Lie algebras and kerrs fr1 = ker f Nkerpy,
ker po fi1 = ker f Nimpy.

Proof. For the sake of brevity hear and in other proves we denote the
various Lie brackets, projections and embeddings by similar symbols. It
should not cause confusion because we not cause confusion when, for
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example, in the various groups denote multiplication, taking the inverse
element and unit by similar symbols.

If (p,¢) : (L1,V1) — (L2, Vo) is a homomorphism of representations
then f = o @ v is a linear mapping. If l1,ly € Ly, v1,ve € V} then

flli+wv,la+wv] = f([li,lo] +liova—laov) =
=@l o]+ (liovy) =9 (lzowv) =
=[p (1), ¢ (I2)] + ¢ () o (v2) — p(l2) 0 (v1).

[f (i +o1), fla+v2)]=[p )+ (v1), 0 (l2) + 9 (v2)] =
=[p(l),pl2)] + ¢ (1) o (v2) — ¢ (la) 0 ¢ (v1).

If il € Ly, v € V] then
fol+v)=f(v)=v(v),
pfl+v)=plp()+¢ ) =1(v).

So f is a homomorphism of the Lie algebras with projection-derivation.

It is clear that ker f D kero @ kerw). If l € Ly, v € Vi and f (I 4+ v) =
¢ (1)+1 (v) = 0, then, because ¢ (1) € Lo, ¢ (v) € Vo, p (1) =0, ¢ (v) =
So ker f = ker ¢ @ ker .

Now we assume that f: (M, p1) — (M2, p2) is a homomorphism of
the Lie algebras with projection-derivation. pr = p (id — p) = p — p? = 0,
so rfk : kerp — ker p. Also is clear that pfe : imp — imp.

It is clear that r fx and pf. are linear mappings. For every [ € kerp
we have pf (I) = fp(l) = 0. So we have for every ly,ls € kerp

rik(l,le] =r[f (L), ()] = (Gd—p)[f (1), f )] =
=[f (), f ()] —[pf (), fU)] = [f (L), pf ()] = [f (L), f(2)].

[rfr(lh),rfr(l2)] = [(id - p)

f (), (id —p) f (I2)]
= [f (L), f ()] = [pf (), f (2)] =

2
[f (L) pf (2)] +

II*§II

fl),pf(l2)] =
[f (L), (12)] -

So rfr is a homomorphism of the Lie algebras. If [ € ker p, v € imp, then

rfr(l)opfi(v) =[rf),pf(v)] =
=[fO),pf )] = [pf@),pf ()] =[f1),pf (V)]
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pfi(lov) =pfll,o] =p[f 1), f(v)] =
=[pr @), f I+ O),pf W] =I[f),pf ()]

So (rfk,pft) is a homomorphism of the representations of the Lie algebras.

It is clear that ker f Nkerp C kerrfk. If | € kerp and rfr(l) =0
then I =7 (l) and f(I) = fr (1) =rfr(l) =0. So kerrfr = ker f Nkerp.
Analogously ker pfi = ker f Nimp. O

We denote by © the variety of all Lie algebras with projection-
derivation. The elements of this variety are Lie algebras with all operations
and axioms of Lie algebras and with one additional unary operation: pro-
jection p, which fulfills two axioms of linear map and two additional
axioms:

1) p(p(m)) = p(m) holds for every m € M,
2) p[my,ma] = [p(m1),me]+[m1,p (m2)] holds for every mi, mg € M,

where M € O.

We can consider the varieties = and © as categories. The objects of
these categories are universal algebras from these varieties and morphisms
are homomorphisms. We have a functor F : Z — O, such that

F(L,V)=(LaV,py)
for (L,V) € ObE,
F((o,0) : (L1, V1) = (L2, V2)) = o@v : (L1 @ Vi,p11) — (L2 © Va,pvy)

for (p,v) € MorE.
Also we have a functor F~!: © — =, such that

F 1 (M, p) = (kerp,imp)
for (M, p) € ObO,
FH(f (My,p1) = (Ma,p2)) = (rfr,pfe) : (ker py,imp;y) — (ker po, imp,)

for f € Mor©.
By Propositions 4.1 and 4.2 FF~! = idg, F~'F = idz so these
functors are isomorphisms of categories.

Theorem 4.1. If (F,p) = F (my,...,my,) is a free Lie algebras with
projection-derivation with free generators {my, ..., m,} then F~1 (F,p) =
(L,V) is a free representation with the pair of sets of the free generators
(X,Y), where X = {r(my),...,7(myp)} and Y ={p(m1),...,p(my)}.
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Proof. 1t is clear that X C kerp, Y C imp. We will consider an arbitrary
(Q,U) € =. We assume that we have 2 mappings:

e:{r(my),....,r(my)}3r(m;) — ¢ <qQ
and

Y :{p(mi),...,p(mn)} 2 p(m;) = u €U.
So we have a mapping

fodma, ... omp} > my = g +u; = or (m;) +vp(m;) € Q@ U.

Hence, by our assumption about (F,p), this mapping can be extended to
the homomorphism

f(va)%F(QvU):(Q@prU)

So there is a homomorphism
FH(f) = (rfr,pfe) : FH(F,p) = (kerp,imp) — (Q,U).

rfe(r(mg) = (r)* f (mq) =7 (or (mg) + ¥p (ms)) = er (my) ,
pfu(p(mi)) = p(er (mi) +¥p(m;)) = ¥p (m;)
holds for 1 < i < n, because ¢r (m;) € Q, ¥p(m;) € U. O
We will denote

= = {W(X,Y) € Ob=" | [X| = |V|},

n

Theorem 4.2. IfW = (L,V) = (L (T1y.eymn), B A(z1,...,x0) yi) €
i=1

= then F (W) = (F,p) is a free Lie algebra with projection-derivation

which has n free generators m; = x; +y;, 1 <17 < n.

Proof. For 1 <1i <n we have that z; € L,y; € V,som; =x; +y; € I'=
L@ V. We will consider an arbitrary (N, p) € ©. We assume that we have
a mapping

fi{mi,...,mu} >m; - n; €N.

We will construct two other mappings
e:{z1,...,epn} 2 =1 (n;) Ekerp C N

and
Y :{yl,..yynt 2 yi — p(n;) € imp C N.
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By our assumption about (L, V'), these mappings can be extended to the
homomorphism

() : (L, V) — F (N, p) = (kerp,imp) .
So there is a homomorphism

F(p, ) =(p@¢): F(L,V) = (F,p) = (N,p).

Yi)

(@) (mi) = (p@Y) (Ti +yi) = (i) + (3:) =
=r(n) +p(ni) =ni = f(m;)

(n;

holds for 1 < i < n, because z; € L, y; € V. O

5. Automorphisms of the category =
and of the category ©°

If we have a category K, which objects are universal algebras and
morphisms are homomorphism, then automorphism & of this category
transform the homomorphism id4 € Morf&, where A € ObR, to homo-
morphism idg(4), because homomorphism id4 uniquely defined by its
"algebraic" property: id4 is a unit of the semigroup EndA. Therefore we
have a

Proposition 5.1. IfA, B € ObR, A= B, ® € AutR then ® (A) = & (B).

Theorem 5.1. The category Z° has 2-sorted IBN propriety: if W (X1, Y1),
W (X2,Y3) € Ob=Z" and W (X1,Y7) 2 W (X2, Ys), then |X1| = | Xa| and
1] = [Yal.

Proof. We consider W (X,Y) = (L(X),A(X)Y) = (L,V) € Ob=".
L/L? is a k-linear space and dim L/L? = |X|.

In the associative algebra A (X) we will consider (L) - two-sided ideal
generated by the set L = L (X) C A(X). This ideal coincide with (X) -
two-sided ideal generated by the set X, because every element of L can
be generated by elements of X. In the A (X)-module V= A(X)Y we
will consider submodule (L) V = Spany (av |a € (L),v e V) = (X) V.
dimV/ (X)V = dim V/ (L) V = |Y].

We assume that we have two objects of =Z0: W (X1,Y;) =
(L(X1),A(X1) Y1) = (L1, V1) and W (X3,Y3) = (L (X3), A(X2)Y2) =
(Lo, V2) - and there is an isomorphism (p,v) : (L1, V1) — (Lo, V2). It
means that ¢ : Ly — Lg is an isomorphism and Li/L? = Lo/L2, so
[ X1| = [Xol.
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By (1.1) we have that ¢ : V3 — V5 is an isomorphism of the Lj-
modules, when acting of L; over V5 defined by [ ov = ¢ (I)v, where
l € Li,v e Vy A(X;y) and A(Xy) are universal enveloped algebras of
L1 and Lo respectively. Therefore the isomorphism ¢ : L1 — Ly can be
extended to the isomorphism of algebras with unit ¢ : A (X;) — A (X32).
A (X1) is generated as algebra with unit by elements of Ly, so 1 is also an
isomorphism of the A (X;)-modules. Therefore there is an isomorphism of
A (X1)-modules Vi / (L1) Vi = Va/ (Lg) Va, because ¢ ((L1) V1) = (L) Va.
So dim Vi/ (L1) Vi = dim Va/ (Ls) Va and Y] = |Yal. 0

This is a well-known

Definition 5.1. We consider a category & and the family of objects
{Ai},c; € ObR. The pair (Q € Ob&, {n; : A; = Q},c; € Morf) called
coproduct of {A;};; if for every B € ObR and every {a; : A; — B}, C
MorR there exists only one a : Q — B € MorR such that a; = an;.

The coproduct is defined up to isomorphism. It is clear that if ® €

Autf then
P (]_[ Ai> =~ [ @(A). (5.1)

iel i€l
It is easy to check that if W (X1,Yy), W (X2,Y2) € ObZC then
w (Xl,Yl) uw (XQ,YQ) = W(X3,1/3), where

[ Xs| = [Xa| + | Xaf , [Ya] = [Ya] + [l . (5:2)
Similar to [3] we define

Definition 5.2. We say that the free representation W (X,Y) € Ob="
is a cyclic if | X|=1and |Y| = 1.

Proposition 5.2. For every ® € Aut=" the ® (W (2,2)) = W (2, 2)
holds and if W (z,y) € ObZC is a cyclic representation then ® (W (z,y))

is also a free cyclic representation.

Proof. We consider the factor set Ob=Z?/ = (skeleton of the set ObZ=?).
The elements of this set we denote by

W (X, V)] = {W (X1,¥1) € Ob=° | W (X,Y) = W (X1, Y1)} .
By Theorem 5.1 we can define the mapping

g:O0b="/ =5 (W (X,Y)] = (IX]|,|Y]) e N&N
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and this mapping is bijection. NN we consider as a set with the operation
of the addition according the components. N @ N will be a commutative
semigroup with this operation. Ob=%/ = we consider as a set with the
operation of the coproduct. ObZ"/ = with this operation also will be a
commutative semigroup. By (5.2) ¢ is an isomorphism.

We consider an arbitrary ® € Aut=". By Proposition 5.1 in the set
Ob="/ = we can define the factor mapping

$:0b="/ =35 [W (X,Y)] — [® (W (X,Y))] € ObE"/ =

® is a bijection, because ® € Aut=°. By (5.1) ® is an isomorphism.
Therefore g®g~! is an automorphism of N @ N. (0,0) is a unit of
the semigroup N @& N, so g®g~! (0,0) = (0,0) or Dg~1(0,0) = g1 (0,0).
g 1(0,0) = {W (2,92)}, therefore ® (W (2,2)) = W (2, 2).

The semigroup NN has only one minimal set of generators: {(1,0),(0,1)}.

So the automorphism g®g~! must preserve this set. Therefore we have

two cases: or ®g1 (1,0) = g~ (0,1) and ®g~'(0,1) = ¢! (1,0), or
©g71(1,00 = g7'(1,00 and dg7'(0,1) = g7(0,1).
g (10) = (W(.2) |z € X0}, g1 (0.1) = {W(2,9) |y € V). Tn
the first case we have that ® (W (z,9)) = W (&,y1), @ (W (2,y)) =
W (21, @), where z, 21 € X°, 3,91 € Y°. Therefore

(W (z,y)) = @ (W (z,2) UW (2,y)) =
=W, y1) UW (21,9) Z W (21,91) -

So ® (W (z,y)) = W (22,92), where x5 € X, yo € Y. In the second case
we achieve the similar result. O

Corollary 1. If ® € Aut=", then ® (2') = Z'.

Proof. X Cc X°Y cY%and |X|=|Y|=n > 1then X = {z1,...,2,},
Y ={y1,...,yn} and we have that

where X' = {,...,2},} € X°, V" = {¢},...,9,} C YV and |X| =
Y| = n. O
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In the category © we can consider subcategory @Y. We take a infinite
countable sets of symbols M. The objects of ©° will be the free algebras
in © with the set of free generators M such that M C M°, |M| < co. We
will denote these algebras by F (M). The morphisms of ©° will be the
homomorphisms of these algebras.

By using of the Theorems 4.1 and 4.2 F(Z) = ObO° and
F~1(0bO%) ==/, so, by Corollary 1 from the Proposition 5.2 we prove
the

Theorem 5.2. If ® € AutZ then .7-"<I>|5/.7-"71 € Auto.

6. Automorphic equivalence in the variety =
and in the variety ©

Proposition 6.1. If (T, 1) Cc W =W (X,Y) € Z, H= (L,V) € E,
(Th,T3) is an H-closed congruence, then Ty & 1o C F (W (X,Y)) is an
F (H)-closed congruence. If T C F (M) € Ob@°, N = (N,p) € ©, T is
an N-closed congruence, then (T Nkerp, T Nimp) C F~L(F (M)) is an
F~1(N)-closed congruence. The mappings

Fw : Clg (W) 3 (11, Ta) = Th & Te € Clyy (F(W))
and
}—E(IM)W :Cly (F(M))>T — (T Nnkerp, T Nimp) €
€ Cly-a) (F7H(F (M)

are bijections.

Proof. 1f (p,v) € (T1,T»);, then by Proposition 4.2
ker F (¢, 1) = ker (o ® ¢) = ker p @ kerp D T1 @ To,

F(m,m)y) ={f=vav|(pv) € (T, By} C (T &) 5.

We will consider | +v € (17 @ TQ)/],_—( 0 = N ker f, where
fG(Tl@T2)/f(H)
l € kerp,v € imp. [ +v € N ker (¢ @ 1) holds, so for every
(p,)e(T1,T2)y
(0, 9) € (T1, 1)}y we have (p©9) (I+v) = () + ¢ (v) = 0. p(I) €
kerp, ¥ (v) € imp, so ¢ (1) =0, ¢ (v) = 0. Hence [ € N ker o =
(p0)e(T1,T2)y
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Ty, v € N kerv = T5. Therefore | +v € 17 & Tb and
() E(T1,T2)y

(Th & TQ);/_—(H) C Ty ®Ty. It means that Ty @ T, is an F (H)-closed con-

gruence.

If f € Ty then F~1(f) = (rfr,pft) and by Proposition 4.2
kerrfrx = ker f Nkerp O T Nkerp, kerpfr = ker f Nimp D T N imp
holds. So (rfr,pft) € (T Nkerp, TN imp)'f_l(N) and F~1(Ty) C
(T'Nkerp, TN imp)/f,l(N). Therefore

(Tﬂkerp,Tﬂimp)/J/_-,l(N) - ( ﬂ kerrfk, n kerpr) =
FeTy, fery

= ( ﬂ (ker f Nkerp), ﬂ (kerfﬁimp)) =

feTy FeTy

= (( ﬂ kerf) ﬁkerp,( ﬂ kerf) ﬂimp) =
fery, feTy,

= (T'Nkerp, T Nimp),

so (T Nkerp, T Nimp) is an F ! (N)-closed congruence.

If (T1,T2) € Clg (W) and T =Ty @ To C F (W), then T1 = T Nkerp,
T =T Nimp, so f}_'(W),_F(H)FWH = Z‘dClH(W)'

If Ny = (Ny,p1),Na = (Na,p2) € © and f: N; — Ny is a homomor-
phism then ker f is p-invariant. So, T' € Cly (F (M)) is also p-invariant
and T = (T Nkerp) @ (T Nimp). Therefore ]:]:_1(F(M))7f_1(N)]:E(1M)7N =

L

idciy (P(M))-

If F{ = F (M), Fy = F (M) € Ob@° and T is a congruence in Fp
then S g, (T') will be a relation in Hom (F7, F») which we define as in [1,
Subsection 3.3]: (f1, f2) € Br,.r, (T) if and only if f1 (n) = fo (n) (mod T')
holds for every n € Fj.

Proposition 6.2. If W7, = W (X,Y1),We = W(Xq,Ys) €
E/, H ¢ =, (Tl,TQ) e Clyg (WQ) then f(/BW17W2 (Tl,TQ)) =
Browv)),rowve) (Fwe,m (T1,12)). If Fr = F (M), F, = F (M) €

Ob@o, N = (N,p) € 0,T € CZN(FQ) then F~1 (,3F1’F2 (T)) =
Br-1(r),F-1(Fy) (-FEQI,N (T))-

Proof. F(W;) = (L(X)®A(X:)Yi,placxyy,) where i = 1,2,
.FW27H(T1,T2) =TT Ty, C L(Xg) @A(XQ)Yé = f(WQ) If
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((p1,%1) 5 (p2,%2)) € By w, (T, T2) then 1 (1) = 2 (1) (mod T7) holds
for every | € L(X1) and 9 (v) = 92 (v) (mod T3) holds for every v €
A(Xy) V1. F(pi, i) = i @ ¢y € Hom (F (Wy), F (W2)) where i = 1,2.
For every n € F (W1) we have n = [+ v, where [ € L (X;),v € A(X;) V1.
So (pr1@v1)(n) = @1 (1) + Y1(v) = @2(l) + Yo (v) (mod Ty © Tt),
p2 (1) + Y2 (v) = (p2 ® ¢2) (n) and

(F (p1,91) , F (92,92)) € Brawy) Fowy) (11 & T2) -

We assume that (f1,f2) € Bruw,)rme) (11 © T2). F U =
(rfik,pfit) € Hom (Wi, Ws) where ¢ = 1,2. If [ € L(X;) then
fi()) = fa(l) € Ty ® Ty and rfik (1) — rfak (I) € Ti1. Analogously we
have pfit (v) — pfar (v) € Ty for every v € A (X3) Ya, so

(F7H (), F7H () = ik, pfan) , (fak, o)) € B, (T1,T2)
Therefore

F (Bwnw, (T1,12)) = Brow,),r7(we) (Fwa,m (11, T2)) -

From this fact and from proving of Proposition 6.1 we can conclude
that

F o (Br,p (1) = Br1(m). 71 (1) (fﬁzl,zv (T)) : O

Theorem 6.1. If Hy = (L1,V1),Hs = (L2, V2) € Z are automorphi-
cally equivalent then Ny = F (H1),No = F (H2) are automorphically
equivalent.

Proof. We have an automorphism ® € AutZ" and the system of bijections
a(®)y : Clg, (W) — Cly, (2 (W)) for every W € ObZ". Also the

equation
D (B, wy (T1,T2)) = Baw,),o(ws) (a (P, (T17T2))

holds for every Wy, Wa € ObZ, and every (T1,T3) € Cly, (W3).
By Proposition 5.2 there is an automorphism ¥V = F® = F 1 ¢ Aut@’.
By Proposition 6.1 the mapping:

@ (W) p = For-1(p),m:9 (®) 71 (p) Fry,  Clvy (F) = Cl, (¥ (F))

is a bijection for every F € Ob@O". By Proposition 6.2 we have for every
Fy, F, € Ob@" and every T € Cly, (F») that
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v (BF1,F2 (T)) =FoF! (BFLFQ (T)) =
=F® (5?1(5),;*1(&) (fp_zl,zvl (T))) =
_ ~1 _
=F (5@;-1(F1),<1>f—1(F2) (a (@) 1) (‘FFQ,Nl (T)))> =
= Bror-1(m),For-1(r) (-7:<I>J-'*1(F2),H2a (®) 7-1(m) (]:E;zvl (T))> =
= Bu(r),w(r) (04 (V) (T)> .

7. Automorphisms of the category of the finitely
generated free algebras of the some variety
of 1-sorted algebras

In this Section we explain the method of verbal operations which
we will use for the studying of the relation between the automorphic
equivalence and geometric equivalence in the our variety ©. We use
results of the [4] and [5].

In this Section the word "algebra" means "universal algebra'. Also so
on in this Section © will be an arbitrary variety of 1-sorted algebras. As
in the Section 5 we define the category ©° of the finitely generated free
algebras of our variety ©. The infinite countable sets of symbols which
will be the generators of our free algebras we will denote in this Section
by XP.

Definition 7.1. An automorphism Y of a category R is inner, if it is
isomorphic as a functor to the identity automorphism of the category RK.

It means that for every A € ObRf there exists an isomorphism SX :
A — Y (A) such that for every a € Morg (4, B) the diagram

T

A1 (4)

el

BT>T(B)

SB

commutes. The group of the all automorphisms of the category ©° we
denote by 2. The subgroup of the all inner automorphisms of ©° we
denote by 2). This is a normal subgroup of 2: ) < 2.

We know from [1] that if automorphic equivalence of algebras Hy, Hy €
© provided by inner automorphism then H; and Hs are geometrically
equivalent. Hear variety © can by even a variety of many-sorted algebras.
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So for studying of the difference between the automorphic equivalence
and geometric equivalence of the algebras from ©, we must calculate the
quotient group 2A/92).

In the 1-sorted case there is a reason to define

Definition 7.2. An automorphism ® of the category 0 is called strongly
stable if it satisfies the conditions:

A1) ® preserves all objects of ©°,

A2) there exists a system of bijections {s% F—-F|Fe Ob@o} such
that ® acts on the morphisms « : D — F of ©" by this way:

d (o) = sha (s%)il , (7.1)

A3) s |x=idx, for every free algebra F' = I (X) € Ob@".

The subgroup of the all strongly stable automorphisms of ©° we
denote by &.

We say that the variety © has IBN propriety if for every F' (X)), F (Y) €
ObOY we have F (X) = F (Y) only if | X| = |Y|. In this case we have the
decomposition

A=996 (7.2)
soA/P=6/6N9.

The system of bijections {s}}; =sp:F—F|F¢ Ob@o} mentioned
in definition of the strongly stable automorphism fulfills these two condi-
tions:

B1) for every homomorphism o : A — B € Mor@” the mappings s Basgl
and sglas A are homomorphisms;

B2) sp |x=idx for every free algebra F' € Ob@C.

These bijections uniquely defined by the strongly stable automorphism
®, because for every F € ObO" and every f € F we have

() =sta(@) = (sta () ) @) =@ @)@, (13)

where D = D (z) € Ob@" is a 1-generated free algebra and a: D — F
homomorphism such that « (z) = f.

On the other side by system of bijections {sp : F — F | F € Ob@Q°}
which fulfills conditions B1) and B2) we can define the strongly stable
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automorphism @, which preserves all objects of ©° and acts on the
morphisms « : D — F of @° by formula (7.1) with s = sp. By this way
we construct an one-to-one and onto correspondence between the set of
the all strongly stable automorphisms of the category ©° and the set of
the all systems of bijections which fulfill conditions B1) and B2).

We denote the signature of the algebras from the variety © by €.
The arity of the operation w € 2 we denote by n,, and by F,, we denote
F(x1,...,7,,) € ObOY w(zy,...,2,,) € F,. If we have system of
bijections {sp: F — F | F € ObO"} which fulfills conditions B1) and
B2) then

Wy (T1y -y XTny,) = SE, (W (T1,...,20,)) € F. (7.4)

We will consider the system of words W = {w,, | w € Q}. In every H € O
we can define new operations {w* | w € Q} by using of the system of
words W:

w* (h1y..y hp,) = wy (R1, ..., hpy,) (7.5)

for every hi,...,h,, € H. We denote by Hj;, the new algebra which
coincide as set with H but has other operations: {w* | w € Q} instead
{w | w € Q}. The system of words W = {w,, | w € Q} fulfills these two
conditions:

Opl) wy (z1,...,2y,) € F, for every w € ,

Op2) for every F = F (X) € Ob@" there exists an isomorphism op : F' —
F};, such that op |x= idy because the bijections {sp | F € ObO"}
will be isomorphisms o : F' — Fy,.

On the other side if we have a system of words W = {w,, | w € Q}
which fulfills conditions Opl) and Op2), then we have that F}}, € ©, so
the isomorphisms o : F' — Fyj, are uniquely determined by the system
of words W. This system of isomorphisms {op : F — F};, | F € ObO°} is
a system of bijections which fulfills conditions B1) and B2) with sp = op.
By this way we construct an one-to-one and onto correspondence between
the set of the all system of bijections which fulfills conditions B1) and
B2) and the set of the all system of words which fulfills conditions Op1)
and Op2).

Therefore we can calculate the group & if we can find the all system
of words which fulfill conditions Op1l) and Op2). For calculation of the
group G NY) we also have a

Criterion 7.1. The strongly stable automorphism ® of the category ©°
which corresponds to the system of words W is inner if and only if for
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every F € ObO" there exists an isomorphism cp : F — Fyy, such that
cra = acp fulfills for every (a: D — F) € Mor@°.

8. Strongly stable automorphisms of the category ©°

The variety ©, which was defined in the Section 4, is a variety of
1-sorted universal algebras. If F' (M) € Ob©" then by Theorem 4.1 |M| =
dim (ker p/ (ker p)2), so variety © possesses the IBN property: for free
algebras F (M), F (M) € © we have F (M;) = F (M) if and only if
| M| = |Mz|. So we have for our variety ©° the decomposition (7.2) and
for calculation of the group /9 = &/6NY we can use the method
described in the Section 7.

The signature of our variety © is Q = {0,\ (A € k), +,[,],p}, where
0 is O-ary operation of the taking 0, A for every A € k is the l-nary
operation of the multiplication by this scalar, p is the 1-nary operation of
projection, + is the addition and [,] are the Lie brackets. We must find
for the calculation of the group & all the system of words

W= {UJ(],’UJ)\ ()‘ € k) ,UJ+,ZUH,U)I;} (81)

which fulfill conditions Opl) and Op2) and after use the Criterion 7.1 for
the calculation of the group & NY). By this way we will prove the

Theorem 8.1. If Autk = {idy} then the group A/ is a trivial.

Proof. If (F,p) = F (m,...,my,) € Ob@" then by Theorems 4.1 and 4.2
(F.p) = FF " (F,p) = (L& V,py), where p = py,

L=kerp=L(r(my),...,r(my))

is a free Lie algebra with the free generators r (my),...,r (my,),

V:imp:@A(T(ml),...,r(mn))p(mi)
i=1

is a free module with the basis {p(m1),...,p(my)} over algebra
A(r(my),...,r(my)), which is an associative algebra with unit gener-
ated by the free generators r (my),...,r (my,). Hear we must understand

that by formula (4.2)

T(mh) e 'r(mis)v = [T (mll) ) [ ) [7“ (mls) 77}]“ )
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where v € V, 1 < d4y,...,is < n,s € N, if s = 0 then 1lv = v. So
by linearity we can understand what means f (r (mq),...,r (my,))v, for
every associative polynomial from n variables f € A (x1,...,zy).

We assume that ¥ € & corresponds to the system of bijections
{s}g =sp:F—>F|F¢ Ob@o} and to the system of words (8.1) and

the words of this system correspond to the operations from by formula
(7.4) with sp, = SF W fulfills conditions Opl) and Op2). In particular
by condition Op2) all axioms of the variety © must fulfill for operations
defined by system of words W. In this proof we have more convenient to
denote by an other symbols than the symbols of €2 the operations defined
by the words from W according the (7.5).

wp = 0 because wg € F (@) and F (&) = {0}.

We denote by A+ the operation defined by the word wy € F (m)
(A€ k), where F(m) is a l-generated object of the category ©O.
(F(m),p) = (L®V,py), where L = L(r(m)) = spy {r(m)}, V =
A(r (m))p (m) = k[r (m)] p (m), so

Axm =wy(m)=¢@(X)r(m)+aqgx(r(m))p(m),
where o (\) € k, g\ € k[z]. If X # 0 then A~! % (A % m) = m must fulfill.
AT (Aem) = X (0 (N) 1 (m) + gx (1 (m) p (m)) =
—90( ) (9 (A) 7 (m) + g5 (r (m)) p () +
Far-1 (r (e A)r(m) +gx (r(m)) p (m))) p (¢ () r (m) + gx (r (m)) p (m)) =
— o (A1) e ) (m) + 4y 1 (2 () 7 (m)) aa (7 (m) ().
On the other side m = (m) +p(m). So ¢ (A1) ¢ (\) =1 and ¢ (\) # 0.
a1 (0 (A)r(m)) (g (r (m)) p (m)) = s (r (m)) p (m),

where s € klz]. If deggy-1 = n, deggy = ¢ then degs = n + ¢, but
deg s = 0 must hold, so n =0, t = 0. Therefore ¢\ = ¢ (\) € k,

Axm=pA)r(m)+yPN)p(m). (8.2)

For A = 0 it also fulfills with ¢ (0) = % (0) = 0, because 0 % m = 0.
% (Axm) = () *m must fulfill for every p, A € k so

px (Axm) = px (o (N7 (m) + ¢ (N)p(m)) =
=) r(e)r(m)+ (A)p m))+¢ (u) p (e (A) r(m) +¢ (A)p(m)) =
N7 )



1. SHESTAKOV, A. TSURKOV 119

On the other side

() xm = @ (pA) r (m) + ¢ (uA) p (m) .

Hence

o () (N) =@ pA), Y ()Y (A) = (uA). (8.3)

We denote by L the operation defined by the word wy € F (mj, ms2),
where F (my,ms) is a 2-generated object of the category @°.

my Lmg =1(r(mi),r(mz2)) +aq (r(m1),r(me))p(mi)+
+q2 (1 (m1),r (m2)) p(m2),

where [ € L (z1,22), q1,92 € A(x1,22). We can write

L(r(ma),r(m2)) = axr (m1) + agr (m2) +1(r (m1),r (m2)),
where [ € L2 (r1,22), a1, a9 € k. And
gi (r (ma) 7 (ma2)) p (mi) = G; (r (m1) ;7 (m2)) p (m4) + Bip (M) ,

where ¢; is a polynomial from A (x1,x2) such that all its monomials have
entries of 1 or xo, 5; € k, 1 =1,2.

my L 0 =mq must fulfill. m; =r (m1) +p(mq1). But

my L 0=air(m1)+q (r(my),0)p(my)+ Bip(m1).

Therefore &y = 1 = 1. From 0 L m9 = my we conclude that ag = 9 = 1.

In F(m) the (A +pu) *m = (Axm) L (u*m) must fulfill for every
A € k.

A+p)xm=pA+p)r(m)+yA+u)p(m).

Also we have that

Asxm) L (pxm)=rAsxm)+r(usm)+1(rAxm),r(usm))+
+q (r(Axm),r(uxm))p(Axm)+p(Axm)+

+ @ (r(Axm),r(pxm))p(psm)+p(p*m).
r(Axm)=7r(p\)r(m)+¢A)p(m) =e\)r(m),
p(Axm)=p(eA)r(m)+(A)p(m)) = (A)p(m).

So
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(Asxm) L (usxm)=
=@ N r(m)+e(p)r(m)+1(eK)r(m),

+ @ (W) (m),e(
+ a2 (e ()

Hence

oA+ =N +o(p), vA+p) =N+ ().  (84)

Therefore ¢, 1) are homomorphisms k& — k.

p(1) =4 (1) =1, (8.5)

because 1 *m = m, so kerp = kery = 0 and Im ¢ = Im ¢ = k. Hence
Im ¢, Im 1 are infinite sets.

Ax(mp L mg) = (Axmq) L (A*mg) must fulfill for every A € k.

Ax (my Lmg) =p(N) ( (mq1) + 7 (mg) + I (r(my),r (mg))) +
(m

+ ¢ (A) (@ (r (ma) 7 (m2)) p(m1) +p(ma)) +
+ 9 (A) (@2 (r (ma) ;7 (m2)) p (m2) +p (m2)) . (8.6)

(Axm1) L (Axmg) =
=rMsmy)+rAxmg) +1(r(Axmi),r(Axma))+
+q (r(Axmy),r(Axma))p(Axmy) +p(Axmq)+
+ G (r(Axmy),r(Axma))p(Axma) +p(A*xma) =

= o W) (m1) + o\ 7 (ma) + 1 (W) (m1) ;o (A7
+ a1 (e N7 (ma) ;o (N7 (m2))  (A) p (ma) +4 (M) p
+ @ (e A)r(m1), o (A)r(m2)) ¢ (A)p(ma) +¢ (M) p

We decompose Z: q1 and g2 to the homogeneous components according
the degrees (sum of degrees of variables z; and x3) of monomials: | =

lo+ ...+, & = g1+ ...+ qin;, no = degl, n; = degq;, 1 = 1,2.
We have by comparison of (8.6) and (8.7) that ¢ (A\)l; = (¢ (\)? l; for
2<j<ngand Y (N\)gi; =v(\) (¢ (A))jqi’j for 1 <j<n;i=1,2. We
denote n = max {ng,n1,na}. We take p = ¢ (A) € Imy \ {0} such that
go(A)j # 1 forevery j =1,...,n. ¢(A) #0,s01l; =0, ¢;j =0, hence

)
(m2)) +

N

'ml)

(
(ma). (8.7)
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l~:0, cﬁ:q}:Oand
my L mg =1 (my) +r(mz) +p(m1) +p(mz2) = my + ma. (8.8)

We denote by WY the system of words which fulfills conditions
Op1) and Op2) and corresponds to the automorphism ¥~!. By w;\l’_l (m)

(X € k) we denote the word from WY which corresponds to the operation
of the multiplication by the scalar A. We denote by )‘\I,"i . the operation

defined by word w¥ " (m). By (8.2), (8.3), (8.4) and (8.5) w¥ ' (m) =
p(A)r(m)+o(X)p(m), where p, o are monomorphisms of the field k. By
(8.8) for w4 we have only one possibility for every system of words which
fulfills conditions Opl) and Op2): wy (M1, m2) = my + ma.

By {5%71} we denote the systems of bijections corresponding to

automorphism ¥~ U=1¥ = W1 = | where I is the identical au-
tomorphism. By consideration of the formula (7.1) we can conclude
that to the automorphism W~'W corresponds the systems of bijections

{51‘{1715% | F e Ob@o}. On the other side to the automorphism I corre-
sponds the systems of bijections {idp | F € ObO"}. So, we have

1

s%( )s%(m) (Am) = Sé(m) (Am) = Am = Ar(m) + A\p(m).

On the other side, by using of the formula (7.4),

SE(m)S¥m) (A1) =

= ¥y (G () + 0 W) p(m) = 9 () 5 7 (m)+ 0 () x p(m) =

= (pp (N7 (m) + o0 (A) pr(m)) + (p (A) rp (m) + o) (A) pp (m)) =
(m) + o (A)p(m).

Therefore pp = oy = idg. Analogously ¢p = Yo = idj. Therefore

@, € Autk.

Now we consider the case when Autk = {idy}. We denote by x the
operation defined by the word wy; € F' (m1,ma).

=pp(A)r

m1 X mg =u(r(my),r(ma))+
+t1 (7 (m1) 7 (m2)) p (m1) + t2 (1 (my) 7 (m2)) p (Ma)

where u € L (x1,x2), t1,t2 € A(x1,22). (Am1) X ma = A (my X mz) must
fulfill for every A € k.
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A(my x ma) = Au(r(my),r(msa)) + Aty (r (mq1),7(ms2))p(m1) +
+ Ao (1 (m1),r (m2))p(ma). (8.9)

(Ama) x ma = u (A (m1), 7 (m2)) +t1 (Ar (ma), 7 (m2)) Ap (m1) +
+to (Ar (my),r (mga))p(ma). (8.10)

We decompose u = ug + u1 + ... + Usy, ti = tio + i1 + ...+ i,
1 = 1,2 by homogeneous components according the degree of x;. By
comparison of (8.9) and (8.10) we have that Au; = Mu; for 0 < j < sp,
M= NTy ;i for 0 < j < s1, Mo = Mty j, for 0 < j < s5. We denote
5 = max {sq, 51, 52}. We take A such that M # X for j = 0,2,...,s+ 1
and conclude that u = ui, tl = tl’o, t2 = t2’1.

Also my x (Amg) = A (mq X mg) must fulfill for every X € k.

m1 X (Ama) = ug (1 (m1) , Ar (m2)) +t10 (r (m1) , Ar (m2)) p (ma) +
+toq (r(m1), Ar (m2)) Ap (mg) . (8.11)
Now we decompose u; = U0+ Uyl + ...+ UL sy, tl,O =t10,0 +t101 +
oot t10,5s t21 = t210+ 1211+ ...+ 12155, by homogeneous components
according the degree of x2. And by comparison of (8.9) and (8.11) as

above we conclude that u = u; = U1, t1 =t10 =t1,01, 2 = t21 = 1210
Therefore by (4.2)

m1 x mg = a[r(my),r (mz2)] + B[r(ma),p(m)] +v[r(mi1),p(ma)],

where «, 3,7 € k.
mi1 X my = —meg X myp must fulfill.

ma X my = alr(mz),r(m1)] + Br(mi),p(ma)] +7[r(ma),p(m)] =
—a[r(ma),r(m2)] +v[r(m2),p(mi)] + B8 [r (m1),p(m2)].
Therefore v = —f and
mi X mg = alr (mi),r (me)] + Br(ma),p(m1)] — Br(m),p(me)].

In the case 1 we assume that 5 # 0.
The Jacobi identity

J(ml,mg,mg) = (m1 X mg)xmg—l—(mg X mg)xm1+(m3 X m1)><m2 =0
(8.12)
must fulfill in F' (mq, mg, m3).



1. SHESTAKOV, A. TSURKOV 123

3
so J (my,ma,m3) = > J;, where
i=0

Jo € L(r(m1),r(mz),r(ms)),
Ji € A(r(ma),r(mz),r(ms))p(mi),
t=1,2,3 and must fulfill J; =0,7:=0,...,3.

= B%[r (m3), [r (ma) ,p (m1)]] = B [r (mg2) , [r (m3) ,p (m1)]] —
— Ba|[r (m2), (m3)] p(m1)] =
= B2 [r (m3),[r (ma),p (m1)]] = 5% [r (ma) , [r (m3) ,p (m1)]] —
— Ba[r (m2), [r (m3),p (m1)]] + Ba[r (m3) , [r (m2) ,p (m1)]]

by (4.2) and definition of representation of Lie algebra. So 5% + Ba = 0
must fulfill and we have that § = —a, a # 0. It is easy to check that
f = —a enough for (8.12). Therefore

my X mg = a([r(m1),r(me)] + [r(m1), p(msa)] —
— [r(m2), p(m1)]) = a[m1,ma] (8.13)

by (4.1) and (4.2).

In the case 2, if § = 0 we have that

my X mg = afr(mq),r(mz)]. (8.14)
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If « = 0, then F(mi,ma) x F(mi,ma) = {0}, but
[F'(m1,ma), F (m1,me)] # {0}. By condition Op2) F (mi,mg) =
(F (m1,m2))},. From this contradiction we conclude that hear also

a # 0.
We denote by p the operation defined by the word w, € F (m).

p(m) = dr(m)+ gy (r(m))p(m),

where 0 € k, gy € k[x]. p(A*m) = A *p (m) must fulfill for every X € k.

Ak p(m) = Aor (m) + Agp (r (m)) p(m) . (8.15)

pAsm)=0or(Asxm)+g (r(Axm))p(Axm) =
= 0Ar (m) + qp (Ar (m)) Ap(m). (8.16)
As above we decompose g, by homogeneous components according the

degree of z and conclude as above by comparison of (8.15) and (8.16)
that deg g, = 0 and

p(m) = dr(m) +ep(m)

where € € k.

p(p(m)) =p(m) must fulfill in F' (m).

p(p(m)) = 6r (v (m) + ep (m))+ep (r (m) + ep (m)) = 6°r (m)+&?p (m).
Therefore §%2 = §, €2 = ¢.

If § = e =1 then p(m) = r(m) + p(m) = m and p ((F (m))},) =
(F (m))jy but p(F (m)) # (F (m)) contrary to F (m) = (F (m))j,. So it
is impossible that § = e = 1.

If 6 = e =0, then p(m) = 0 and p ((F (m))y,) = 0 but p( ( ) #0
contrary to F (m) = (F (m))j,,. As above we conclude that § =e =10
impossible.

Ifo=1,¢6=0. Thenp(m) =r (m) i.e. p =r. p must be a derivation
of (F'(m))jy - In the case 2, by (8.14), we have that

p(m1 x ma) =r(afr(mi),r(mz)]) =alr(m),r(ms),

p(m1) X ma+my X p(ma) =7r(my) X mg+my X1 (my) =
= alrr(mi),r(m2)] +alr(mi),rr(m2)] = 2alr (m1),r (mo)].



1. SHESTAKOV, A. TSURKOV 125

char (k) = 0, so p is not a derivation. In the case 1, by (8.13), we have
that

p(m1 x ma2) = r(a([r(mi), r(mz)] + [r(m1), p(ma)]—
= [r(m2), p(m1)])) = alr(mi),r(ma)],

~—

p(ml) X mg + mp X p(mg

= a([r(r(m1)), r(ms)]

=Tr{mi

(m1)
r(r(mi)),

X mg +my X r(mg) =
p(m

2)] = [r(m2), p(r(m1))])+

+

+ a([r(ma), r(r(mz))] + [r(ma), p(r(m2))] — [r(r(ms2)), p(m1)]) =
= a([r(ma), r(ma)]+[r(m1), p(ma)])+a([r(m1), r(ms)]=[r(m2), p(m1)]) =
= a(2[r(m1), r(ma)] + [r(m1), p(ma)] — [r(m2), p(m1)]).
In this case p also is not a derivation.
Therefore we have only one possibility: § = 0, ¢ = 1. It means

p (m) = p(m)v Le, p=p.
And in the case 2, by (8.14), we have that

P (F (m1,mz) x F (m1,mg)) = 0
but
p [T (ml) » P (mQ)] = [7’ (ml) ,p(mQ)] ?é 07

SO
p[F(mlam2)7F(m17m2)]7é0

contrary to F'(m1,mg) = (F (m1,mz))yy,. Therefore the case 2 is impos-
sible.

Hence

my X mg = o ([r(m1),r (m2)] + [r(m1),p(ma)] —
—[r(m2),p(m1)]) = a[m1,ma],

where o # 0.
From this fact, as in [4, end of the subsection 2.5], we conclude that
Ve So6=6nY and A/Y = {1}. O

9. The main theorem

Theorem 9.1. If Autk = {idy} then automorphic equivalence of repre-
sentations of Lie algebras coincides with the geomelric equivalence.
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Proof. We assume that Hy = (L1,V1), Ho = (L9, V3) € E are automorphi-
cally equivalent. By Theorem 6.1 we have that Ny = F (H1), Na = F (Ha)
are automorphically equivalent. By [1, Proposition 9] and Theorem 8.1
we can conclude from this fact that N1, Ny are geometrically equivalent.
It means that Cly, (F) = Cly, (F) for every F € ObO°.

We will consider the arbitrary Wi = (L (X1),A4(X1)Y;1) € Ob=C.
There are X5 € X% Y5 € YO such that X; € X5, Y] C Yy and Wy =
(L (X2),A(X2)Ys) € Z'. By Theorem 4.2 there exists F € ObO" such
that F' = F (W2). By Proposition 6.1 we can conclude from Cly, (F) =
Cly, (F) that Cly, (W2) = Clg, (W3). And by Theorem 3.1 we can
conclude that Cly, (W1) = Cly, (W7). So Hy and H are geometrically
equivalent. O
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