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ABSTRACT. We prove that any commutative Bezout PM*
domain is an elementary divisor ring.

The aim of this paper is to study the question of diagonalizability
for matrices over a ring. It is well-known that any elementary divisor
domain is a Bezout domain and it is a classical open question to determine
whether the converse statement is true?

The notion of an elementary divisor ring was introduced by Kaplansky
in [6]. There are a lot of researches that deal with the matrix diagonaliza-
tion in different cases (the most comprehensive history of these researches
can be found in [10]). It is an open question dating back at least to
Helmer [5] in 1942 to decide, whether a commutative Bezout domain is
always an elementary divisor domain. Helmer showed that not only does
the domain of entire functions is an elementary divisor domain, it also
has a property which he labeled adequate. Henriksen [4] appears to be
the first person to have given an example to show that being adequate
is a stronger property than that of being an elementary divisor ring. In
proving this, Henriksen observed that in an adequate domain each nonzero
prime ideal is contained in a unique maximal ideal [4]. It is a natural
question to ask whether or not the converse holds and this question is
explicitly raised in [7]. The negative answer to this question is given in [1].
Furthermore, it is shown that there exists an elementary divisor ring
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which is not adequate but which does have the property that each nonzero
prime ideal is contained in a unique maximal ideal. In this paper we show
that a commutative Bezout domain in which each nonzero prime ideal is
contained in a unique maximal ideal is an elementary divisor ring. Note
that these results are responses to open questions work [12, Questions 10,
Problem 6].

We introduce the necessary definitions and facts.

All rings considered will be commutative and have identity. A ring is
a Bezout ring, if every its finitely generated ideal is principal. A ring R is
an elementary divisor ring if every matrix A (not necessarily square one)
over R admits diagonal reduction, that is, there exist invertible square
matrices P and @ such that PAQ is a diagonal matrix, say (d;;), for
which dj; is a divisor of d; 4141 for each i. A ring R to be right Hermite
if every 1 x 2 matrix over R admits diagonal reduction. Any Hermite ring
is a Bezout ring. For domains, the notions of Hermite and Bezout ring are
equivalent. Gillman and Henriksen showed that any commutative ring R
is an Hermite ring if and only if for all a,b € R there exist a1,b1,d € R
such that a = a1d, b = bid and a1 R + by R = R [10]. Furthermore, they
proved the following result, which we state formally.

Proposition 1. Let R be a commutative Bezout ring. R is an elementary
divisor ring if and only if R is an Hermite ring that satisfies the extra
condition that for all a,b,c € R with aR+bR+cR = R there exist p,q € R
such that paR + (pb+ qc)R = R.

Definition 1. Let R be a commutative Bezout domain. A nonzero
element a in R is called an adequate element if for every b € R there exist
r,s € R such that a = rs, rR+ bR = R, and if s’ is a non-unit divisor of
s, then s’ R+ bR # R. If every nonzero element of the ring R is adequate,
then R is called an adequate ring [5,10].

Definition 2. Let R be a commutative ring. An element a € R is called a
clean element if a can be written as the sum of a unit and an idempotent.
If every element of R is clean, then we say that R is a clean ring [8,9].

Any clean ring is a Gelfand ring. Recall that a ring R is called a
Gelfand ring if for every a,b € R such that a +b = 1 there are r,s € R
such that (1+ar)(1+4bs) = 0. A ring R is called a PM-ring if each prime
ideal is contained in a unique maximal ideal. It had been asserted that a
commutative ring is a Gelfand ring if and only if it is a PM-ring [2,3]. A
ring R is called a PM™-ring if each nonzero prime ideal is contained in a
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unique maximal ideal [9]. A ring R is said to be a ring of stable range
1, if for any a,b € R such that aR + bR = R there exist ¢t € R such that
(a+bt)R = R.

Definition 3. An element a € R\ {0} of a commutative ring R is called
a PM-element if the factor ring R/aR is a PM-ring.

Proposition 2. For a commutative ring R the following are equivalent:
1) a € R is a PM-element;
2) for each prime ideal P such that a € P there exists a unique
mazximal ideal M such that P C M.

Proof. This is obvious, since P is a prime ideal of R/aR if and only if
there exists a prime ideal P such that aR C P and P = P/aR. O

As a consequence of Proposition 2 we obtain the following result.

Proposition 3. A commutative domain R is a domain in which each
nonzero prime ideal is contained in a unique maximal ideal of R if and
only if every nonzero element of R is a PM-element.

Proposition 4. An element a of a commutative Bezout domain is
a PM-element if and only if, for every elements b,c € R such that
aR+ bR+ cR = R, an element a can be represented as a = rs, where
rR+bR =R, sR+cR = R.

Proof. Denote R = R/aR,b = b+aR,¢ = c+aR. Since aR+bR+cR = R,
we see that bR + ¢R = R. Therefore, if a = rs where rR + bR = R,
sR + cR = R, then bR + ¢R = R and 0 = 75 where 7R + bR = R,
SR+¢cR = R. By [2], R is a PM-ring.

If R is a PM-ring then, by [9], 0 = 75 where 7R +bR = R, SR+ ¢R =
R for arbitrary b,¢ € R such that bR + ¢R = R. Whence we obtain
aR + bR + cR = R. Because 0 = 0 + aR = 75, we have rs € aR, where
T=r4+aR,s=s+aR. Let rR+aR = r R, sR+ aR = s1R. From
this 7 = rirg, a = riag, s = $182, a = sia9, where 7oR + agR = R,
soR + asR = R. Since rgR + agR = R, we obtain rou + agv = 1 for
some u,v € R. Since rs € aR, we see that rs = at for some t € R.
Then r179s = r1a0t, because R is a domain, and we have agt = rgs. By
the equality, rou + apv = 1 we have srou + sagv = s, ag(tu + agv) = s.
Therefore a = riag, where 1R + bR + riagR = R. Then m R+ bR = R.
Since ag(tu + agv) = s and agR + cR+ aR = R, we obtain agR + cR = R.
The proposition is proved. [



298 A COMMUTATIVE BEzouT PM* DOMAIN. ..

Theorem 1. A commutative Bezout domain in which each nonzero prime
ideal is contained in a unique maximal ideal is an elementary divisor ring.

Proof. Let R be a commutative Bezout domain with the property that
each nonzero prime ideal is contained in a unique maximal ideal. According
to Proposition 4, let a,b, ¢ € R be such that aR+ bR+ cR = R. According
to the restrictions imposed on R, by Proposition 4, we have b = rs where
rR+aR =R, sR+cR = R. Let p € R be such that sp+ ck = 1 for some
k € R. Hence rsp + rck = r and bp + crk = r. Denoting rk = ¢ and we
obtain (br + cq)R + aR = R. Let pR + qR = dR and d = pp1 + qq1 with
p1R+ ¢ R = R. Hence p1 R + (p1b + qic)R = R and, since pR C p1 R, we
obtain pyR + ¢cR = R and p1 R+ (p1b + ¢1¢)R = R.

Since bp + c¢q = d(bp1 + cq1), and (bp + cq)R + aR = R we obtain
(bp1 + ¢cq1)R 4+ aR = R. Finally, we have ap1 R + (bp1 + ¢c¢1)R = R. By
Proposition 1, we obtain that R is an elementary divisor ring. The theorem
is proved. O

Remark 1. Note that in order to prove this theorem, it is necessary that
only the element b € R is a PM-element.

Let R be a commutative Bezout domain. We denote by S = S(R)
the set of all PM-elements of R. Since 1 € R, the set S is nonempty.
Furthermore, we obtain the following result.

Proposition 5. The set S(R) of all PM-elements of a commutative
domain R is a saturated multiplicatively closed set.

Proof. Let a,b € S(R). We show that ab € S(R). Suppose the contrary.
Then there exist a prime ideal P and maximal ideals My, M5 such that
My # My and ab € P C My N Ms. Since ab € P, we obtain that a € P
or b € R. It is impossible because a € S(R), b € S(R) and P C M; N Ms.
Therefore S(R) is a multiplicatively closed set.

Let ab € S(R) for some a,b € R. If a ¢ S(R) then there exists a prime
ideal P such that a € P and P C M;NM; for some maximal ideals M7, M
and My # Ms. Therefore, ab € P and P C My N My, My # Ms. 1t is
impossible because ab € S(R). Hence S(R) is a saturated multiplicatively
closed set. The Proposition is proved. [

Let R be a commutative Bezout domain and S(R) be the set of all
PM-elements of R. Since S(R) is a saturated multiplicatively closed set,
we can consider the localization of R with denominators from S(R) i.e.
the ring of fractious Rg. We have:
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Theorem 2. Let R be a commutative elementary divisor domain. Then
a ring Rg is an elementary divisor ring.

Proof. Suppose that R is an elementary divisor ring. We need to show
that Rg is also an elementary divisor ring. Let as™!,bs™!, cs™! be any
elements from Rg such that

as 'Rg +bs 'Rg + ¢s 'Rg = Ryg.

Then aR+bR+cR = dR, for some element d € S(R). Let a = a1d, b = bid,
¢ = c1d for some elements a1, by,c; € R such that a1 R+ b1 R+ 1R = R.
Since R is an elementary divisor ring, there are elements u,v,p,q € R
such that

aipu + (bip + c1q)v = 1.

Then
apRs + (bp + ¢q)Rs = Rgs.

By [6], Rs is an elementary divisor ring. Theorem is proved. O

Let R be a commutative Bezout domain and S = S(R) be the set of
all PM-elements of R. Since S(R) is a saturated multiplicatively closed
set, we can construct by transfinite induction a natural chain

{R%|« is an ordinal}

of the saturated multiplicatively closed sets in R as follows. Let R® = S(R).
Let a be an ordinal greater than zero and assume R’ has been defined
and is a saturated multiplicatively closed set in R, whenever 5 < a and
let Kg = Rp,. Then Kg is a commutative Bezout domain (see [10]) and
hence S(Kp) is a saturated multiplicatively closed set by Proposition 5.

We define R by R* = g, RP if o is a limit ordinal and R® =
S(Kqo—1)NR otherwise. It is obvious that R* is a saturated multiplicatively
closed set. If o, 3 are ordinals such that o < 8 then R* ¢ R c R. Also
R® = R°*! for some ordinal o In case, when R® # R®*! for each ordinal
«, then

card(R®) > card(«).

Choosing 8 such that card(g) > card(R) we obtain
card(B) > card(R) > card(R"),
a contradiction. We let o denote the least ordinal such that

Rag — Ra0+1
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and we call
{R*|0 € a < ap}

a D-chain in R. In this situation R~! will denote the group of units of R.

By Theorem 2 and the fact that union of elementary divisor rings are
an elementary divisor ring and using D-chain of a commutative Bezout
domain we can conclude that the problem of being a commutative Bezout
domain an elementary divisor ring is reduced to the case of a commutative
Bezout domain where PM-elements are the only units, when U(R) = S(R).

Definition 4. Let R be a commutative Bezout domain. An element
a € R is called a neat element if R/aR is a clean ring.

Obvious examples of neat elements are units of a ring, and adequate
elements of a ring [11]. If R is a commutative Bezout domain and a is
a neat element of R, then R/aR is a clean ring [9], that is R/aR is a
PM-ring. Hence we obtain the following result.

Proposition 6. Fvery neat element of a commutative Bezout domain is
a PM-element.

Definition 5. A commutative ring R is said to be of the neat range 1 if
for any a,b € R such that aR + bR = R there exists t € R such that for
the element a + bt = ¢ the ring R/cR is a clean ring [11].

Theorem 3 ([11]). A commutative Bezout domain is an elementary
divisor ring if and only if R is a ring of the neat range 1.

From this we obtain the following result.

Theorem 4. Let R be a commutative Bezout domain and U(R) = S(R).
Then R is an elementary divisor ring if and only if stable range of R is
equal to 1.

Proof. Since every neat element is a PM-element and U(R) = S(R),
then only units in a ring are neat elements. Then by Theorem 3, R is
an elementary divisor ring if and only if R is a ring of stable range 1.
Theorem is proved. [

Let R be a commutative Bezout domain and a € R is a neat element
of R. By [9] the stable range of R/aR is equal to 1. Consequently by
Theorem 4, we have a next result.

Theorem 5. Let R be a commutative Bezout domain such that for every
nonzero element a € R stable range of R/aR is not equal 1. Then R is
not an elementary divisor ring.
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