© Journal "Algebra and Discrete Mathematics"

Combinatorics of irreducible Gelfand-Tsetlin sl(3)-modules

Luis Enrique Ramirez¹

Communicated by V. M. Futorny

ABSTRACT. In this paper we present an explicit description of all irreducible $\mathfrak{sl}(3)$ -modules which admit a Gelfand-Tsetlin tableaux realization with respect to the standard Gelfand-Tsetlin subalgebra.

Introduction

In the present paper we will describe irreducible $\mathfrak{sl}(3)$ -modules in a certain full subcategory of the category of Gelfand-Tsetlin modules (we will abbreviate Gelfand-Tsetlin by GT); namely the category GTT of GT-modules that admit a tableaux realization with respect to a GT-subalgebra [9]. This description provides a realization similar to the $\mathfrak{sl}(2)$ case (in the latter it is always possible to choose a basis of eigenvectors with respect to a Cartan subalgebra and write explicit formulas for the action of the generators of $\mathfrak{sl}(2)$).

Following [9]; we say that an $\mathfrak{sl}(n)$ -module V admits a tableaux realization with respect to a GT-subalgebra Γ provided V decomposes as $V = \bigoplus_{\xi \in \Gamma^*} V_{\xi}$ where

$$V_{\xi} := \{ v \in V : \exists k \in \mathbb{N} \text{ such that } (t - \xi(t))^k v = 0 \ \forall t \in \Gamma \},$$

¹The author is supported by the CNPq grant (processo 142407/2009-7) **2010 MSC:** 17B35, 17B37, 17B67, 16D60, 16D90, 16D70, 81R10.

Key words and phrases: Gelfand-Tsetlin modules, weight modules, Gelfand-Tsetlin basis.

 $dim(V_{\xi}) \leq 1$ for all $\xi \in \Gamma^*$ and the action of the generators of $\mathfrak{sl}(n)$ is given by the GT-formulas ([7], [11]). It was shown in [2] that in $\mathfrak{sl}(3)$, for any irreducible GT-module V, $dim(V_{\xi}) \leq 2$ for all $\xi \in \Gamma^*$. Moreover, there are explicit examples of GT-modules with $dim(V_{\xi}) = 2$ for some $\xi \in Supp(V)$. Hence GTT is a proper subcategory of GT.

In sections 1 and 2 we give the definitions and notations that we will use throughout the paper. The section 3 is devoted to the description of a basis for the irreducible $\mathfrak{sl}(3)$ -modules in GTT which is the main result of the paper. As a direct consequence of this description it is possible to give simple conditions for a tableau such that the associated irreducible module has bounded weight multiplicities or 1-dimensional weight spaces. In section 4 we use the results of section 3 to answer when a highest weight $\mathfrak{sl}(3)$ -module admits a tableaux realization (with respect to some GT-subalgebra). Finally, in the section 5 we give a characterization of the irreducible $\mathfrak{sl}(3)$ -modules in GTT which are Harish-Chandra modules.

1. Gelfand-Tsetlin modules

Let $n \in \mathbb{N}$ fixed; for $k \in \{1, 2, ..., n\}$ denotes by $\mathfrak{g}_k := \mathfrak{gl}(k)$; $U_k := U(\mathfrak{g}_k)$ the universal enveloping algebra of \mathfrak{g}_k and $Z_k := Z(\mathfrak{g}_k)$ the center of \mathfrak{g}_k ; let also $\mathfrak{g} := \mathfrak{g}_n$ and $U := U(\mathfrak{g})$.

If $\{E_{ij}\}$ denotes the canonical basis of \mathfrak{g} , we have a natural identification between \mathfrak{g}_k and the subalgebra of \mathfrak{g} generated by the matrices $\{E_{ij}\}_{i,j=1,\dots,k}$; i.e. consider \mathfrak{g}_i as a subalgebra of \mathfrak{g}_{i+1} with respect to the upper left corner embedding.

$$\begin{bmatrix} a_{11} & | & a_{12} & | & a_{13} & | & \dots & | & a_{1n} \\ \hline \\ a_{21} & | & | & & | & & | & & | \\ \hline \\ a_{21} & | & a_{22} & | & a_{23} & | & \dots & | & a_{2n} \\ \hline \\ a_{31} & | & a_{32} & | & a_{33} & | & \dots & | & a_{3n} \\ \hline \\ \hline \\ \vdots & \vdots & \ddots & \ddots & \ddots & | & \vdots \\ \hline \\ a_{n1} & | & a_{n2} & | & a_{n3} & | & \dots & | & a_{nn} \end{bmatrix}$$

The chain of inclusions: $\mathfrak{g}_1 \subset \mathfrak{g}_2 \subset \cdots \subset \mathfrak{g}_n = \mathfrak{g}$ induces a chain of inclusions of the corresponding enveloping algebras.

Definition 1. Let Γ the subalgebra of U generated by $\{Z_k : k = 1, \ldots, n\}$; this subalgebra is called standard **Gelfand-Tsetlin subalgebra** of U [3].

Remark 1. Z_m is a polynomial algebra in m variables $\{c_{mk}: k = 1, 2, ..., m\}$,

$$c_{mk} = \sum_{(i_1, i_2, \dots, i_k) \in \{1, \dots, m\}^k} E_{i_1 i_2} E_{i_2 i_3} \cdots E_{i_k i_1}$$

and the algebra Γ is a maximal commutative polynomial subalgebra of $U(\mathfrak{g})$ in $\frac{n(n+1)}{2}$ variables $\{c_{ij}: 1 \leq j \leq i \leq n\}$.

Definition 2. Let M be a \mathfrak{g} -module; $\chi:\Gamma\to\mathbb{C}$ a homomorphism and

$$M_{\chi} = \{ v \in M : \exists k \in \mathbb{N} \text{ such that } (g - \chi(g))^k v = 0 \quad \forall g \in \Gamma \}.$$

The module M is called **Gelfand-Tsetlin module** (respect to Γ) if $M = \bigoplus_{\chi \in \Gamma^*} M_{\chi}$ and $dim(M_{\chi}) < \infty$ for all $\chi \in \Gamma^*$ [3].

Definition 3. An array of rows with complex entries $\{l_{ij} : 1 \le j \le i \le n\}$ as follows:

is called **Gelfand-Tsetlin tableau**. A Gelfand-Tsetlin tableau is called **standard** if

$$\lambda_{ki} - \lambda_{k-1,i} \in \mathbb{Z}^{\geq 0} \quad and \quad \lambda_{k-1,i} - \lambda_{k,i+1} \in \mathbb{Z}^{\geq 0}, \ \text{ for all } 1 \leq i \leq k \leq n-1.$$

In the finite dimensional case we have the following classical result [7]:

Theorem 1. If $L(\lambda)$ is a finite dimensional irreducible representation of $\mathfrak{gl}(n)$ of highest weight $\lambda = (\lambda_1, \ldots, \lambda_n)$, there exist a bases $\{\xi_{[L]}\}$ of $L(\lambda)$ parameterized by all standard tableaux [L] with top row $\lambda_{n1} = \lambda_1, \ldots, \lambda_{nn} = \lambda_n$ and the $\mathfrak{gl}(n)$ generators acts by the formulas:

$$E_{k,k+1}(\xi_{[L]}) = -\sum_{i=1}^{k} \left(\frac{\prod_{j=1}^{k+1} (l_{ki} - l_{k+1,j})}{\prod_{j \neq i}^{k} (l_{ki} - l_{kj})} \right) \xi_{[L+\delta^{ki}]},$$

$$E_{k+1,k}(\xi_{[L]}) = \sum_{i=1}^{k} \left(\frac{\prod_{j=1}^{k-1} (l_{ki} - l_{k-1,j})}{\prod_{j\neq i}^{k} (l_{ki} - l_{kj})} \right) \xi_{[L-\delta^{ki}]},$$

$$E_{kk}(\xi_{[L]}) = \left(\sum_{i=1}^{k} \lambda_{ki} - \sum_{i=1}^{k-1} \lambda_{k-1,i} \right) \xi_{[L]},$$

Where $l_{ki} = \lambda_{ki} - i + 1$, $[L \pm \delta^{ki}]$ is the tableau obtained by [L] adding ± 1 to the ki position of [L]; and if $[\tilde{L}]$ is not standard, the vector $\xi_{[\tilde{L}]}$ would be zero. Moreover, the action of the generators of Γ in the basis elements is given by:

$$c_{ij}(\xi_{[L]}) = (\sum_{k=1}^{i} (l_{ik} + i)^{j} \prod_{s \neq k} (1 - \frac{1}{l_{ik} - l_{is}})) \xi_{[L]}$$

The formulas of the previous theorem are called **Gelfand-Tsetlin** formulas for $\mathfrak{gl}(n)$.

2. Gelfand-Tsetlin formulas for $\mathfrak{sl}(3)$

Remark 2. From now on we will prefer to use tableaux with entries l_{ij} instead of λ_{ij} because the formulas are symmetric with respect to the l_{ij} 's in the following sense. Let R_i denote the i-th row of the tableaux [L] and S_i the i-th symmetric group. We have a natural action of the group $S_1 \times S_2 \times \cdots \times S_n$ on the set of GT-tableaux (with entries l_{ij}): $(\sigma_1, \ldots, \sigma_n)([L])$ is the tableau with the i-th row $\sigma_i(R_i)$, for $i = 1, 2, \ldots, n$.

Definition 4. The tableaux $[L]_1$ and $[L]_2$ are equivalent if there exist $(\sigma_1, \ldots, \sigma_n)$ such that $(\sigma_1, \ldots, \sigma_n)([L]_1) = [L]_2$ and we write in this case $[L]_1 \approx [L]_2$.

Remark 3. If we want to recover the tableaux with coefficients λ_{ij} we just need to remember the relations $l_{ki} = \lambda_{ki} - i + 1$.

In the particular case of $\mathfrak{gl}(3)$, let $a, b, c, x, y, z \in \mathbb{C}$ fixed complex numbers; from now on we will use [L] to denote the fixed tableau;

Then, the GT-formulas for the generators of $\mathfrak{gl}(3)$ are:

$$E_{11}([L]) = z[L]$$
 $E_{12}([L]) = -(x-z)(y-z)[L+\delta^{11}]$
 $E_{22}([L]) = (x+y+1-z)[L]$ $E_{21}([L]) = [L-\delta^{11}]$
 $E_{33}([L]) = (a+b+c+2-x-y)[L]$

$$E_{32}([L]) = \frac{(x-z)}{(x-y)}[L - \delta^{21}] - \frac{(y-z)}{(x-y)}[L - \delta^{22}]$$

$$E_{23}([L]) = \frac{(a-x)(b-x)(c-x)}{(x-y)}[L + \delta^{21}] - \frac{(a-y)(b-y)(c-y)}{(x-y)}[L + \delta^{22}].$$

As we want to restrict our attention to $\mathfrak{sl}(3)$, we have to consider just the tableaux such that $E_{11}([L]) + E_{22}([L]) + E_{33}([L]) = 0$ that implies a + b + c + 3 = 0; then the GT-formulas for the generators of $\mathfrak{sl}(3)$ are given by:

$$\mathbf{GT\text{-}formulas:} \begin{cases} h_1([L]) = (2z - (x+y+1))[L] \\ h_2([L]) = (2(x+y+1)-z)[L] \\ E_{12}([L]) = -(x-z)(y-z)[L+\delta^{11}] \\ E_{21}([L]) = [L-\delta^{11}] \\ E_{32}([L]) = \frac{(x-z)}{(x-y)}[L-\delta^{21}] - \frac{(y-z)}{(x-y)}[L-\delta^{22}] \\ E_{23}([L]) = \frac{(a-x)(b-x)(c-x)}{(x-y)}[L+\delta^{21}] - \\ - \frac{(a-y)(b-y)(c-y)}{(x-y)}[L+\delta^{22}]. \end{cases}$$

Now we introduce some notation that will help us to simplify the desired description.

Notation 1. Let

$$[T] = \begin{array}{|c|c|c|} \hline l_{31} & l_{32} & l_{33} \\ \hline l_{21} & l_{22} \\ \hline l_{11} \\ \hline \end{array}$$

be an arbitrary tableau, $B_1([T]) := \{l_{31} - l_{21}, l_{32} - l_{21}, l_{33} - l_{21}\}$ and $B_2([T]) := \{l_{31} - l_{22}, l_{32} - l_{22}, l_{33} - l_{22}\}$. We consider the following functions:

- $t_0([T]) := l_{21} l_{22}; t_3([T]) := l_{21} l_{11}; t_3^-([T]) := l_{22} l_{11}$
- $t_i([T]) := \min\{\{B_i([T]) \cap \mathbb{Z}^{\geq 0}\} \cup \{+\infty\}\}; i = 1, 2$

• $t_i^-([T]) := \max\{\{B_i([T]) \cap \mathbb{Z}^{<0}\} \cup \{-\infty\}\}; i = 1, 2.$

In the cases that $t_i([T]) = +\infty$ or $t_i^-([T]) = -\infty$ for some i = 1, 2, we will write $t_i([T]) \notin \mathbb{Z}$ or $t_i^-([T]) \notin \mathbb{Z}$ respectively.

From now on in order to simplify the notation we will write t_0 , t_1 , t_2 , t_1^- , t_2^- , t_3 , t_3^- instead to $t_0([L])$, $t_1([L])$, $t_2([L])$, $t_1^-([L])$, $t_2^-([L])$, $t_3([L])$, $t_3^-([L])$, where [L] is the fixed tableau as before.

3. Description of irreducible GTT $\mathfrak{sl}(3)$ -modules

Given a tableau [L], we can look at the set of all tableaux that can be obtained with non-zero coefficients from [L] using the GT-formulas. It is natural to ask what are the possible tableaux [L] that we can consider in order to obtain an $\mathfrak{sl}(3)$ -module structure on the vector space generated by this set of tableaux.

The only problem (if we apply the GT-formulas) is a possibility of zero denominators. Thus we have to restrict our attention to the **lattice** of tableaux of [L]

$$Latt([L]):=\{[\tilde{L}]: [\tilde{L}] \text{ is obtained from } [L]$$
 using GT-formulas and $t_0([\tilde{L}])\neq 0\}.$

Here to obtain $[\tilde{L}]$ from [L] using the GT-formulas means that there exist $X \in U(\mathfrak{sl}(3))$ such that $[\tilde{L}]$ appear with non-zero coefficient in X([L]).

The following result from [3] implies the existence of some GT-modules called *generic Gelfand-Tsetlin* modules.

Theorem 2. If $t_0, t_1, t_2, t_1^-, t_2^-, t_3, t_3^- \notin \mathbb{Z}$ then, the \mathbb{C} -vector space $V_{[L]}$ generated by the set of vectors $\{\xi_{[\tilde{L}]} : [\tilde{L}] \in Latt([L])\}$ defines an *irreducible sl*(3)-module with the action of $\mathfrak{sl}(3)$ given by the GT-formulas.

Corollary 3. If $t_0 \notin \mathbb{Z}$ then, the \mathbb{C} -vector space $V_{[L]}$ generated by the set of vectors $\{\xi_{[\tilde{L}]} : [\tilde{L}] \in Latt([L])\}$ has a structure of GT sl(3)-module; where the action of $\mathfrak{sl}(3)$ is given by the GT-formulas.

Definition 5. We say that an $\mathfrak{sl}(3)$ -module V admits a tableaux realization with respect to a GT-subalgebra Γ provided that V is a GT-module (with respect to Γ), $\dim(V_{\xi}) \leq 1$ for all $\xi \in \Gamma^*$ and the action of the

generators of $\mathfrak{sl}(3)$ is given by the GT-formulas. Equivalently, a GT $\mathfrak{sl}(3)$ -module is said to have a **tableaux realization** if it is isomorphic to $V_{[T]}$ for some tableau [T]. We say that a module is a **GTT-module** if it admits a tableaux realization.

In this section we will describe explicitly bases of all irreducible $\mathfrak{sl}(3)$ modules in GTT and then we will be able to calculate weight multiplicities
(with respect to the standard Cartan subalgebra of $\mathfrak{sl}(3)$) of this modules
in terms of the values of the constants $t_0, t_1, t_2, t_1^-, t_2^-, t_3, t_3^-$.

By the GT-formulas, we have that $Latt([L]) \subset \{[L]_{m,n,k} : m, n, k \in \mathbb{Z}\}$ where the tableaux $[L]_{m,n,k}$ is defined as:

$$[L]_{m,n,k} := \begin{bmatrix} a & b & c \\ \hline x+m & y+n \\ \hline z+k \end{bmatrix}$$

Then we can identify Latt([L]) with points of \mathbb{R}^3 with integer coordinates to describe a basis of the module $V_{[L]}$.

Let $m, n, k \in \mathbb{Z}^{\geq 0}$, applying the GT-formulas to [L] we see that:

1) $[L+m\delta^{21}]$ appears in the decomposition of $E^m_{23}[L]$ with coefficient

$$\prod_{i=0}^{m-1} \frac{(a-x-i)(b-x-i)(c-x-i)}{(x-y+i)}$$

2) $[L - m\delta^{21}]$ appears in the decomposition of $E_{32}^m[L]$ with coefficient

$$\prod_{i=0}^{m-1} \frac{(x-z-i)}{(x-y-i)}$$

3) $[L + n\delta^{22}]$ appears in the decomposition of $E_{23}^n[L]$ with coefficient

$$\prod_{i=0}^{n-1} \frac{(a-y-i)(b-y-i)(c-x-i)}{(x-y-i)}$$

4) $[L-n\delta^{22}]$ appears in the decomposition of $E^n_{32}[L]$ with coefficient

$$\prod_{i=0}^{n-1} \frac{(y-z-i)}{(x-y+i)}$$

- 5) $E_{21}^k([L]) = [L k\delta^{11}]$
- 6) $E_{12}^{k}([L]) = \prod_{i=0}^{k-1} (x-z-i)(y-z-i)[L+k\delta^{11}]$

As an immediate consequence of the above observation we have the following lemma:

Lemma 4. For i = 1, 2, 3 denote by A_i the conditions $t_i \notin \mathbb{Z}^{\geq 0}$ and by A_3^- the condition $t_3^- \notin \mathbb{Z}^{\geq 0}$. Then the following statements hold:

- 1) $[L + m\delta^{21}] \in Latt([L])$ for all $m \in \mathbb{Z}^+$ if A_1 and $t_0 \notin \mathbb{Z}^{<0}$.
- 2) $[L m\delta^{21}] \in Latt([L])$ for all $m \in \mathbb{Z}^+$ if A_3 and $t_0 \notin \mathbb{Z}^{>0}$.
- 3) $[L k\delta^{11}] \in Latt([L])$ for all $k \in \mathbb{Z}^+$.
- 4) $[L + k\delta^{11}] \in Latt([L])$ for all $k \in \mathbb{Z}^+$ if A_3 and A_3^- .
- 5) $[L + n\delta^{22}] \in Latt([L])$ for all $m \in \mathbb{Z}^+$ if A_2 and $t_0 \notin \mathbb{Z}^{>0}$.
- 6) $[L n\delta^{22}] \in Latt([L])$ for all $m \in \mathbb{Z}^+$ if A_3^- and $t_0 \notin \mathbb{Z}^{<0}$.

Now we will answer the following question: what conditions on the entries of [L] guarantee that $Latt([L]) = \mathbb{Z}^3$ (i.e. when Latt([L]) is the largest possible)?

Definition 6. Given $m, n, k \in \mathbb{Z}$, we say that the tableau $[L]_{m,n,k}$, can be obtained from [L] by the path $r \to s \to t$, with $\{r, s, t\} = \{1, 2, 3\}$ if: From [L] we can obtain $[L]_{(m,0,0)}$ if r=1 (respectively $[L]_{(0,n,0)}$ if r=2 and $[L]_{(0,0,k)}$ if r=3); from $[L]_{(m,0,0)}$ we obtain $[L]_{(m,n,0)}$ if s=2 or $[L]_{(m,0,k)}$ if s=3 (respectively from $[L]_{(0,n,0)}$ we obtain $[L]_{(m,n,0)}$ if s=1 or $[L]_{(0,n,k)}$ if s=3 and from $[L]_{(0,0,k)}$ we obtain $[L]_{(m,0,k)}$ if s=1 or $[L]_{(0,n,k)}$ if s=2 and in the last step we obtain the tableau $[L]_{m,n,k}$.

Example 1. $[L]_{7,-1,4}$ is obtained from [L] by the path $3 \to 1 \to 2$ means: from [L] we obtain the tableau $[L]_{0,0,4}$; with this tableau we obtain $[L]_{7,0,4}$ and from this, we can obtain $[L]_{7,-1,4}$.

Proposition 5. $Latt([L]) = \mathbb{Z}^3$ if and only if

$$t_1, t_2, t_3, t_3^- \notin \mathbb{Z}^{\geq 0}; t_0 \notin \mathbb{Z}.$$

Proof:. (\Leftarrow) Let $m, n, k \in \mathbb{Z}$. Using lemma 4 in each step of the path indicated below it is possible to obtain the tableau $[L]_{m,n,k}$. In each case the path will depend of the ordered triple of signs of m, n, k as follows:

(+, +, +)	(-, -, -)	(+, -, +)
$\int 3 \to 2 \to 1; \text{if } n \ge m$	$\int 1 \to 2 \to 3; \text{if } m \ge n$	2 \ 1 \ 9
$3 \to 1 \to 2; \text{if } m \ge n$	$\begin{cases} 1 \to 2 \to 3; & \text{if } m \ge n \\ 2 \to 1 \to 3; & \text{if } n \ge m \end{cases}$	$3 \rightarrow 1 \rightarrow 2$

(+, +, -)	(-, -, +)	(+, -, -)
$\int 1 \to 2 \to 3$; if $m \ge n$	$\int 1 \to 2 \to 3$; if $m \ge n$	1 . 9 . 9
$\begin{cases} 1 \to 2 \to 3; & \text{if } m \ge n \\ 2 \to 1 \to 3; & \text{if } n \ge m \end{cases}$	$2 \to 1 \to 3; \text{if } n \ge m$	$1 \rightarrow 2 \rightarrow 3$

$$\begin{array}{|c|c|c|c|}\hline (-,+,+) & (-,+,-) \\\hline \hline 3 \rightarrow 2 \rightarrow 1 & 1 \rightarrow 2 \rightarrow 3 \\\hline \end{array}$$

- (\Rightarrow) Without loss of generality we can assume that some of these constants are zero. Then we conclude:
 - 1) If $t_1 = 0$ then it is not possible to obtain $[L]_{1,0,0}$ from [L].
 - 2) If $t_2 = 0$ then $[L]_{0,1,0} \notin Latt([L])$.
 - 3) If $t_3 = 0$ or $t_3^- = 0$ then $[L]_{0,0,1} \notin Latt([L])$ or $[L]_{0,0,-1} \notin Latt([L])$ respectively. \square

Now we have enough information about Latt([L]) in order to describe irreducible modules. For this we will use the following characterization.

The module $V_{[L]}$ is irreducible if and only if $Latt([\tilde{L}]) = Latt([L])$ for all $[\tilde{L}] \in Latt([L])$.

Theorem 6. Let [L] be such that $Latt([L]) = \mathbb{Z}^3$. Then $V_{[L]}$ is irreducible if and only if

$$t_0, t_1, t_1^-, t_2, t_2^-, t_3, t_3^- \notin \mathbb{Z}.$$

Proof:. (\Leftarrow) Under the conditions it is possible to apply the GT-formulas to any tableau in Latt([L]) and we never obtain zero coefficients. Then for all $[\tilde{L}] \in Latt([L])$ we have $Latt([\tilde{L}]) = \mathbb{Z}^3$ which implies $V_{[L]}$ irreducible.

(⇒) If $t_1^- \in \mathbb{Z}^{<0}$ (respectively t_2^- or $t_3^- \in \mathbb{Z}^{<0}$) then $[L] \notin Latt([L]_{-1,0,0})$ (respectively $[L] \notin Latt([L]_{0,-1,0})$ or $[L] \notin Latt([L]_{0,0,-1})$). Hence $V_{[L]}$ can not be irreducible.

Remark 4. Note that it is possible to obtain $Latt([L]) = \mathbb{Z}^3$ in the case when some constants are negative integers, but not necessarily we obtain an irreducible module.

Remark 5. To know a basis of the module generated by [L] it is enough to know the values of the constants $\{t_0, t_1, t_1^-, t_2, t_2^-, t_3, t_3^-\}$. For some subset A of $\{t_0, t_1, t_1^-, t_2, t_2^-, t_3, t_3^-\}$, the notation $A \subset \mathbb{Z}$ will means from now on that $A \subset \mathbb{Z}$ and the complement of A in $\{t_0, t_1, t_1^-, t_2, t_2^-, t_3, t_3^-\}$ has empty intersection with \mathbb{Z} . In particular $t_1, t_2 \in \mathbb{Z}^{\geq 0}$ means that $\{t_0, t_1^-, t_2^-, t_3, t_3^-\} \cap \mathbb{Z} = \emptyset$.

Proposition 7. Let [L] be a fixed tableau as before. Denote by $V_{[L]}$ the $\mathfrak{sl}(3)$ -module generated by Latt([L]) using the GT-formulas. Then

- 1) If $t_1 \in \mathbb{Z}^{\geq 0}$, $V_{[L]}$ is an irreducible module with bases parameterized by $Latt([L]) = \{[L]_{m,n,k} : m \leq t_1\}.$
- 2) If $t_2 \in \mathbb{Z}^{\geq 0}$, $V_{[L]}$ is an irreducible module with bases parameterized by $Latt([L]) = \{[L]_{m,n,k} : n \leq t_2\}.$
- 3) If $t_3 \in \mathbb{Z}^{\geq 0}$, $V_{[L]}$ is an irreducible module with bases parameterized by $Latt([L]) = \{[L]_{m,n,k} : k m \leq t_3\}$.
- 4) If $t_1^- \in \mathbb{Z}^{<0}$, the irreducible module that contains [L] can be obtain as a quotient module of $V_{[L]}$; and the bases is parameterized by the set of tableaux $\{[L]_{m,n,k} : m > t_1^-\}$.
- 5) If $t_1^- \in \mathbb{Z}^{<0}$, the irreducible module that contains [L] can be obtain as a quotient module of $V_{[L]}$; and the bases is parameterized by the set of tableaux $\{[L]_{m,n,k} : n > t_2^-\}$.
- 6) If $t_3 \in \mathbb{Z}^{<0}$, the irreducible module that contains [L] can be obtain as a quotient module of $V_{[L]}$; and the bases is parameterized by the set of tableaux $\{[L]_{m,n,k}: k-m>t_3\}$.

Proof. The cases 1, 2, 3 are obvious from the GT-formulas and the irreducibility is guaranteed by the Theorem 6. In each of the cases 4, 5, 6 we can apply the GT-formulas and obtain in Latt([L]) a tableaux $[\tilde{L}]$ that satisfies $t_1([\tilde{L}]) \in \mathbb{Z}^{\geq 0}$ (respectively $t_2([\tilde{L}]) \in \mathbb{Z}^{\geq 0}$ or $t_3([\tilde{L}]) \in \mathbb{Z}^{\geq 0}$). Then the irreducible module that contains [L] is isomorphic to the quotient module $V_{[L]}/V_{[\tilde{L}]}$.

Corollary 8. Using Proposition 7 we can characterize the set of tableaux that parameterizes a basis of the irreducible module that contains [L] as follows:

- 1) For $t_1 \in \mathbb{Z}^{\geq 0}$; $\{[L]_{m,n,k} : t_1([L]_{m,n,k}) \in \mathbb{Z}^{\geq 0}\}$.
- 2) For $t_2 \in \mathbb{Z}^{\geq 0}$; $\{[L]_{m,n,k} : t_2([L]_{m,n,k}) \in \mathbb{Z}^{\geq 0}\}$.
- 3) For $t_3 \in \mathbb{Z}^{\geq 0}$; $\{[L]_{m,n,k} : t_3([L]_{m,n,k}) \in \mathbb{Z}^{\geq 0}\}.$
- 4) For $t_1^- \in \mathbb{Z}^{<0}$; $\{[L]_{m,n,k} : t_1^-([L]_{m,n,k}) \in \mathbb{Z}^{<0}\}$.
- 5) For $t_2^- \in \mathbb{Z}^{<0}$; $\{[L]_{m,n,k} : t_2^-([L]_{m,n,k}) \in \mathbb{Z}^{<0}\}$.
- 6) For $t_3^- \in \mathbb{Z}^{<0}$; $\{[L]_{m,n,k} : t_3^-([L]_{m,n,k}) \in \mathbb{Z}^{<0}\}$.

Corollary 9. If A denotes the set $\{t_1, t_2, t_1^-, t_2^-, t_3, t_3^-\}$, [L] satisfies the conditions $A_1 := A \cap \mathbb{Z}^{\geq 0}$ and $A_2 := A \cap \mathbb{Z}^{<0}$ and those conditions implies $t_0 \neq 0$; then, a base for the irreducible module that contains [L] can be parameterized by:

$$\{[L]_{m,n,k}: A_1([L]_{m,n,k}) \in \mathbb{Z}^{\geq 0} \text{ and } A_2([L]_{m,n,k}) \in \mathbb{Z}^{< 0}\}$$

Definition 7. For each tableau [T] satisfying the conditions of corollary 9 we will denote by $I_{[T]}$ the irreducible $\mathfrak{sl}(3)$ -module generated by [T] with the basis parameterized by the set of tableaux described as before. This basis we will be denote by $\mathcal{B}_{[T]}$.

We can take advantage of knowing these bases to calculate the weights dimensions of modules with tableaux realization.

If we want to know the action of h_1 and h_2 in the module $I_{[L]}$ it is enough to describe the action of h_1 and h_2 in tableaux of type $[L]_{m,n,k}$.

•
$$h_1([\mathbf{L}]_{m,n,k}) = (2(z+k) - (x+y+1+n+m))[\mathbf{L}]_{m,n,k}$$

•
$$h_2([\mathbf{L}]_{m,n,k}) = (2(x+y+1+n+m)-(z+k))[\mathbf{L}]_{m,n,k}.$$

Set $\lambda_{m,n,k}^{(1)}:=2(z+k)-(x+y+1+n+m)$ and $\lambda_{m,n,k}^{(2)}:=2(x+y+1+n+m)-(z+k)$. Since x,y,z are fixed, we have a natural identification between weights of the module $I_{[L]}$ and points in $\mathbb{Z}\times\mathbb{Z}$ as follows:

$$(\lambda_{m,n,k}^{(1)},\lambda_{m,n,k}^{(2)}) \leftrightsquigarrow (2k,2(m+n)) \leftrightsquigarrow (k,n+m) \leftrightsquigarrow (\alpha,\beta).$$

Theorem 10. For each $(\alpha, \beta) \in \mathbb{Z} \times \mathbb{Z}$ the dimension of the weight space $(I_{[L]})_{(2(z+\alpha)-(x+y+1+\beta),2(x+y+1+\beta)-(z+\alpha))}$ is equal to the cardinality of the set

$$T_{(\alpha,\beta)} := \{ [L]_{t,\beta-t,\alpha} : t \in \mathbb{Z} \} \bigcap \mathcal{B}_{[L]}$$

Proof. It is sufficient to note that the vector associated with a tableaux $[L]_{m,n,k}$ has weight $(2(z+\alpha)-(x+y+1+\beta),2(x+y+1+\beta)-(z+\alpha))$ if and only if $m+n=\beta$ and $k=\alpha$.

Now we will describe explicitly bases and weight multiplicities of all irreducible $\mathfrak{sl}(3)$ -modules that admit a tableaux realization. To do that we have to consider all possible combinations of conditions defining non-isomorphic modules (some of these conditions define isomorphic modules in the sense of the Definition 4; for instance, a module defined by a tableau [L] satisfying the conditions $t_1 \in \mathbb{Z}^{\geq 0}$ is naturally isomorphic to the module defined by the tableau $\sigma([L])$ where $\sigma \in S_1 \times S_2 \times S_3$; in particular to a module defined by a tableau satisfying the conditions $t_2 \in \mathbb{Z}^{\geq 0}$).

First we consider the conditions that give infinite dimensional weight spaces.

Conditions	${\cal B}_{[L]}$
	$\{L_{m,n,k}: m, n, k \in \mathbb{Z}\}$
$t_2 \in \mathbb{Z}^{\geq 0}$	$\left\{ L_{m,n,k} : n \le t_2 \right\}$
$t_3 \in \mathbb{Z}^{\geq 0}$	$\{L_{m,n,k}: k \le m + t_3\}$
$t_1^- \in \mathbb{Z}^{<0}$	$\{L_{m,n,k}: m > t_1^-\}$
$t_3 \in \mathbb{Z}^{<0}$	$\{L_{m,n,k} : m < k - t_3\}$
$t_2, t_3 \in \mathbb{Z}^{\geq 0}$	$\{L_{m,n,k}: k-t_3 \le m; n \le t_2\}$
$t_1 \in \mathbb{Z}^{\geq 0}, t_3 \in \mathbb{Z}^{<0}$	$\{L_{m,n,k} : m < k - t_3; m \le t_1\}$
$t_2^-, t_3 \in \mathbb{Z}^{<0}$	$\{L_{m,n,k} : m < k - t_3; n > t_2^-\}$
$t_1 \in \mathbb{Z}^{\geq 0}, t_2^- \in \mathbb{Z}^{<0}$	$\{L_{m,n,k}: m \le t_1; n > t_2^-\}$
$t_3 \in \mathbb{Z}^{\geq 0}, t_1^- \in \mathbb{Z}^{<0}$	$\{L_{m,n,k}: m \ge k - t_3; m > t_1^-\}$
$t_2, t_3 \in \mathbb{Z}^{\geq 0}; t_1^- \in \mathbb{Z}^{< 0}$	$\{L_{m,n,k}: m \ge k - t_3; n \le t_2; m > t_1^-\}$
$t_1 \in \mathbb{Z}^{\geq 0}; t_2^-, t_3 \in \mathbb{Z}^{< 0}$	$\{L_{m,n,k} : m < k - t_3; n > t_2^-; m \le t_1\}$
$t_3 \in \mathbb{Z}^{\geq 0}, t_3^- \in \mathbb{Z}^{<0} *$	$\{L_{m,n,k}: n+t_3^- < k \le m+t_3\}$

In all other cases we have $\dim(V_{\left(\lambda^{(1)},\lambda^{(2)}\right)})<\infty$ for all weight space.

Conditions	${\cal B}_{[L]}$	Dimension of $V_{(\alpha,\beta)}$
$t_1, t_3 \in \mathbb{Z}^{\geq 0}$	$k - t_3 \le m \le t_1$	$\begin{cases} 0 & \text{if } \alpha > t_1 + t_3 \\ t_1 + t_3 - \alpha + 1, & \text{if } \alpha \le t_1 + t_3 \end{cases}$
$t_1, t_2 \in \mathbb{Z}^{\geq 0}$	$\begin{cases} n \le t_2; \\ m \le t_1 \end{cases}$	$\begin{cases} 0 & \text{if } \beta > t_1 + t_2 \\ t_1 + t_2 - \beta + 1, & \text{if } \beta \le t_1 + t_2 \end{cases}$
$t_1^-, t_3 \in \mathbb{Z}^{<0}$	$t_1^- < m < k - t_3$	$\begin{cases} 0 & \text{if } \alpha \le t_1^- + t_3 \\ \alpha - t_3 - t_1^ 1, & \text{if } \alpha > t_1^- + t_3 \end{cases}$
$t_1^-, t_2^- \in \mathbb{Z}^{<0}$	$\begin{cases} m > t_1^-; \\ n > t_2^- \end{cases}$	$\begin{cases} 0 & \text{if } \beta \le t_1^- + t_2^- \\ \beta - t_2^ t_1^ 1, & \text{if } \beta > t_1^- + t_2^- \end{cases}$
$t_1, t_2, t_3 \in \mathbb{Z}^{\geq 0}$	$\begin{cases} n \le t_2; \\ k - t_3 \le m \le t_1 \end{cases}$	$\begin{cases} 0 & \text{if } \beta > t_1 + t_2 \\ 0 & \text{if } \alpha > t_1 + t_3 \\ t_1 + t_2 - \beta + 1, & \text{if } \beta - \alpha \ge t_2 - t_3 \\ t_1 + t_3 - \alpha + 1, & \text{if } \beta - \alpha \le t_2 - t_3 \end{cases}$
$\begin{cases} t_1 \in \mathbb{Z}^{\geq 0}; \\ t_1^- \in \mathbb{Z}^{<0} \end{cases}$	$t_1^- < m \le t_1$	$t := t_1 - t_1^-$
$\begin{cases} t_3 \in \mathbb{Z}^{\geq 0}, \\ t_2^- \in \mathbb{Z}^{<0} \end{cases}$	$\begin{cases} m \ge k - t_3; \\ n > t_2^- \end{cases}$	$\begin{cases} 0 & \text{if } \beta - \alpha > t_2^ t_3 \\ \beta - \alpha - t_2^- + t_3, & \text{if } \beta - \alpha \le t_2^ t_3 \end{cases}$
$\begin{cases} t_2 \in \mathbb{Z}^{\geq 0}, \\ t_3 \in \mathbb{Z}^{< 0} \end{cases}$	$\begin{cases} m < k - t_3; \\ n \le t_2 \end{cases}$	$\begin{cases} 0 & \text{if } \beta - \alpha \ge t_2 - t_3 \\ \alpha - \beta + t_2 - t_3, & \text{if } \beta - \alpha < t_2 - t_3 \end{cases}$
$\begin{cases} t_3 \in \mathbb{Z}^{\geq 0}; \\ t_1^-, t_2^- \in \mathbb{Z}^{< 0} \end{cases}$	$\begin{cases} m \ge k - t_3; \\ n > t_2^-; \\ m > t_1^- \end{cases}$	$\begin{cases} 0 & \text{if } \beta \leq t_1^- + t_2^- + 1 \\ 0 & \text{if } \beta - \alpha \leq t_2^ t_3 \\ \beta - \alpha - t_2^- + t_3, & \text{if } \alpha \geq t_1^- + t_3 + 1 \\ \beta - t_1^ t_2^ 1, & \text{if } \alpha \leq t_1^- + t_3 + 1 \end{cases}$

Conditions	$\mathcal{B}_{[L]}$	Dimension of $V_{(\alpha,\beta)}$
$\begin{cases} t_2 \in \mathbb{Z}^{\geq 0}; \\ t_1^-, t_3 \in \mathbb{Z}^{<0} \end{cases}$	$\begin{cases} t_1^- < m < k - t_3; \\ n \le t_2 \end{cases}$	$\begin{cases} 0 & \text{if } \alpha \leq t_3 + t_1^- + 1 \\ 0 & \text{if } \beta - \alpha \geq t_2 - t_3 \\ \alpha - t_3 - t_1^ 1, & \text{if } \beta \leq t_1^- + t_2 + 1 \\ \alpha - \beta - t_3 + t_2, & \text{if } \beta \geq t_1^- + t_2 + 1 \end{cases}$
$t_1^-, t_2^-, t_3 \in \mathbb{Z}^{<0}$	$\begin{cases} t_1^- < m < k - t_3; \\ n > t_2^- \end{cases}$	$\begin{cases} 0 & \text{if } \alpha \leq t_3 + t_1^- \\ 0 & \text{if } \beta \leq t_1^- + t_2^- \\ \beta - t_2^ t_1^ 1, & \text{if } \beta - \alpha \leq t_2^ t_3 \\ \alpha - t_3 - t_1^ 1, & \text{if } \beta - \alpha \geq t_2^ t_3 \end{cases}$
$\begin{cases} t_2, t_3 \in \mathbb{Z}^{\geq 0}; \\ t_2^- \in \mathbb{Z}^{<0} \end{cases}$	$\begin{cases} m \ge k - t_3; \\ t_2^- < n \le t_2 \end{cases}$	$\begin{cases} 0 & \text{if } \beta - \alpha \le t_2^ t_3 \\ t := t_2 - t_2^-, & \text{if } \beta - \alpha \ge t_2 - t_3 \\ \beta - \alpha + t_3 - t_2^-, & \text{if } \beta - \alpha \le t_2 - t_3 \end{cases}$
$\begin{cases} t_1, t_2, t_3 \in \mathbb{Z}^{\geq 0}; \\ t_1^- \in \mathbb{Z}^{<0} \end{cases}$	$\begin{cases} n \le t_2; \\ t_1^- < m \le t_1; \\ k - t_3 \le m \end{cases}$	$\begin{cases} 0 & \text{if } \beta > t_1 + t_2 \\ 0 & \text{if } \alpha > t_1 + t_3 \\ t_1 + t_2 - \beta + 1, & \text{if } \beta - \alpha \geq t_2 - t_3 \land \\ \beta \geq t_2 + t_1^- + 1 \\ t_1 + t_3 - \alpha + 1, & \text{if } \beta - \alpha \leq t_2 - t_3 \land \\ \alpha \geq t_3 + t_1^- + 1 \\ t := t_1 - t_1^-, & \text{if } \alpha \leq t_3 + t_1^- + 1 \land \\ \beta \leq t_2 + t_1^- + 1 \end{cases}$
$\begin{cases} t_2 \in \mathbb{Z}^{\geq 0}; \\ t_2^-, t_3 \in \mathbb{Z}^{<0} \end{cases}$	$\begin{cases} m < k - t_3; \\ t_2^- < n \le t_2 \end{cases}$	$\begin{cases} 0 & \text{if } \beta - \alpha \ge t_2 - t_3 \\ t := t_2 - t_2^-, & \text{if } \beta - \alpha \le t_2^ t_3 \\ \alpha - \beta - t_3 + t_2, & \text{if } \beta - \alpha \ge t_2^ t_3 \end{cases}$
$\begin{cases} t_2 \in \mathbb{Z}^{\geq 0}; \\ t_2^-, t_1^- \in \mathbb{Z}^{< 0} \end{cases}$	$\begin{cases} m > t_1^-; \\ t_2^- < n \le t_2 \end{cases}$	$\begin{cases} 0 & \text{if } \beta \leq t_1^- + t_2^- + 1 \\ t := t_2 - t_2^-, & \text{if } \beta \geq t_2 + t_1^- + 1 \\ \beta - t_1^ t_2^ 1, & \text{if } \beta \leq t_2 + t_1^- + 1 \end{cases}$
$\begin{cases} t_1, t_3 \in \mathbb{Z}^{\geq 0}; \\ t_1^- \in \mathbb{Z}^{<0} \end{cases}$	$\begin{cases} m \ge k - t_3; \\ t_1^- < m \le t_1 \end{cases}$	$\begin{cases} \beta - t_1^ t_2^ 1, & \text{if } \beta \le t_2 + t_1^- + 1 \\ 0 & \text{if } \alpha > t_1 + t_3 \\ t := t_1 - t_1^-, & \text{if } \alpha \le t_1^- + t_3 + 1 \\ t_1 + t_3 - \alpha, & \text{if } \alpha \ge t_1^- + t_3 + 1 \end{cases}$
$\begin{cases} t_1, t_2 \in \mathbb{Z}^{\geq 0}; \\ t_1^- \in \mathbb{Z}^{<0} \end{cases}$	$\begin{cases} n \le t_2; \\ t_1^- < m \le t_1 \end{cases}$	$\begin{cases} 0 & \text{if } \beta > t_1 + t_2 \\ t := t_1 - t_1^-, & \text{if } \beta \le t_1^- + t_2 + 1 \\ t_1 + t_2 - \beta + 1, & \text{if } \beta \ge t_1^- + t_2 + 1 \end{cases}$
$\begin{cases} t_2 \in \mathbb{Z}^{\geq 0}; \\ t_2^-, t_3^- \in \mathbb{Z}^{< 0} \end{cases}$	$\begin{cases} n < k - t_3^-; \\ t_2^- < n \le t_2 \end{cases}$	$\begin{cases} 0 & \text{if } \alpha \leq t_{2}^{-} + t_{3}^{-} + 1 \\ t := t_{2} - t_{2}^{-}, & \text{if } \alpha \geq t_{2} + t_{3}^{-} + 1 \\ \alpha - t_{3}^{-} - t_{2}^{-} - 1, & \text{if } \alpha \leq t_{2} + t_{3}^{-} + 1 \end{cases}$
$\begin{cases} t_1, t_2 \in \mathbb{Z}^{\geq 0}; \\ t_3 \in \mathbb{Z}^{<0} \end{cases}$	$\begin{cases} m < k - t_3; \\ n \le t_2; \\ m \le t_1 \end{cases}$	$\begin{cases} 0 & \text{if } \beta - \alpha \ge t_2 - t_3 \\ 0 & \text{if } \beta > t_2 + t_1 \\ t_1 + t_2 - \beta + 1, & \text{if } \alpha \ge t_1 + t_3 + 1 \\ \alpha - \beta - t_3 + t_2, & \text{if } \alpha \le t_1 + t_3 + 1 \end{cases}$
$\begin{cases} t_1, t_3 \in \mathbb{Z}^{\geq 0}; \\ t_2^- \in \mathbb{Z}^{<0} \end{cases}$	$\begin{cases} k - t_3 \le m \le t_1; \\ n > t_2^- \end{cases}$	$\begin{cases} 0 & \text{if } \beta - \alpha \leq t_{2}^{-} - t_{3} \\ 0 & \text{if } \alpha > t_{3} + t_{1} \\ t_{1} + t_{3} - \alpha + 1, & \text{if } \beta \geq t_{1} + t_{2}^{-} + 1 \\ \beta - \alpha - t_{2}^{-} + t_{3}, & \text{if } \beta \leq t_{1} + t_{2}^{-} + 1 \end{cases}$

Conditions	$\mid \mathcal{B}_{[L]} \mid$	Dimension of $V_{(\alpha,\beta)}$
		$\int 0$ if $\alpha \le t_1^- + t_3 + 1$
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		if $\beta \leq t_1^- + t_2^- + 1$
		$t := t_2 - t_2^-, \text{if } \beta - \alpha \leq t_2^- + t_3 \wedge$
(4 c 77>0.	(t = < m < l , t .	$\beta > t_{-} + t_{-} + 1$
$\begin{cases} t_2 \in \mathbb{Z}^{\geq 0}; \\ t_2^-, t_1^-, t_3 \in \mathbb{Z}^{<0} \end{cases}$	$\begin{cases} t_1^- < m < k - t_3; \\ t_2^- < n \le t_2 \end{cases}$	$\begin{cases} \beta \geq t_2 + t_1^- + 1 \\ \alpha - \beta - t_3 + t_2, & \text{if } \beta - \alpha \leq t_2^- + 1 \land \end{cases}$
$t_2, t_1, t_3 \in \mathbb{Z}$		
		$\beta \ge t_2 + t_1^- + 1$ $\alpha - t_3 - t_1^ 1$, if $\beta - \alpha \le t_2^- + 1 \land$
		$\beta \le t_2 + t_1^- + 1 \beta - t_2^ t_1^ 1, \text{if } \beta - \alpha \ge t_2^- + t_3 \land$
		$\beta \le t_2 + t_1^- + 1$ $1 \text{if } \alpha - \beta < t_3^ t_1 + 1$
		$\begin{bmatrix} 0 & \text{if } \alpha - \beta < t_3^ t_1 + 1 \\ 0 & \text{if } \beta > t_2 + t_1 \end{bmatrix}$
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{cases} t_1, t_2 \in \mathbb{Z}^{\geq 0}. \end{cases}$	$m \leq t_1;$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{cases} t_1, t_2 \in \mathbb{Z}^{\geq 0}; \\ t_1^-, t_3^- \in \mathbb{Z}^{< 0} \end{cases}$	$\begin{cases} m \le t_1; \\ t_2^- < n \le t_2; \\ k \le m + t_3 \end{cases}$	$\begin{cases} t_1 + t_2 - \beta + 1, & \text{if } \beta > t_1^- + t_2 + 1 \land \end{cases}$
(1/3-	$k \leq m + t_3$	$\begin{cases} \alpha - \beta + t_1 - t_3^-, & \text{if } \alpha - \beta \le t_3^ t_1^- \land \\ \alpha \le t_3^- + t_2 + 1 \\ t_1 + t_2 - \beta + 1, & \text{if } \beta \ge t_1^- + t_2 + 1 \land \\ \alpha \ge t_2 + t_3^- + 1 \end{cases}$
		$\alpha \ge t_2 + t_3^- + 1$ $t := t_1 - t_1^-, \text{if } \beta \le t_1^- + t_2 + 1 \land$
		$\beta - \alpha \le t_1^ t_3^-$
		0 if $\alpha \le t_2^- + t_3^- + 1$
		$0 if \beta \le t_1^- + t_2^- + 1$
(=>0	$\begin{cases} t_1^- < m; \\ t_2^- < n \le t_2; \\ n < k - t_3^- \end{cases}$	$t := t_2 - t_2^-, \text{if } \alpha \ge t_2 + t_3^- + 1 \wedge$
$\begin{cases} t_2 \in \mathbb{Z}^{\leq 0}; \\ t_1 = t_2 = t_3 = t_3 \leq 0 \end{cases}$		$\beta \geq t_2 + t_1 + 1$
$\begin{bmatrix} t_2, t_1, t_3 \in \mathbb{Z}^{<0} \end{bmatrix}$		$\alpha - t_3 - t_2 - 1$, if $\beta - \alpha \ge t_1 - t_3 \land$
		$\begin{cases} t := t_2 - t_2^-, & \text{if } \alpha \ge t_2 + t_3^- + 1 \land \\ \beta \ge t_2 + t_1^- + 1 \\ \alpha - t_3^ t_2^ 1, & \text{if } \beta - \alpha \ge t_1^ t_3^- \land \\ \alpha \le t_2 + t_3^- + 1 \\ \beta - t_2^ t_1^ 1, & \text{if } \beta - \alpha \le t_1^ t_3^- \land \end{cases}$
		$\beta \leq t_2 + t_1^- + 1$
		$0 if \alpha > t_1 + t_3$
		$0 if \beta - \alpha < t_2^ t_3 + 1$
		0 if $\beta < t_1^- + t_2^-$
		$t := t_1 - t_1^-, \text{if } \beta \ge t_1 + t_2^ 1 \wedge$
$\int t_1, t_3 \in \mathbb{Z}^{\geq 0}$:	$\int t_1^- < m \le t_1;$	$\alpha \le t_3 + t_1^- + 1$
$\begin{cases} t_1, t_3 \in \mathbb{Z}^{\geq 0}; \\ t_1^-, t_2^- \in \mathbb{Z}^{<0} \end{cases}$	$\begin{cases} t_1^- < m \le t_1; \\ t_2^- < n; \\ k - t_3 \le m \end{cases}$	$\begin{cases} \beta - \alpha - t_2^- + t_3, & \text{if } \beta \le t_2^- + t_1 + 1 \land \end{cases}$
(1,12 =		$\begin{cases} \alpha \leq t_3 + t_1^- + 1 \\ \beta - \alpha - t_2^- + t_3, & \text{if } \beta \leq t_2^- + t_1 + 1 \land \\ \alpha > t_3 + t_1^- \\ \beta - t_2^ t_1^ 1, & \text{if } \beta \leq t_2^- + t_1 - 1 \land \end{cases}$
		$\beta - t_2 - t_1 - 1$, if $\beta \le t_2 + t_1 - 1$
		$\alpha \le t_3 + t_1^- + 1 t_1 + t_3 - \alpha + 1, \text{if } \beta \ge t_2^- + t_1 - 1 \land$
		$\begin{bmatrix} t_1 + t_3 - \alpha + 1, & \text{if } p \ge t_2 + t_1 - 1 \\ & \alpha > t_3 + t_1^- \end{bmatrix}$
$\begin{cases} t_2, t_3 \in \mathbb{Z}^{\geq 0}; \\ t_1^-, t_2^- \in \mathbb{Z}^{< 0} \end{cases}$		$\int_{0}^{\infty} 0$ if $\beta < t^{-} + t^{-} + 1$
	$\begin{cases} t_{1}^{-} < m; \\ t_{2}^{-} < n \le t_{2}; \\ k - t_{3} \le m \end{cases}$	$0 if \beta - \alpha \le t_2^ t_3$
		$t := t_2 - t_2^-, \text{if } \beta \ge t_2 + t_1^- + 1 \land$
		$\beta - \alpha \ge t_2 - t_3$
		$\beta - t_2^ t_1^ 1$, if $\beta \le t_2 + t_1^- + 1 \land$
		$\alpha \le t_3 + t_1^- + 1$
		$\beta - \alpha - t_3 - t_2$, if $\beta - \alpha \le t_2 - t_3 \land$
		$\alpha > t_3 + t_1^-$

Conditions	${\mathcal B}_{[L]}$	Dimension of $V_{(\alpha,\beta)}$
		0 if $\alpha \le t_3^- + t_2^- + 1$
		if $\beta - \alpha \le t_0^ t_3$
		if $\beta \le t_1^- + t_2^- + 1$
(4 c 77 > 0	$\int t_1^- < m;$	$\beta - \alpha - t_2^- + t_3$, if $2\alpha - \beta \ge t_3^- + t_3 + 1 \land$
$\begin{cases} t_3 \in \mathbb{Z}^{-1}; \\ t^- t^- t^- \in \mathbb{Z}^{<0} \end{cases}$	$\begin{cases} t_2^- < n; \end{cases}$	$\alpha \geq t_1^- + t_3 + 1$
$(\iota_1, \iota_2, \iota_3 \in \mathbb{Z})$	$n + t_3^- < k \le m + t_3$	$\beta - t_2^ t_1^ 1$, if $\alpha \le t_1^- + t_3 + 1 \land$
	-	$\beta - \alpha \le t_1^ t_3^-$
		$\begin{cases} 0 & \text{if } \beta \leq t_1^- + t_2^- + 1 \\ \beta - \alpha - t_2^- + t_3, & \text{if } 2\alpha - \beta \geq t_3^- + t_3 + 1 \land \\ \alpha \geq t_1^- + t_3 + 1 \\ \beta - t_2^ t_1^ 1, & \text{if } \alpha \leq t_1^- + t_3 + 1 \land \\ \beta - \alpha \leq t_1^ t_3^- \\ \alpha - t_3^ t_2^ 1, & \text{if } 2\alpha - \beta > t_3^- + t_3 \land \end{cases}$
		$\alpha > t_1 + t_3$
		$ \begin{cases} 0 & \text{if } \alpha > t_1 + t_3 \\ 0 & \text{otherwise} \end{cases} $
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	(m < t	$\begin{cases} \beta - \alpha + t_3 - t_2^-, & \text{if } \beta - \alpha \le t_2 - t_3 \land \\ \beta \le t_2^- + t_1 + 1 \\ t_1 + t_2 - \beta + 1, & \text{if } \beta \ge t_2^- + t_1 + 1 \land \\ \beta - \alpha \ge t_2 - t_3 \\ t_1 + t_3 - \alpha + 1, & \text{if } \beta \ge t_2^- + t_1 + 1 \land \\ \beta - \alpha \le t_2 - t_3 \\ t := t_2 - t_2^-, & \text{if } \beta \le t_2^- + t_1 + 1 \land \end{cases}$
$\begin{cases} t_1, t_2, t_3 \in \mathbb{Z}^{\geq 0}; \\ t_2^- \in \mathbb{Z}^{<0} \end{cases}$	$\begin{cases} m \le t_1; \\ t_2^- < n \le t_2; \\ k \le m + t_3 \end{cases}$	$\begin{cases} \beta \leq t_2 + t_1 + 1 \\ \beta \leq t_2 + t_1 + 1 \end{cases}$
$t_2^- \in \mathbb{Z}^{<0}$	$\left \begin{array}{c} t_2 < n \le t_2, \\ k < m + t_2 \end{array} \right $	$\begin{cases} 1 + t_2 - \beta + 1, & \text{if } \beta \ge t_2 + t_1 + 1 \\ \beta - \alpha > t_2 - t_2 \end{cases}$
	$(n \leq m + v_3)$	$\begin{vmatrix} t_1 + t_2 - \alpha + 1, & \text{if } \beta > t^- + t_1 + 1 \land \end{vmatrix}$
		$\beta - \alpha < t_2 - t_3$
		$t := t_2 - t_2^-, \text{if } \beta < t_2^- + t_1 + 1 \land$
		$\beta - \alpha \ge t_2 - t_3$
		$\beta - \alpha \ge t_2 - t_3$ $1 \qquad \text{if } \alpha - \beta < t_3^ t_1 + 1$
	$\begin{cases} m \le t_1; \\ t_2^- < n \le t_2; \\ k \le m + t_3 \end{cases}$	0 if $\alpha < t_2^- + t_3^- + 2$
		$t_1 + t_2 - \beta + 1$, if $\beta \ge t_2^- + t_1 + 1 \land$
$\begin{cases} t_1, t_2 \in \mathbb{Z} \geq 0. \end{cases}$		$\alpha \ge t_2 + t_3^- + 1$
$\begin{cases} t_1, t_2 \in \mathbb{Z}^{\geq 0}; \\ t_2^-, t_3^- \in \mathbb{Z}^{< 0} \end{cases}$	$\begin{cases} t_2^- < n \le t_2; \end{cases}$	$\alpha - t_2^ t_3^ 1$, if $\alpha \le t_2 + t_3^- + 1 \land$
(*2,*3 = 2	$\begin{cases} k \le m + t_3 \end{cases}$	$\beta \le t_1 + t_2^- + 1$
		$\alpha - \beta + t_1 - t_3^-$, if $\alpha \le t_2 + t_3^- + 1 \land$
		$\begin{cases} 0 & \text{if } \beta > t_2 + t_1 \\ 0 & \text{if } \alpha < t_2^- + t_3^- + 2 \\ t_1 + t_2 - \beta + 1, & \text{if } \beta \ge t_2^- + t_1 + 1 \land \\ \alpha \ge t_2 + t_3^- + 1 \\ \alpha - t_2^ t_3^ 1, & \text{if } \alpha \le t_2 + t_3^- + 1 \land \\ \beta \le t_1 + t_2^- + 1 \\ \alpha - \beta + t_1 - t_3^-, & \text{if } \alpha \le t_2 + t_3^- + 1 \land \\ \beta \ge t_1 + t_2^- + 1 \\ t := t_1 - t_1^-, & \text{if } \beta \le t_2^- + t_1 + 1 \land \end{cases}$
		$t := t_1 - t_1$, if $\beta \le t_2 + t_1 + 1 \land$
		$\alpha \ge t_2 + t_3^- + 1$ $0 if \alpha > t_1 + t_3$
		$\begin{bmatrix} 0 & \text{if } \alpha > t_1 + t_3 \\ 0 & \text{if } \beta - \alpha \ge t_1 - t_3^- \end{bmatrix}$
	$\begin{cases} n \le t_2; \\ n + t_3^- < k \le m + t_3; \end{cases}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{cases} t_1, t_2, t_3 \in \mathbb{Z}^{\geq 0}; \\ t_1^-, t_3^- \in \mathbb{Z}^{< 0} \end{cases}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\beta \leq t_1^- + t_2 + 1$
		$\alpha - \beta - t_3^- + t_1$ if $2\alpha - \beta \le t_3^- + t_3 + 1 \land$
		$\beta - \alpha \le t_1^ t_3^- \land$
	$t_1^- < m \le t_1$	$\alpha \ge t_3^- + t_2 + 1$
	$\begin{cases} n \le t_2; \\ n + t_3^- < k \le m + t_3; \\ t_1^- < m \le t_1 \end{cases}$	$t_1 + t_3 - \alpha - 1$ if $2\alpha - \beta \ge t_3^- + t_3 + 1 \land$
		$\alpha \ge t_3 + t_1^- + 1 \wedge$
		$\beta - \alpha \le t_2 - t_3$
		$\begin{array}{ c c c c c c } \hline & t_1 + t_2 - \beta - 1 & \text{if } \alpha - \beta \leq t_3 - t_2 \land \\ \hline & & \\ \hline & & \\ \hline & & \\ \end{array}$
		$\alpha \ge t_2 + t_3^- + 1 \land$
		$\beta \ge t_1^- + t_2 + 1$

And finally we have a description of the set of tableaux that define finite dimensional $\mathfrak{sl}(3)$ -modules. They have to satisfies the following conditions:

- Conditions: $t_1, t_2, t_3 \in \mathbb{Z}^{\geq 0}; t_1^-, t_2^-, t_3^- \in \mathbb{Z}^{< 0}$ $\mathcal{B}_{[L]}$: $\{[L]_{(m,n,k)}: t_2^- < n \leq t_2; n + t_3^- < k \leq m + t_3; t_1^- < m \leq t_1\}$
- Weight Multiplicities:

$$\begin{cases} 0 & \text{if } \alpha < t_3^- + t_2^- \wedge \ \beta - \alpha \ge t_1 - t_3^- \\ 0 & \text{if } \beta - \alpha < t_2^- - t_3 - 1 \wedge \ \alpha > t_1 + t_3 \\ 0 & \text{if } \beta \le t_1^- + t_2^- + 1 \\ t_1 - t_1^- & \text{if } \beta - \alpha \le t_1^- - t_3^- \wedge \alpha \le t_1^- + t_3 + 1 \\ t_2 - t_2^- & \text{if } \beta - \alpha \ge t_2 - t_3 \wedge \alpha \ge t_2 + t_3^- + 1 \end{cases}$$

$$\begin{cases} \alpha - \beta + t_1 - t_3^- & \text{if } 2\alpha - \beta \le t_3^- + t_3 + 1 \land \beta - \alpha \ge t_1^- - t_3^- \\ & \wedge \alpha \le t_2 + t_3^- + 1 \land \beta \ge t_1 + t_2^- + 1 \end{cases}$$

$$t_1 + t_3 - \alpha + 1 & \text{if } 2\alpha - \beta \ge t_3^- + t_3 + 1 \land \alpha \ge t_3 + t_1^- + 1$$

$$\wedge \alpha - \beta \ge t_3 - t_2 \land \beta \le t_1^- + t_2 + 1$$

$$t_1 + t_2 - \beta + 1 & \text{if } \alpha \ge t_3^- + t_2 + 1 \land \beta - \alpha \ge t_2 - t_3$$

$$\wedge \beta \ge t_2 + t_1^- + 1 \land \beta \ge t_1 + t_2^- + 1$$

$$\alpha - t_3^- - t_2^- - 1 & \text{if } 2\alpha - \beta \le t_3^- + t_3 + 1 \land \alpha \le t_2 + t_3^- + 1$$

$$\wedge \beta - \alpha \ge t_1^- - t_3^- \land \beta \le t_1 + t_2^- + 1$$

$$\beta - \alpha + t_3 - t_2^- & \text{if } 2\alpha - \beta \ge t_3 + t_3^- + 1 \land \alpha \ge t_1^- + t_3 + 1$$

$$\wedge \alpha - \beta \ge t_3 - t_2 \land \beta \le t_1 + t_2^- + 1$$

$$\beta - t_1^- - t_2^- - 1 & \text{if } \beta - \alpha \le t_1^- - t_3^- \land \alpha \le t_1^- + t_3 + 1$$

$$\wedge \beta \ge t_2 + t_1^- + 1 \land \beta \le t_1 + t_2^- + 1$$

As an immediate consequence of the above description we can characterize irreducible modules in GTT with 1-dimensional weight spaces and those with bounded multiplicities.

Definition 8. A weight \mathfrak{g} -module V is called **pointed** if $dim(V_{\lambda}) = 1$ for all weight λ such that $dim(V_{\lambda}) \neq 0$.

Corollary 11. The irreducible $\mathfrak{sl}(3)$ -module generated by [L] is a pointed module if and only if [L] satisfies the following conditions:

$$t_1 = 0$$
, $t_1^- = -1$ or $t_2 = 0$, $t_2^- = -1$.

Definition 9. A weight module V is **bounded** if there exist $N \in \mathbb{N}$ such that $dim(V_{\lambda}) \leq N$ for all weight λ .

Corollary 12. The irreducible $\mathfrak{sl}(3)$ -module generated by [L] is bounded if and only if [L] satisfies the following conditions:

$$t_1 \in \mathbb{Z}^{\geq 0}; \quad t_1^- \in \mathbb{Z}^{<0} \quad \text{or } t_2 \in \mathbb{Z}^{\geq 0}, \ t_2^- \in \mathbb{Z}^{<0}$$

Example 2. Let be $c=-3-\pi-\sqrt{2}$, the following tableau satisfies $t_1=0, t_2=0, t_3=0; t_1^-, t_2^-, t_3^- \notin \mathbb{Z}$. Hence we are in the case $t_1, t_2, t_3 \in \mathbb{Z}^{\geq 0}$.

- 1) **Basis**: $\{L_{(m,n,k)}: k \le m \le 0; n \le 0\}$
- 2) Weights Multiplicities:

4. On tableaux realizations of highest weight $\mathfrak{sl}(3)$ -modules

In this section we will discuss the tableaux realizations of highest weight $\mathfrak{sl}(3)$ -modules with respect to different choices of GT-subalgebras [6].

i) Let $\Gamma_1 := \Gamma$ the standard GT-subalgebra obtained by the inclusions with respect to the left upper corner. The formulas in this case are given by:

$$\begin{cases} h_1([L]) = (2z - (x+y+1))[L] \\ h_2([L]) = (2(x+y+1) - z)[L] \\ E_{12}([L]) = -(x-z)(y-z)[L+\delta^{11}] \\ E_{23}([L]) = \frac{(a-x)(b-x)(c-x)}{(x-y)}[L+\delta^{21}] - \frac{(a-y)(b-y)(c-y)}{(x-y)}[L+\delta^{22}] \end{cases}$$

Then, looking at the formulas, the only possible tableau that can represent a highest weight vector is:

where c = -3 - x - y and the highest weight is $\lambda = (x - y - 1, x + 2y + 2)$. But in this case we can not represent highest weights with tableau where $t_0([T]) = 0$ (i.e. $\lambda = (-1, 3x + 2), x \in \mathbb{C}$). then we obtain highest weight tableau for $\lambda \neq (-1, h_2)$ with $h_2 \in \mathbb{C}$.

ii) Let Γ_2 the GT-subalgebra induced by the inclusions with respect to the lower right corner. The GT formulas in this case are given by:

$$\begin{cases} h_2([L]) = (2z - (x+y+1))[L] \\ h_1([L]) = (2(x+y+1) - z)[L] \\ E_{23}([L]) = -(x-z)(y-z)[L+\delta^{11}] \\ E_{12}([L]) = \frac{(a-x)(b-x)(c-x)}{(x-y)}[L+\delta^{21}] - \frac{(a-y)(b-y)(c-y)}{(x-y)}[L+\delta^{22}] \end{cases}$$

Then, if c := -3 - x - y; the possible highest weights vectors are represented by the following tableau:

with highest weight $\lambda = (x+2y+2, x-y-1)$; (as in the case of Γ_1 we have the restriction $x \neq y$; i.e. $\lambda \neq (3x+2,-1)$; $x \in \mathbb{C}$); then we obtain highest weight tableaux realization for $\lambda \neq (h_1,-1)$ with $h_1 \in \mathbb{C}$.

iii) Let Γ_3 the GT-subalgebra induced by the subalgebras inclusions:

$$\langle E_{31} \rangle \subset \langle E_{11}, E_{13}, E_{31}, E_{33} \rangle \subset \mathfrak{gl}(3)$$

The GT-formulas in this case are given by:

$$\begin{cases} h_1([L]) = [(2(x+y+1)-z) + (2z - (x+y+1))][L] \\ h_2([L]) = -(2z - (x+y+1))[L] \\ E_{12}([L]) = [L - \delta^{11}] \\ E_{23}([L]) = \frac{(a-x)(b-x)(c-x)(y-z)}{(x-y)}[L + \delta^{21} + \delta^{11}] - \\ -\frac{(a-y)(b-y)(c-y)(x-z)}{(x-y)}[L + \delta^{22} + \delta^{11}] \end{cases}$$

Then, the possible highest weights vectors are represented by the following tableau:

where $\tilde{c} = -2 - x - z$ and the highest weight is $\lambda = (x + 2z, x - z)$. Then we obtain highest weight tableaux for $x \neq z - 1$ that means $\lambda \neq (3z - 1, -1)$ with $z \in \mathbb{C}$. Then, with Γ_3 we obtain tableaux realizations of highest weight modules such that the highest weight satisfies $\lambda \neq (h_1, -1)$ with $h_1 \in \mathbb{C}$.

Proposition 13. If $\lambda \neq (-1, -1)$; the irreducible highest weight $\mathfrak{sl}(3)$ -module with highest weight λ admits a tableaux realization with respect to some GT-subalgebra.

5. Harish Chandra $\mathfrak{sl}(3)$ -modules in GTT

Let \mathcal{B} a Chevalley basis for $\mathfrak{sl}(3)$ given by:

$$X_{\alpha} := E_{12} \qquad Y_{\alpha} := E_{21} \qquad H_{\alpha} := E_{11} - H_{22} \qquad X_{\alpha+\beta} := E_{13}$$

$$X_{\beta} := E_{23} \qquad Y_{\beta} := E_{32} \qquad H_{\beta} := E_{22} - E_{33} \qquad Y_{\alpha+\beta} := E_{31}$$
 and set $\tilde{\mathfrak{g}}$ the Lie subalgebra $\langle X_{\alpha}, Y_{\alpha}, H_{\alpha} \rangle \cong \mathfrak{sl}(2)$.

Definition 10. An $\mathfrak{sl}(3)$ -module V is called **left (respectively right)** Harish-Chandra module if can be expressed as a sum of lowest weight (respectively highest weight) $\mathfrak{sl}(2)$ -modules.

Definition 11. An $\mathfrak{sl}(3)$ -module V is called **Harish-Chandra module** if can be expressed as a sum of finite dimensional $\mathfrak{sl}(2)$ -modules. Equivalently; if the module is a left and right Harish-Chandra module.

Lemma 14. Let V be an irreducible $\mathfrak{sl}(3)$ -module and $0 \neq v \in V$. If there exists $n \in \mathbb{Z}^{\geq 0}$ (respectively $n \in \mathbb{Z}^{< 0}$) such that $X_{\alpha}^n v = 0$ then, for all $u \in V$ there exist $r = r(u) \in \mathbb{Z}^{\geq 0}$ (respectively $r \in \mathbb{Z}^{< 0}$) such that $X_{\alpha}^r u = 0$.

Proof:. As V is irreducible, each $u \in V$ can be expressed as $u = \sum_k a_k v$ where a_k are elements of $U(\mathfrak{sl}(3))$. Then the statement of lemma is a consequence of the fact that for all $N \in \mathbb{Z}$ we have:

$$\begin{split} X_{\alpha}^{N}X_{\beta} &= NX_{\alpha+\beta}X_{\alpha}^{N-1} + X_{\beta}X_{\alpha}^{N}, & X_{\alpha}^{N}H_{\alpha} = H_{\alpha}X_{\alpha}^{N} - 2NX_{\alpha}^{N} \\ X_{\alpha}^{N}Y_{\alpha+\beta} &= Y_{\alpha+\beta}X_{\alpha}^{N} - 2Y_{\beta}X_{\alpha}^{N-1}, & X_{\alpha}^{N}H_{\beta} = H_{\beta}X_{\alpha}^{N} + NX_{\alpha}^{N} \\ X_{\alpha}Y_{\alpha} &= Y_{\alpha}X_{\alpha}^{N} + NH_{\alpha}X_{\alpha}^{N-1} - 2NX_{\alpha}^{N-1}. & \Box \end{split}$$

Corollary 15. An irreducible $\mathfrak{sl}(3)$ -module V is a Harish-Chandra module (with respect to $\tilde{\mathfrak{g}}$) if and only if there exist $0 \neq v \in V$ and $n \in \mathbb{N}$ such that $X_{\alpha}^{\pm n}v = 0$.

As a consequence of the description of bases for irreducible $\mathfrak{sl}(3)$ -modules in GTT we have the following corollaries:

Corollary 16. The irreducible $\mathfrak{sl}(3)$ -module generated by [L] is a left (respectively right) Harish-Chandra module (with respect to $\tilde{\mathfrak{g}}$) if and only if

$$t_3 \in \mathbb{Z}^{\geq 0}$$
 (respectively $t_3^- \in \mathbb{Z}^{<0}$)

Corollary 17. The irreducible $\mathfrak{sl}(3)$ -module generated by [L] is a Harish-Chandra module (with respect to $\tilde{\mathfrak{g}}$) if and only if at least the conditions holds:

$$t_3 \in \mathbb{Z}^{\geq 0}, \qquad t_3^- \in \mathbb{Z}^{<0}$$

Acknowledgments

I would like to thank Vyacheslav Futorny for stimulating discussions and patience during the preparation of this paper. Also I would like thank Volodymyr Mazorchuk for his attention and helpful suggestions.

References

- [1] Drozd Yu.A., Ovsienko S.A., Futorny V.M., Irreducible Weighted \$1(3)-Modules. Funksionalnyi Analiz i Ego Prilozheniya, 23 (1989), 57-58.
- [2] Drozd Yu.A., Ovsienko S.A., Futorny V.M., Gelfand-Tsetlin Modules Over Lie Algebra \$\mathbf{s}(3)\$. Contemporary Mathematics, 131 (1992) 23-29.
- [3] Drozd Yu.A., Ovsienko S.A., Futorny V.M., Harish-Chandra subalgebras and Gelfand-Zetlin modules, Math. and Phys. Sci., 424 (1994), 72-89.
- [4] S. Fernando; Lie Algebra Modules with finite dimensional weight spaces I. Trans. Amer. Math. Soc. 322 (1990), 757-781.
- [5] V. Futorny; A Generalization of Verma Modules, and Irreducible Representations of the Lie Algebra $\mathfrak{sl}(3)$. Ukrainskii Matematicheskii Zhurnal, Vol. 38, No. 4, pp. 492-497, July-August, 1986.
- [6] V. Futorny, S. Ovsienko, M. Saorin; Gelfand-Tsetlin categories. Contemporary Mathematics - American Mathematical Society (Print) 537 (2011), 193-203,
- [7] I.M Gelfand, M.L. Tsetlin, Finite-dimensional representations of the group of unimodular matrices, Doklady Akad. Nauk SSSR (N.s.), 71 (1950), 825-828.
- [8] V. Mazorchuk; Lectures on sl(2)-modules. Imperial College Press, London, 2010.
- [9] V. Mazorchuk; Tableaux Realization of Generalized Verma Modules. Can. J. Math. Vol. 50(4) (1998), 816-828.
- [10] V. Mazorchuk; On Categories Of Gelfand-Tsetlin Modules. Noncommutative Structures in Mathematics and Physics, (2001), 299-307.
- [11] A.I. Molev; Gelfand-Tsetlin Bases for Classical Lie Algebras. Handbook of Algebra", Vol. 4, (M. Hazewinkel, Ed.), Elsevier, 2006, pp. 109-170.

CONTACT INFORMATION

L. E. Ramirez

Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, Brazil *E-Mail:* luisenrique317@gmail.com

Received by the editors: 14.02.2012 and in final form 14.02.2012.