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ABSTRACT. In this paper we present an explicit description of
all irreducible s[(3)-modules which admit a Gelfand-Tsetlin tableaux
realization with respect to the standard Gelfand-Tsetlin subalgebra.

Introduction

In the present paper we will describe irreducible s[(3)-modules in a
certain full subcategory of the category of Gelfand-Tsetlin modules (we
will abbreviate Gelfand-Tsetlin by GT); namely the category GTT of
GT-modules that admit a tableaux realization with respect to a GT-
subalgebra [9]. This description provides a realization similar to the s[(2)
case (in the latter it is always possible to choose a basis of eigenvectors
with respect to a Cartan subalgebra and write explicit formulas for the
action of the generators of s((2)).

Following [9]; we say that an sl(n)-module V admits a tableaux
realization with respect to a GT-subalgebra I' provided V' decomposes as
V = @¢er+ Ve where

Ve :={v €V :3k € Nsuch that (t — &(t)) v =0Vt € T},
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dim(Ve) < 1 for all £ € I'* and the action of the generators of sl(n) is
given by the GT-formulas ([7], [11]). It was shown in [2] that in s[(3),
for any irreducible GT-module V', dim(Ve) < 2 for all £ € I'*. Moreover,
there are explicit examples of GT-modules with dim(Ve) = 2 for some
& € Supp(V'). Hence GTT is a proper subcategory of GT.

In sections 1 and 2 we give the definitions and notations that we will
use throughout the paper. The section 3 is devoted to the description of
a basis for the irreducible sl(3)-modules in GTT which is the main result
of the paper. As a direct consequence of this description it is possible to
give simple conditions for a tableau such that the associated irreducible
module has bounded weight multiplicities or 1-dimensional weight spaces.
In section 4 we use the results of section 3 to answer when a highest
weight s[(3)-module admits a tableaux realization (with respect to some
GT-subalgebra). Finally, in the section 5 we give a characterization of the
irreducible sl(3)-modules in GTT which are Harish-Chandra modules.

1. Gelfand-Tsetlin modules

Let n € N fixed; for k € {1,2,...,n} denotes by gi := gl(k); Uy :=
U(gg) the universal enveloping algebra of g and Zj := Z(gy) the center
of gg; let also g := g, and U := U(g).

If {E;;} denotes the canonical basis of g, we have a natural identi-
fication between g; and the subalgebra of g generated by the matrices
{Eij}ij=1, k; i-e. consider g; as a subalgebra of g;41 with respect to the
upper left corner embedding.

fa11 | a2 | a3 | | a1n |
] | | |
a1 azgy | a | | azn
| | |
aszi a32 a33 | \ a3n
o |
|
. ]
LOnl (n2 an3 e Gnn
The chain of inclusions: g; C go C -+ C g, = ¢ induces a chain of

inclusions of the corresponding enveloping algebras.
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Definition 1. Let I" the subalgebra of U generated by {Z : k = 1,...,n};
this subalgebra is called standard Gelfand-Tsetlin subalgebra of U
[3].

Remark 1. 7, is a polynomial algebra in m variables {c,,x : k =
1,2,...,m},

Cmk = Z EiligE’ig’ig te Eikil
(il7i27"'7ik)6{17"'7m}k

and the algebra I is a maximal commutative polynomial subalgebra of
U(g) in w variables {¢;; : 1 < j <i <n}.

Definition 2. Let M be a g-module; x : I' = C a homomorphism and
M, = {v &€ M : 3k € N such that (g — x(¢9))"v =0 VgeT}.

The module M is called Gelfand-Tsetlin module (respect to I') if
M = @, ecr+ My and dim(M,) < oo for all x € I'* [3].

Definition 3. An array of rows with complex entries {l;; : 1 < j <7 <mn}
as follows:

)\nl )\n2 n,n—1| )\nn
n—1
>\n 1,1 >‘n—1
Aot || A22
A11

is called Gelfand-Tsetlin tableau. A Gelfand-Tsetlin tableau is called
standard if

i — N1 € Z2° and My_1;—Mpiv1 €270, foralll <i<k<n-—1.
In the finite dimensional case we have the following classical result [7]:

Theorem 1. If L(\) is a finite dimensional irreducible representation
of gl(n) of highest weight A = (A1,...,\,), there exist a bases {{|1} of
L(\) parameterized by all standard tableaux [L] with top row A,; =
ALy ..oy Ann = A and the gl(n) generators acts by the formulas:

k k+1 lk’
i

By kr1(§n)) = Z 7
i=1 j;ﬁz( ki —

lk+1,5)
l )] )£[L+§ki]a
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LI | (/)
Eypr11:&rn) = ) ( = d
= ; TG 2i(lki — L)

)&(L—s%1)s

k k-1
Ere(€r) = O Mi — D M—1.0€1)5
1=1 =1

Where lj; = Ag; — i+ 1, [L 4 6] is the tableau obtained by [L] adding
+1 to the ki position of [L]; and if [L] is not standard, the vector £ il
would be zero. Moreover, the action of the generators of I' in the basis

elements is given by:

cij(€ry) = O+ JJ(1 - !

The formulas of the previous theorem are called Gelfand-Tsetlin
formulas for gl(n).

2. Gelfand-Tsetlin formulas for s[(3)

Remark 2. From now on we will prefer to use tableaux with entries l;;
instead of \;; because the formulas are symmetric with respect to the
l;;’s in the following sense. Let R; denote the i-th row of the tableaux
[L] and S; the i-th symmetric group. We have a natural action of the
group Sp x Sy x --- x Sy, on the set of GT-tableaux (with entries [;;):
(01,...,00)([L]) is the tableau with the i-th row o;(R;), fori =1,2,... n.

Definition 4. The tableaux [L]; and [L]y are equivalent if there exist
(01,...,04) such that (o1,...,0,)([L]1) = [L]2 and we write in this case
[L]1 = [L]a.

Remark 3. If we want to recover the tableaux with coefficients \;; we
just need to remember the relations lx; = A\p; — ¢ + 1.

In the particular case of gl(3), let a,b,c,z,y,z € C fixed complex
numbers; from now on we will use [L] to denote the fixed tableau;

a b C

[L):= x ||y
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Then, the GT-formulas for the generators of gl(3) are:

En([L]) = z[L] En([L) = —(x — 2)(y — 2)[L + 1]
Ep([L]) = (x+y+1-2)[L] Ea([L]) = [L — 6"]

Ess([L])) = (a+b+c+2—z—y)[L]

Eay((L]) = EA(L - 6% - EZ L - 62

Eps([L]) = (e=2=nie=n) . g21) _ leilboullemny, 4 522,

As we want to restrict our attention to s[(3), we have to consider just
the tableaux such that E11([L]) + Ea2([L]) + Es3([L]) = 0 that implies
a+ b+ c+ 3 = 0; then the GT-formulas for the generators of s((3) are
given by:

hi([L]) = (2z — (z +y + 1))[L]
ho([L]) = 2z +y + 1) — 2)[L]
Bia([L]) = —(z — 2)(y — 2)[L + §"]
Exn([L]) = [L —6"]
GT-formulas: { Fs((L]) = =L — 62! — (=F(L — 627
Eos([L]) = (@ —z)(b—x)(c—=) L+ 621]
(z —y)
_ (a— y)((;) - z;(c —y) L+ 522]

Now we introduce some notation that will help us to simplify the
desired description.

Notation 1. Let

l31 || 32 || I33

[T)= l21 l2o

be an arbitrary tableau, Bi([T]) := {l31 — l21,l32 — l21,l33 — l21} and
Bo([T]) := {ls1—122,l32—122, 33— 122 }. We consider the following functions:

° to([T]) = lo1 — l99; tg([T]) = lo1 — l11; tg([T]) = log — 11
o t([T)) = min{{By([T]) N Z>°} U {+oc}}; i = 1,2
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o 7 (|T]) := max{{B:([T]) N Z<°} U {—oc}}; i = 1,2.

7

In the cases that ¢;([T]) = +oo or t; ([T]) = —oo for some i = 1,2, we
will write t;([T']) ¢ Z or t; ([T]) ¢ Z respectively.

From now on in order to simplify the notation we will write tg, t1, to,
ty, ty, t3, ty instead to to([L]), t1([L]), t2([L]), t1 ([L]), 5 ([L]), t3([L]),
t5 ([L]), where [L] is the fixed tableau as before.

3. Description of irreducible GTT sl(3)-modules

Given a tableau [L], we can look at the set of all tableaux that can be
obtained with non-zero coefficients from [L] using the GT-formulas. It is
natural to ask what are the possible tableaux [L] that we can consider in
order to obtain an sl(3)-module structure on the vector space generated
by this set of tableaux.

The only problem (if we apply the GT-formulas) is a possibility of
zero denominators. Thus we have to restrict our attention to the lattice
of tableaux of [L]

Latt([L]) := {[L] : [L] is obtained from [L]
using GT-formulas and to([L]) # 0}.

Here to obtain [L] from [L] using the GT-formulas means that there
exist X € U(sl(3)) such that [L] appear with non-zero coefficient in
X(1)).

The following result from [3] implies the existence of some GT-modules
called generic Gelfand-Tsetlin modules.

Theorem 2. If tg,t1,t2,t1 , 5 ,t3,t5 ¢ Z then, the C-vector space V|

generated by the set of vectors {{;) : [L] € Latt([L])} defines an irre-
ducible sl(3)-module with the action of sl(3) given by the GT-formulas.

Corollary 3. If tg ¢ Z then, the C-vector space V|;) generated by the

set of vectors {¢z) : [L] € Latt([L])} has a structure of GT sl(3)-module;
where the action of s((3) is given by the GT-formulas.

Definition 5. We say that an sl(3)-module V' admits a tableaux realiza-
tion with respect to a GT-subalgebra I' provided that V' is a GT-module
(with respect to I'), dim(Ve) < 1 for all £ € I'* and the action of the
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generators of s[(3) is given by the GT-formulas. Equivalently, a GT sl(3)-
module is said to have a tableaux realization if it is isomorphic to
Vi) for some tableau [T']. We say that a module is a GTT-module if it
admits a tableaux realization.

In this section we will describe explicitly bases of all irreducible s[(3)-
modules in GTT and then we will be able to calculate weight multiplicities
(with respect to the standard Cartan subalgebra of s((3)) of this modules
in terms of the values of the constants g, t1,t2,%] 15,13, 5.

By the GT-formulas, we have that Latt([L]) C {[L]nk : m,n,k € Z}
where the tableaux [L],, , 1 is defined as:

a b C

(L] ki= x+m| y+n

z+k

Then we can identify Latt([L]) with points of R? with integer coordi-
nates to describe a basis of the module V.
Let m,n, k € Z=°, applying the GT-formulas to [L] we see that:

1) [L + mé&?'] appears in the decomposition of EJ3[L] with coefficient

m—1 (a—z—i)b—2—i)(c—2—1)

(x—y+i)

=0

2) [L —md?!] appears in the decomposition of E§3[L] with coefficient

3) [L + nd??] appears in the decomposition of Ef[L] with coefficient

a—y—i)b—y—i)(c—x—1)
g) (x—y—1i)

4) [L — né*2] appears in the decomposition of Ef,[L] with coefficient

1:[ (y—2z-1)

(x—y+i)
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5) B ([L]) = [L — ko]
6) Efy([L]) =TT1i2g (@ — 2 —i)(y — 2 — i)[L + ko'

As an immediate consequence of the above observation we have the
following lemma:

Lemma 4. For i = 1,2, 3 denote by A; the conditions t; ¢ Z=° and by
A3 the condition t5 ¢ Z=°. Then the following statements hold:

1) [L+md*'] € Latt([L)) for all m € Z* if Ay and tq ¢ Z<°.

—_—

[ ]
2) [L —md?'] € Latt([L]) for all m € Z* if A3 and to ¢ Z>°.
3) [L — k'Y € Latt([L]) for all k € Z*.
4) [L + k6] € Latt([L]) for all k € ZT if A3 and Aj.
5) [L 4 ndé??] € Latt([L]) for all m € Z* if Ay and tq ¢ Z>°.
6) [L —né?2] € Latt([L]) for all m € Z* if A3 and to ¢ Z<0.

Now we will answer the following question: what conditions on the
entries of [L] guarantee that Latt([L]) = Z3 (i.e. when Latt([L]) is the
largest possible)?

Definition 6. Given m,n,k € Z, we say that the tableau [L],, ,, %, can
be obtained from [L] by the path r — s — ¢, with {r,s,t} = {1,2,3} if:
From [L] we can obtain [L](,, 0,0y if 7 = 1 (vespectively [L]( .0y if 7 = 2
and [L]g,) if 7 = 3); from [L] 0,0y we obtain [L](y, n0) if s = 2 or
[L](m,0,k) if s = 3 (respectively from [L] (g 0) we obtain [L]my, o) if s =1
or [L]onk) if s = 3 and from [L](g ) we obtain [L], o) if s =1 or
[L](0,n,k) if s = 2) and in the last step we obtain the tableau [L], k-

Example 1. [L]|7 _; 4 is obtained from [L] by the path 3 — 1 — 2 means:
from [L] we obtain the tableau [L] 0.4; with this tableau we obtain [L]7,0.4
and from this, we can obtain [L]7 _; 4.

Proposition 5. Latt([L]) = Z? if and only if
t1,to,t3,t3 ¢ 2705 to ¢ Z.
Proof:. (<) Let m,n,k € Z. Using lemma 4 in each step of the path

indicated below it is possible to obtain the tableau [L],, , . In each case
the path will depend of the ordered triple of signs of m, n, k as follows:

’ (+7+)+) ‘ (_7_)_) ‘ (+a_7+) ‘
3—=-2—=1; ifn>m 1—-2—=3; ifm>n
3—=1—=2; ifm>n 2—=>1—=3; ifn>m

3—1—2
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’ (+)+7_) ‘ (_)_7+) ‘ (+)_7_) ‘
1—-2—-3; ifm>n 1—-2—-3; ifm>n
2—=1—=23; ifn>m

1—+2—=3
2—=>1=23; ifn>m

’ <_7+7+) ‘ (_7+7_) ‘
(322211523

(=) Without loss of generality we can assume that some of these
constants are zero. Then we conclude:

1) If t; = 0 then it is not possible to obtain [L]; o from [L].
2) If to = 0 then [L]()’l,() ¢ Latt([L])

3) If t3 =0or tg = 0 then [L]07071 ¢ Latt([L]) or [L]0707,1 ¢ Latt([L])
respectively. O

Now we have enough information about Latt([L]) in order to describe
irreducible modules. For this we will use the following characterization.

The module V| is irreducible if and only if Latt([L]) = Latt([L]) for

all [L] € Latt([L]).

Theorem 6. Let [L] be such that Latt([L]) = Z*. Then V|, is irreducible
if and only if

t07t17t1_7t27t2_7t37t3_ ¢ Z.

Proof:. (<) Under the conditions it is possible to apply the GT-formulas
to any tableau in Latt([L]) and we never obtain zero coefficients. Then for
all [L] € Latt([L]) we have Latt([L]) = Z* which implies Vi, irreducible.

(=) Ift; € Z<0 (vespectively t; or t; € Z<%) then [L] ¢ Latt([L]-1,0,)
(respectively [L] ¢ Latt([L]o,—1,0) or [L] ¢ Latt([L]o,0,—1)). Hence Vip) can
not be irreducible. ]

Remark 4. Note that it is possible to obtain Latt([L]) = Z3 in the case
when some constants are negative integers, but not necessarily we obtain
an irreducible module.

Remark 5. To know a basis of the module generated by [L] it is enough
to know the values of the constants {to,?1,t] 2,15 ,t3,t5 }. For some
subset A of {tg,t1,t],t2,t5,t3,t5 }, the notation A C Z will means from
now on that A C Z and the complement of A in {to,t1,t] ,t2,t5, 13,15 }
has empty intersection with Z. In particular ¢;,ts € Z=° means that
{tOvt;7t53t3’t§}mZ = 0.
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Proposition 7. Let [L] be a fixed tableau as before. Denote by V|1 the
s[(3)-module generated by Latt([L]) using the GT-formulas. Then

1) If t; € 22°, Vi) is an irreducible module with bases parameterized
by Latt([L]) = {[L]mnk : m < t1}.

2) If ty € Z29, Vi) is an irreducible module with bases parameterized
by Latt([L]) = {[L]mnk : n < ta}.

3) If t3 € 729, Vi) is an irreducible module with bases parameterized
by Latt([L]) = {[Llmnk : k —m < t3}.

4) If t7 € Z<Y, the irreducible module that contains [L] can be obtain
as a quotient module of V|j; and the bases is parameterized by the
set of tableaux {[L]pm n k1 m >t }.

5) If t; € Z<Y, the irreducible module that contains [L] can be obtain
as a quotient module of V};; and the bases is parameterized by the
set of tableaux {[L]y, nx 1 > t5 }.

6) If t3 € Z<Y, the irreducible module that contains [L] can be obtain
as a quotient module of Vjj; and the bases is parameterized by the
set of tableaux {[L]ynk : k —m > t3}.

Proof. The cases 1, 2,3 are obvious from the GT-formulas and the irre-
ducibility is guaranteed by the Theorem 6. In each of the cases 4,5,6 we
can apply the GT-formulas and obtain in Latt([L]) a tableaux [L] that
satisfies #1([L]) € Z= (respectively t2([L]) € Z=° or t3([L]) € Z=). Then
the irreducible module that contains [L] is isomorphic to the quotient
module Vv[L]/Vv[Z] . L]
Corollary 8. Using Proposition 7 we can characterize the set of tableaux
that parameterizes a basis of the irreducible module that contains [L] as

follows:

) ]

) For ty € Z2% {[Llmn :
3) For t3 € Z2% {[Llmn.k
4) For t7 € Z=% {[L]mny : t

)

)

] 1 ([L]
For t; € Z<Y% {[Llmmnk : t3 (Llmnk) € Z<°}.
For t3 € Z=% {[L]mnp : t5 (L]
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Corollary 9. If A denotes the set {t1,t2,t],t5 13,15 }, [L] satisfies the
conditions A1 := AN Z=° and Ay := AN Z<° and those conditions implies
to # 0; then, a base for the irreducible module that contains [L] can be
parameterized by:

{[Lmmk : Ai([Lmnk) € Z7° and As([L]mni) € Z<°}

Definition 7. For each tableau [T] satisfying the conditions of corollary
9 we will denote by Ijp) the irreducible s[(3)-module generated by [T]
with the basis parameterized by the set of tableaux described as before.
This basis we will be denote by Bip).

We can take advantage of knowing these bases to calculate the weights
dimensions of modules with tableaux realization.

If we want to know the action of h; and hs in the module [ ) it is
enough to describe the action of h; and hs in tableaux of type [L]y, n k-

o hi([Llpmnk) =Q2E=+Ek)—(z+y+1+n+m))Llnnk
o ha([Llmnk) = 2@ +y+1+n+m)— (24 k) [Llmnk

Set /\S)nk =2(z+k)—(x+y+14+n+m) and )\fi)nk =2(x+y+1+
n+m) — (z+ k). Since z,y, z are fixed, we have a natural identification
between weights of the module Ij7; and points in Z x Z as follows:

( A @)

m,n,k’ “m,n.k

) e (2k,2(m 4+ n)) e (k,n+m) e (o, B).

Theorem 10. For each («, ) € Z x Z the dimension of the weight space
(112) (2(2+0)— (2-+y+148) 2(z-+y+148)— (=4<)) 15 equal to the cardinality of the

set
T(Oéﬂ) = {[L]t,ﬁ—t,oc 1t € Z} ﬂB[L]

Proof. 1t is sufficient to note that the vector associated with a tableaux
[L]mnk has weight (2(z+a) = (z+y+14+3),2(x +y+1+5) — (2 + @)
if and only if m+n = 3 and k = . O

Now we will describe explicitly bases and weight multiplicities of all
irreducible s[(3)-modules that admit a tableaux realization. To do that
we have to consider all possible combinations of conditions defining non-
isomorphic modules (some of these conditions define isomorphic modules
in the sense of the Definition 4; for instance, a module defined by a
tableau [L] satisfying the conditions ¢; € Z=Z" is naturally isomorphic
to the module defined by the tableau o([L]) where o € S} x Sy x Ss;
in particular to a module defined by a tableau satisfying the conditions
to € ZZO).

First we consider the conditions that give infinite dimensional weight
spaces.
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Conditions ‘ By
{Lynk:m,nk e}
to € 7=0 {Lm,n,k n < tg}
ts € 7=0 {me’k k<m+ tg}
t; €2<° {Lpng:m>t]}
ts € 7<0 {Lm,n,k tm < k— tg}
to, t3 € 720 {Lpni:k—t3s <m;n <t}
t1 € ZZO’tB EVA {Lmﬂ%k m < k—t3;m< tl}
ty,t3 € <Y {Lpng:m<k—tgn>t;}
ty € 229 t; € <Y {Lpng:m<ti;n>t;}
t3€ 220t7 € 20 {Lynng:m>k—ts;m >t}
to,t3 € 2295t € Z°0 | {Lipng :m >k —tg;n <tg;m >t}
t1 € 220%t5 ,t3 € Z<0 | {Lyppi :m <k —tgn>ty;m <t}
t3€220t; € Z<0 x | {Lipng:n+t; <k<m+ts}

In all other cases we have dim(VO\(n,A(z)))

< oo for all weight space.

Conditions [ By [ Dimension of V(4 5) ]
if ti+t
t1,t3 € 220 kE—t;<m<t o>t +13
t1+t3—a+1 if a <t +ts
t tzEZZO n < to; 0 if B>t +ta
’ m <t ti+to—B+1, fB<ti+t2
0 ifa<t; +t¢
t7,t3 € Z<0 ty <m<k—t _ fost +is
—t3—t1—1, 1f01>t1 + i3
t7,t; € 2<0 m>ty A<ty +ty
1272 — — — . — —
n>ty ﬁ—t2 —ty 1, if B>t +1;
0 it 3>t +t2
b to.ta € 720 n < to; if a >t +t3
bi s k—ts<m<t t1+t275+1 if —a>ty—t3
t1+ts—a+1, iff—a<ts—1t3
t1 € 229,
{1—€€Z<d ty <m<t ti=ty —t]
1
tz € 729, m >k —ts3; 0 if B—a>t, —ts
ty €70 n>ty B—a—ty +t3, iff—a<t, —t3
t2€Z>0, m < k — ts; 0 if f—a>ty—t3
ty € Z<0 n <ty a—B+ty—ts, iff—a<ty—ts
0 if <t; +t, +1
>0 mZk*ts, lﬁ_ 1+72+
t3 € Z=°; s 0 1fﬂ—a§t2—t3
n ; . _
t] ty €2<° >t2, 57044 +t3, ifa>t +t3+1
m=th 8- —1, ifa<t; +ts+1
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[ Conditions

Bii)

Dimension of V(, 3)

to € 229;
]t € Z<0

t, <m < k—ts;
n < tg

0
0
a—t3—t; —1,
a—f —t3+ta,

ifa<ts+t; +1
if f—a>ty—ts
it <ty +ta+1
if B>t 4 ta+ 1

.ty ts € 2<0

t, <m < k—ts;
n >ty

0
0
B—ty —t] —1,
a—t3—t; —1,

ifa<ts+t;
it <t +ty
ifﬁ—agt;—tg
if—a>t, —t3

t2,13 € 720,
t; €Z<0

m >k — t3;
t;<n§t2

0
ti=ty—t5,
B—a+ts—t,,

ifﬁ—agt;—tg
if B—a>ty—ts
if f—a<ty—ts

t1,to,ts € Z20;
ty €20

n < t;
t;<m§t1;
k—t3<m

0
0
ti4ta—B+1,

t1+t3 —a+1,

if B>t +t2

if > t] +t3

if 8—a >ty —1t3A
B>ta+t] +1
if B—a <ty —tzN
aztg-i-tf-i-l

t:=t17t;, ifOzStg+tI+1/\
B<ta+t +1
0 ifB—a>to—t
ty € 720, m <k — ts; B iff—aztr—ts
_ <0 ti=1ty —1,, ifB—a<t, —t3
ty. t3 €L ty; <n <ty ] 2
a—B—t3+te, ff-—a>ty —t3
0 ifB <t +t; +1
to € Z29; m>t]; B %B_ 1+E+
_ <0 _ ti=1ty—1,, ifg>ta+t; +1
ty,ty €L ty; <n<to 2 ) b
B—t] —ty —1, iff<ta+t] +1
0 if o>t +t
bty € 220, m 2 ks timty — 4T %fa<t17—:—tg+1
= — 1 4
t7 € Z<0 t; <m<t o Tersh s
ty +t3—a, fa>t] +tz3+1
0 if t1+t
t1,tz € 2295 n < to; b by — i lfgztl::_: 41
=t —t,, i <
t] € Z<O t;<m<t 1T . LT
t1 +to — B+ 1, lf,BZtl +t2+1
0 ifa<t, +t; +1
to € 720, n<k—ty; - Hasty +13 +
_ <0 _ ti=13—1,, ifa>ty+ty +1
t27t3 €L tg <n <tz — _ . .
a—ty —ty, =1, fa<ta+ty +1
0 if B—a>ty—ts
<k —ts; =
t1,ty € 220, m<t 3 0 i8>t + 1
n ; .
t3 € Z<0 ;: ti+ta—B+1, ifa>ti+ts+1
m
- a—B—ts+ts, fa<tittz+1
0 if8—a<t, —ts
tl,t3€Zzog k—t3 <m <ty 0 if a > ts +t1
ty €z<0 n>t; t1+ts—a+1, >t +t, +1
B—a—t, +t3, ifB<t+t, +1
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Conditions [B[L] [Dimension of Via.p ]
0 ifa<t] +t3+1
0 if B—a>ty—ts
0 ifB<ty +t; +1
ti=1ts —t;, if —a <ty +1t3A
>t to 4+ 1
tzEZZO; t, <m<k—ts; _'Bi 2+ 1_+
I <0 - a— B —ts+ta, lfﬂ—aStQ—Fl/\
ty 1], t3 € Z ty <n<ty -
B>ta+t; +1
a—t3—t; =1, ifB—-a<ty +1A
B<ta+t; +1
B—ty —t; —1, if B—a>t; +13A
B<ta+t] +1
0 fa—fB<ty —t1+1
0 it B>t +1
a— t1 —t,, ifa—B<t; —t; A
<0 m < ty; Aoty fsty =t
t1,t2 € Z=7, —en<t a<ty +ta+1
n ) . —
7, t; € 2<0 2 = tiHta—B+1, B>t +ta+1A
k<m+ts _
a2t2+t3 +1
t:=t1 —1t, ifﬁgt;+t2+1/\
B—a<it] —t;
0 ifa<t, +t; +1
0 i<ty +t; +1
= < me ttztgftg, ifa2t2+t;+1/\
ts € Z20; Lem B>ty ity +1
.~ _ <0 ty <n < ta; . - -
ty .t t; €L - a—ty —ty —1, iff—a>t] —tzA
n<k-—tg =
O(St2+t3 +1
B—ty —ty —1, ifB—a<ty —tzA
B<ta+t; +1
0 if > t1 +t3
0 ifB—a<ty —tz+1
0 if B <ty +t;
t:=1t1 -1, ifﬁztl-i-t;—l/\
= 1= € 7.<0 ty, <mn; B—a—ty +t3, ifB <ty +t1+ 1A
12 k—t3<m a>t3+t]
B—ty —t7 —1, if B <ty +t1— 1A
a§t3+t1_+1
t1+ts—a+1, ifﬁzt;-ﬁ-tl—l/\
a>tz+t]
0 B <ty +t; +1
0 if—a<t, —t3
_ ti=1ty —t;, if B> ta+t7 + 1A
>0 by <mg i faith
o, t3 € 277 - B—a>ty—t3
<0 ty <n <o — ) -
t,ty €7 k—ts <m B—ty —t; —1, 1f/3§t2+f1+1/\
a§t3+t1 +1
ﬂ—a—tg—t;, if B—a <ty —tsA
>ty 4+t
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[ Conditions B Dimension of V(, 3
0 fa<t; +t, +1
0 ifﬂ—o&ﬁt;—tg
0 ifB<t; +t, +1
by € 230, t <m Boa—ty +ts, if2a—B>tg s+ 1A
ty 5ty € Z<0 by <1 azt; s+l

nt+ty <k<m-+ts

if a <ty +t3+1A
B—a<ty —ty

tp +t3 —a—1

t1+to—B—1

a—ty —t; —1, if2a—fB>t5 +t3A
a>t;+t3
0 if >t +1t3
0 ifa—f>ts—t; —1
0 if B>1ta4+1t1
B—Oé—‘rtg—tz_, if B—a <ty —t3zA
t1,ta.ts € 220, T’iﬁtﬁ ./3§t2_7+t1+1
{t_EZ<O ty, <mn <t t1+ta—pB+1, B>t +t1+1A
2 E<m+4t3 B—a>ts—t3
t1 +t3 —a+1, ifﬂzt;-‘rh-‘rl/\
B—a<ty—ts
=ty — 1y, if6§t2_+t1+1/\
B—a>ty—t3
0 ifa—fB<ty —t1+1
0 if 8>t2+1
0 if o <ty +1t5 +2
ti+te—F+1, B>ty +t1+1A
t1,ta € 7229, nfgt“ a2t2+t3__+1
{t_ = € 7.<0 ty <mn <t a—ty —ty =1, ifa<ta+ty +1A
2078 E<m+ts B<ti+ty +1
a—pB+1t tS’ ifaSt2+t;+1/\
B=ti+t, +1
ti=t —t7, if <ty +t1+1A
a>ty+ty +1
0 ifao>t] +t3
0 if,B—Oth—t;
0 if B>t +t2
t::tl—tl_ ifaftg—l—tl_—l-l/\
B—a<t] —tgA
B<ty +ta+1
tl,tg,tgezzo; nftz; a—B—t; + 11 if2&—ﬂ§t§ —‘,;tg-i—l/\
{t_ = € 7.<0 n+ty <k<m+ts; B—a<t] —tgA
L tr <m<t a>ty +ta+1

if 2a -8 2>t; +t3+ 1A
a >tz +t; + 1A
B—a<ts—1t3
ifa— B <tz —taA

a >ty +ts + 1A
B2t] +ta+1
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And finally we have a description of the set of tableaux that define
finite dimensional sl(3)-modules. They have to satisfies the following
conditions:

e Conditions: t1,ts,t3 € Z=0 1] ,t5 ,t; € Z<°

° B[L]: {[L](m,n,k) ity <n<toyn+iy < k< m+1t3;t; <m < tl}

e Weight Multiplicities:

0 ifa<ty +t5 N B—a>t; —t3
0 ifﬁ—o&<t;—t3—1/\ a >t + 13
0 it <ty +t, +1

th —t; ifﬂ—agtf—tg/\agtl_+t3+1
to — 1y ifﬁ—aZtQ—tg/\aZtQ—th—{—l

a—Btt—t; if2a—B<ty+ts+lAB—a>t] —t5
/\a§t2+t§+1/\,32t1+t2_+1
titts—a+1 if2a—F>t; +ts+1Aa>ts+t +1
Na—=B>t3—ta ANB<t] +1a+1
hdta—B+1 ifa>t;+b+1AB—a>ty—t3
ANB>to+t] +1AB>t +1, +1
a—t; —t; —1 if2a—B<t; +ts+1Aa<ty+t; +1
ANB—a>t] —t3 AB<ti+15 +1
B—atts—ty; if2a—B>ts+t5 +1Aa>1] +i5+1
Na—B>ts—taAB <t +t5 +1
Bty —t; —1 iff—a<t] —t; ha<t] +t3+1
ANB=>ta+t] +1AB <t +15 +1

As an immediate consequence of the above description we can charac-
terize irreducible modules in GTT with 1-dimensional weight spaces and
those with bounded multiplicities.

Definition 8. A weight g-module V is called pointed if dim(V)) = 1
for all weight A such that dim(V)) # 0.

Corollary 11. The irreducible s((3)-module generated by [L] is a pointed
module if and only if [L] satisfies the following conditions:

t1=0, t7=-1 orty =0, t; = —1.
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Definition 9. A weight module V is bounded if there exist N € N such
that dim(Vy) < N for all weight \.

Corollary 12. The irreducible s[(3)-module generated by [L] is bounded
if and only if [L] satisfies the following conditions:

t1 €22 t; ez<° orty € 270, t; € Z<°

Example 2. Let be ¢ = —3 — 7 — /2, the following tableau satisfies ¢; =
0,t2 = 0,t3 =0; t],t5,t5 ¢ Z. Hence we are in the case 1, 12,13 € 729,

™ || V2| ¢
[L]:= T | V2

1) Basis: {L(ynp) ik <m <0;n <0}
2) Weights Multiplicities:

Eo3

E21 E12
2 2 2 2 2 |1
L) ° L) ° °
B3 3032
A4 o4 0403 2
SO o432
b5 o4 32
E3o

4. On tableaux realizations of highest weight s((3)-modules

In this section we will discuss the tableaux realizations of highest weight
s[(3)-modules with respect to different choices of GT-subalgebras [6].
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i)

ii)

Let 'y := T the standard GT-subalgebra obtained by the inclusions
with respect to the left upper corner. The formulas in this case are
given by:

hi([L]) = (22 = (z +y + 1)) [L]

ho([L]) = (2(z +y +1) — 2)[L]

Ens([L]) = —(z — 2)(y — 2)[L + 0"]

E23([LD — (a—x)g:zﬂj;(c—x) [L + 521] _ (a—y)((i’:lzl/i(c—y) [L + 522]

Then, looking at the formulas, the only possible tableau that can
represent a highest weight vector is:

[T):= x || v

where ¢ = —3 — & — y and the highest weight is A = (r —y — 1,2 +
2y + 2). But in this case we can not represent highest weights with
tableau where to([7]) = 0 (i.e. A = (—1,3z + 2), 2 € C). then we
obtain highest weight tableau for A # (—1, hy) with hy € C.

Let 'y the GT-subalgebra induced by the inclusions with respect to
the lower right corner. The GT formulas in this case are given by:

ho([L]) = (22 = (z +y + 1))[L]

hi([L]) = (2(z +y +1) — 2)[L]

Eys([L]) = —(2 — 2)(y — 2)[L + 6"

Elg([LD (a— x)((i 5;;(0 ) [L—|—521] _ (a*y)((i:zi(cfy) [L+622]

Then, if ¢ := —3 — z — y; the possible highest weights vectors are
represented by the following tableau:

[T]:= X y
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with highest weight A = (z 4+ 2y + 2,2 —y — 1); (as in the case of 'y
we have the restriction x # y; i.e. A # (3 + 2, —1); = € C); then
we obtain highest weight tableaux realization for A # (hy, —1) with
hy € C.

iii) Let I's the GT-subalgebra induced by the subalgebras inclusions:

(E31) C (E11, Erz, E31, Es3) C gl(3)

The GT-formulas in this case are given by:

hi([L]) =2z +y+1) —2) + (22 — (z +y + 1))][L]
ho([L]) = =(22 = (z +y + 1)) [L]
Enp([L]) = [L — 0"
E23([L]) _ (a—x)(b—x)(c—x)(y B Z) [L+521 +511]_
(z—y)
_ (a—y)b—y)lc—y)(z—2) [L+522+511]
(z—y)

Then, the possible highest weights vectors are represented by the
following tableau:

X z-1 c
-
Z

where ¢ = —2 — x — z and the highest weight is A = (x + 2z, 2 — z).
Then we obtain highest weight tableaux for x # z — 1 that means
A # (32— 1,—1) with z € C. Then, with I's we obtain tableaux
realizations of highest weight modules such that the highest weight
satisfies A # (h1,—1) with hy € C.

Proposition 13. If A # (—1,—1); the irreducible highest weight sl(3)-
module with highest weight A\ admits a tableaux realization with respect
to some GT-subalgebra.
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5. Harish Chandra sl(3)-modules in GT'T

Let B a Chevalley basis for sl(3) given by:
Xo = Fqo Y, = Fy H, = Fi1 — Hyo Xayp = Er3
Xpg = ko3 Yg:= E3 Hpg := E99 — E33 Yoip = E31
and set g the Lie subalgebra (X,, Yy, Hy) = s1(2).
Definition 10. An sl(3)-module V is called left (respectively right)

Harish-Chandra module if can be expressed as a sum of lowest weight
(respectively highest weight) s[(2)-modules.

Definition 11. An sl(3)-module V is called Harish-Chandra mod-
ule if can be expressed as a sum of finite dimensional s[(2)-modules.
Equivalently; if the module is a left and right Harish-Chandra module.

Lemma 14. Let V be an irreducible sl(3)-module and 0 # v € V. If
there exists n € Z=° (respectively n € Z<Y) such that X"v = 0 then, for
all u € V there exist r = r(u) € Z=Y (respectively r € Z<") such that
Xiu=0.

Proof:. As V is irreducible, each u € V' can be expressed as u = ) agv
where aj are elements of U(sl(3)). Then the statement of lemma is a
consequence of the fact that for all N € Z we have:

XVXg=NX,p X+ XpxY, XYH, = H, XY —oaNXxY
Xa Yarp = Yarp XY — 2V X1, X3 Hg = HpX) + NX
XoYo =Y XN + NH, XN-1 —oNxN-1 O

Corollary 15. An irreducible sl(3)-module V' is a Harish-Chandra mod-
ule (with respect to g) if and only if there exist 0 # v € V and n € N
such that X"y = 0.

As a consequence of the description of bases for irreducible sl(3)-
modules in GTT we have the following corollaries:

Corollary 16. The irreducible s[(3)-module generated by [L] is a left
(respectively right) Harish-Chandra module (with respect to g) if and
only if
t3 € 220 (respectively t; € Z<°)
Corollary 17. The irreducible s((3)-module generated by [L] is a Harish-
Chandra module (with respect to g) if and only if at least the conditions
holds:
ts € 220, ty € 20



296 COMBINATORICS OF IRREDUCIBLE sl(3)-MODULES

Acknowledgments

I would like to thank Vyacheslav Futorny for stimulating discussions
and patience during the preparation of this paper. Also I would like thank
Volodymyr Mazorchuk for his attention and helpful suggestions.

References
[1] Drozd Yu.A., Ovsienko S.A., Futorny V.M., Irreducible Weighted s[(3)-Modules.
Funksionalnyi Analiz i Ego Prilozheniya, 23 (1989), 57-58.

[2] Drozd Yu.A., Ovsienko S.A., Futorny V.M., Gelfand-Tsetlin Modules Over Lie
Algebra sl(3). Contemporary Mathematics, 131 (1992) 23-29.

[3] Drozd Yu.A., Ovsienko S.A., Futorny V.M., Harish-Chandra subalgebras and
Gelfand-Zetlin modules, Math. and Phys. Sci., 424 (1994), 72-89.

[4] S. Fernando; Lie Algebra Modules with finite dimensional weight spaces I. Trans.
Amer. Math. Soc. 322 (1990), 757-781.

[5] V. Futorny; A Generalization of Verma Modules, and Irreducible Representations
of the Lie Algebra s[(3). Ukrainskii Matematicheskii Zhurnal, Vol. 38, No. 4, pp.
492-497, July-August, 1986.

[6] V. Futorny, S. Ovsienko, M. Saorin; Gelfand-Tsetlin categories. Contemporary
Mathematics - American Mathematical Society (Print) 537 (2011), 193-203,

[7] I.M Gelfand, M.L. Tsetlin, Finite-dimensional representations of the group of
unimodular matrices, Doklady Akad. Nauk SSSR (N.s.), 71 (1950), 825-828.

[8] V. Mazorchuk; Lectures on si(2)-modules. Imperial College Press, London, 2010.

[9] V. Mazorchuk; Tableaux Realization of Generalized Verma Modules. Can. J. Math.
Vol. 50(4) (1998), 816-828.

[10] V. Mazorchuk; On Categories Of Gelfand-Tsetlin Modules. Noncommutative
Structures in Mathematics and Physics, (2001), 299-307.

[11] A.L Molev; Gelfand-Tsetlin Bases for Classical Lie Algebras. Handbook of Algebra’,
Vol. 4, (M. Hazewinkel, Ed.), Elsevier, 2006, pp. 109-170.

CONTACT INFORMATION

L. E. Ramirez Institute of Mathematics and Statistics,
University of Sao Paulo, Sao Paulo, Brazil
E-Mail: luisenrique317@gmail.com

Received by the editors: 14.02.2012
and in final form 14.02.2012.



