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Abstract. We describe the geometry of representation of
numbers belonging to (0, 1] by the positive Lüroth series, i.e., special
series whose terms are reciprocal of positive integers. We establish
the geometrical meaning of digits, give properties of cylinders, semi-
cylinders and tail sets, metric relations; prove topological, metric
and fractal properties of sets of numbers with restrictions on use
of “digits”; show that for determination of Hausdorff-Besicovitch
dimension of Borel set it is enough to use connected unions of cylin-
drical sets of the same rank. Some applications of L-representation
to probabilistic theory of numbers are also considered.

Introduction

There exist many models of real number based on positive integers.
One of them is a model of number in the form of (finite and infinite)
regular continued fraction. Today they study and use different models of
number in the form of convergent series (number is a series, number is a
sum of series, number is expanded in series). Mostly of these series are
positive or alternating. Engel [12], Sylvester [16], Lüroth [8, 3, 4, 5, 7, 13],
Ostrogradsky [9, 1, 2], Sierpiński [15], Pierce series et al. are among them.
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der, shift operator, random variable defined by L-representation, fractal, Hausdorff-
Besicovitch dimension.
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146 Expansions of numbers in positive Lüroth series

Some of them have relatively simple self-similar geometry [13, 17, 18, 14],
but other have rather complicated and non-self-similar geometry [1, 2,
9, 12, 10]. Such expansions of numbers can be represented in different
forms using positive integers. It is an encoding of number with symbols
of infinite alphabet.

Lüroth [8] introduced in 1883 expansion of x ∈ (0, 1] in special positive
series such that its terms are reciprocal to positive integers. Geometry
of this expansion of numbers is self-similar and convenient for modelling
of mathematical objects with non-trivial topological, metric and fractal
local properties based on relatively simple metric relations generated by
cylindrical sets. In papers [17, 18] we particularly studied properties of
cylindrical sets and used them for study of one class of infinite Bernoulli
convolutions.

In this paper we continue to study geometry of this expansion. In
particular, we study properties of semicylinders, supercylinders and tail
sets, solve some problems of metric and fractal theories of numbers, provide
some applications of results.

1. L-representation of real numbers

Theorem 1. Any number x ∈ (0, 1] can be uniquely expanded in Lüroth
series, i.e., for x exists a unique sequence of positive integers dn = dn(x)
such that

x =
1

d1 + 1
+

∞
∑

n=2

1

Dn−1(dn + 1)
≡ ∆L

d1d2...dn...
, (1)

where Dn ≡ d1(d1 + 1)d2(d2 + 1) . . . dn(dn + 1).

Proof. Existence. Since (0; 1] =
∞
⋃

n=1
( 1
n+1 , 1

n
], it is evident that there exists

d1 such that 1
d1+1 < x 6

1
d1

. Then

0 < x −
1

d1 + 1
≡ x1 ≤

1

d1
−

1

d1 + 1
=

1

d1(d1 + 1)
=

1

D1
.

Since (0; 1
D1

] =
∞
⋃

n=1
( 1
D1(n+1) , 1

D1n
], it is evident that for x1 ∈ (0; 1

d1(d1+1) ]

there exists d2 ∈ N such that 1
d1(d1+1)(d2+1) < x1 ≤ 1

d1(d1+1)d2
. Whence it

follows that

0 < x1 −
1

d1(d1 + 1)(d2 + 1)
≡ x2 ≤

1

d1(d1 + 1)d2(d2 + 1)
=

1

D2
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and

x =
1

d1 + 1
+ x1 =

1

d1 + 1
+

1

d1(d1 + 1)(d2 + 1)
+ x2.

Let us perform analogous arguments for x2 and so on to infinity and
obtain (1). Series (1) is convergent because of

xm =
1

d1(d1 + 1)d2(d2 + 1) . . . dm(dm + 1)
=

1

Dm

<
1

2m
→ 0 (m → ∞).

Uniqueness. Suppose that x has at least two different expansions in
the form (1): x = ∆L

d1...dm−1dmdm+1...
= ∆L

d1...dm−1d′

md
′

m+1
...

, dm 6= d′
m.

Without loss of generality we assume that d′
m < dm. Then

δ ≡ ∆L
d1...dm−1d′

md
′

m+1
... − ∆L

d1...dm−1dmdm+1...
=

1

Dm

· δ1,

δ1 ≡
1

dm + 1
−

1

d′
m + 1

+
∞
∑

n=1

1

D′
m+n−1(d′

m+n + 1)
−

∞
∑

n=1

1

Dm+n−1(dm+n + 1)
.

However,

δ1 >

(

dm − d′
m

(d′
m + 1)(dm + 1)

−
∞
∑

n=1

1

Dm+n−1(dm+n + 1)

)

≥

≥
1

(d′
m + 1)(dm + 1)

−
1

dm(dm + 1)

(

1

2
+

1

22
+

1

23
+ . . .

)

= 0.

Thus, δ1 > 0. This contradicts the assumption that there are two
different expansions of the same number.

Definition 1. Brief notation x = ∆L
d1d2...dn...

of the expansion (1) is
called L-representation of x, and dn = dn(x) is its nth L-symbol.

Theorem 2 ([17]). A number x ∈ (0, 1] is rational if its L-representation
is periodic.

2. Geometry of L-representation: cylinders

and semicylinders

Definition 2. Let (c1, c2, . . . , cm) be a fixed m-tuple of positive integers.
Cylinder of rank m with the base c1c2 . . . cm is a set

∆L
c1c2...cm

:= {x : x = ∆L
c1c2...cmdm+1dm+2...

, dn+i ∈ N}.
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148 Expansions of numbers in positive Lüroth series

Cylinders have the following properties.

1. ∆L
c1c2...cm

=
∞
⋃

i1=1
. . .

∞
⋃

ik=1
∆L
c1...cmi1i2...ik

∀k ∈ N .

2. Cylinder ∆L
c1c2...cm

is a half-interval with endpoints

inf ∆L
c1...cm

=
1

c1 + 1
+

1

b1(c2 + 1)
+ . . . +

1

bm−1(cm + 1)
= am;

max ∆L
c1...cm

= am +
1

bm
, where bm = c1(c1 + 1) . . . cm(cm + 1).

3. The length of cylinder is equal to

∣

∣

∣∆L
c1...cm

∣

∣

∣ =
1

c1(c1 + 1) . . . cm(cm + 1)
=

m
∏

i=1

1

ci(ci + 1)
.

4. For any sequence of positive integers (cn), the intersection

∞
⋂

m=1

∆L
c1c2...cm...

= x ≡ ∆L
c1c2...cm...

∈ (0, 1].

5. If dj(a) = dj(b) for j < m and dm(a) > dm(b), then a < b.

6. Rearrangement of L-symbols in the base does not change the length
of cylinder.

7. Basic metric relation:
∣

∣

∣∆L
c1...cm

∣

∣

∣ = i(i + 1)
∣

∣

∣∆L
c1...cmi

∣

∣

∣.

8.
∞
∑

j=a

∣

∣

∣∆L
c1...cmj

∣

∣

∣ = a
∣

∣

∣∆L
c1...cm

∣

∣

∣. 9.
∣

∣

∣∆L
c1...cma

∣

∣

∣ =
∞
∑

j=a(a+1)

∣

∣

∣∆L
c1...cmj

∣

∣

∣.

10.
∣

∣

∣∆L
c1...cm(i+1)

∣

∣

∣ =
2i

i + 2

∣

∣

∣∆L
c1...cmi1

∣

∣

∣.

11. If a < b and dj(a) = dj(b) for j < m, but dm(a) 6= dm(b), then

1) (a, b] ⊂ ∆L
d1(a)...dm−1(a), 2) ∆L

d1(a)...dm−1(a)dm(b)(dm+1(b)+1) ⊂ (a, b].

12. If dm(a) > dm(b), but dj(a) = dj(b) for j < m, then

∆L
d1(a)...dm−1(a)dm(b)(dm+1(b)+1) ⊂ (a, b).

Definition 3. Let (cn) be a fixed sequence of positive integers and (kn)
be a fixed increasing sequence of positive integers. Semicylinder with the

base

(

k1 k2 . . . kn
c1 c2 . . . cn

)

is a set

∆k1k2...kn
c1c2...cn

≡ {x : x = ∆L
d1d2...dk...

, dki
(x) = ci, i = 1, n}.
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Lemma 1. Semicylinders have the following properties.
1. ∆12...n

c1c2...cn
= ∆L

c1c2...cn
.

2. ∆k1...kn
c1...cn

= ∆k1
c1

∩ ∆k2
c2

∩ . . . ∩ ∆kn
cn

= ∆k1...km
c1...cm

∩ ∆
km+1...kn
cm+1...cn .

3. Semicylinder is a union of cylinders of rank kn.
4. Semicylinders ∆k

c and ∆m
d are metrically independent iff k 6= m.

5. The Lebesgue measure of ∆k1k2...kn
c1c2...cn

is calculated by formula

λ(∆k1k2...kn
c1c2...cn

) =
n
∏

i=1

1

ci(ci + 1)
.

Proof. Properties 1–3 follows immediately from the definition of semi-
cylinder.

It is evident that for k = 1 the set ∆k
c is an L-cylinder of 1st rank ∆L

c ,
and according to Property 3

λ(∆1
c) = |∆L

c | =
1

c(c + 1)
.

If k = 2, then by definition of the set ∆k
c and properties of cylinders

∆2
c =

⋃

i∈N ∆L
ic. So, the Lebesgue measure is equal to

λ(∆2
c) =

∞
∑

i=1

|∆L
ic| =

1

c(c + 1)

∞
∑

i=1

1

i(i + 1)
=

1

c(c + 1)
.

For k = 3, we have

∆3
c =

∞
⋃

i1=1

∞
⋃

i2=1

∆L
i1i2c

,

λ(∆3
c) =

∞
∑

i1=1

∞
∑

i2=1

|∆L
i1i2c

| =
1

c(c + 1)

∞
∑

i1=1

∞
∑

i2=1

1

i1(i1 + 1)i2(i2 + 1)
=

1

c(c + 1)
.

For any k the Lebesgue measure of the set ∆k+1
c is defined by equality

λ(∆k+1
c ) =

∞
∑

i1=1

. . .
∞
∑

ik−1=1

|∆L
i1...ikc

|.

Using Property 7 (basic metric relation) we have

λ(∆k+1
c ) =

∞
∑

i1=1

. . .
∞
∑

ik=1

|∆L
i1...ikc

| =
1

c(c + 1)

∞
∑

i1=1

. . .
∞
∑

ik=1

|∆L
i1...ik

| =
1

c(c + 1)
.
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150 Expansions of numbers in positive Lüroth series

The last equality follows from that fact:
∞
∑

i1=1
. . .

∞
∑

ik=1
|∆L

i1...ik
| = 1.

For n = 2

∆k1k2

c1c2
= ∆k1

c1

⋂

∆k2

c2
=

⋃

ij∈N
j∈{1,2,...,k2−1}\{k1}

∆L
i1...ik1−1c1ik1+1...ik2−1c2

,

λ(∆k1k2

c1c2
) =

1

c1(c1 + 1)

1

c2(c2 + 1)

∑

ij∈N
j∈{1,2,...,k2−1}\{k1}

|∆L
i1...ik1−1ik1+1...ik2−1

| =

=
1

c1(c1 + 1)

1

c2(c2 + 1)
= λ(∆k1

c1
)λ(∆k2

c2
).

The last equality provide metric independence of semicylinders ∆k1
c1

and
∆k2
c2

, i.e., semicylinders ∆k
c and ∆m

d for k 6= m. If k = m, then ∆k
c ∩ ∆m

d

is an empty set for c 6= d and ∆k
c = ∆m

d for c = d. Thus λ(∆k
c ∩ ∆m

d ) 6=
λ(∆k

c )λ(∆m
d ). So, semicylinders are not metrically independent.

One can prove Property 5 by induction.

Lemma 2. The family of supercylindrical sets (finite or countable unions
of cylinders in WL) is an algebra, i.e., closed with respect to finite union
and complement class of sets.

Proof. It is evident that union of two supercylindrical sets A and A′ is a
such set. Let us show that intersection of two supercylindrical sets A and
A′ is a supercylindrical set. Let A =

⋃

i

Ai, A′ =
⋃

j

A′
j , where Ai and A′

j

are cylindrical sets. Then A
⋂

A′ =
⋃

i

⋃

j

[Ai

⋂

A′
j ]. However, Ai

⋂

A′
j is a

cylindrical set. Thus A
⋂

A′ is a supercylindrical set by definition.
Now we prove that complement B of supercylindrical set B is a such

set. Complement of ∆L
c1...cm

is a union of sets in the form ∆L
s1...sm

, where
m-tuple (s1 . . . sm) takes all possible combinations of L-symbols except for
(c1 . . . cm), i.e., complement of cylinder is a countable union of cylinders
of the same rank. It is evident that B1 ∪ B2 = B1 ∩ B2. So, if we take
into account that intersection of two supercylindrical sets is a such set,
then we have that complement of supercylindrical set is a such set.

3. Set of numbers with given sequence of fixed digits

Let (cn) be a fixed sequence of positive integers, (kn) be a fixed
increasing sequence of positive integers. We consider the set

∆k1k2...kn...
c1c2...cn...

≡ {x : x = ∆L
d1d2...dk...

, dki
(x) = ci, i ∈ N}.
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Theorem 3. Let gn := kn+1 − kn. 1. If gn = 1 for all n and k1 = 1, then
set ∆k1k2...kn...

c1c2...cn...
consists from one point ∆L

c1c2...cn...
. If inequality gn > 1 is

fulfilled for finitely many n, then this set is countable. If inequality gn > 1
is fulfilled for infinitely many n, then it is a continuum set.

2. Lebesgue measure of the set ∆k1k2...kn...
c1c2...cn...

is equal to 0.

Proof. 1. If gn = 1 starting from some n0, then the set ∆k1k2...kn...
c1c2...cn...

is
countable because only for finite set of the first n0 − 1 positions there
exists an alternative for L-symbols from at most countable set. If gn > 1
for infinitely many n, then ∆k1k2...kn...

c1c2...cn...
is a continuum set, because one can

establish one-to-one correspondence f between this set and half-interval
(0, 1] by formula f(∆L

d1d2...dn...
) = α12−1 + α22−2 + . . . + αn2−n + . . . ,

where αn = 0 if gn = 1, and αn = 1 if gn > 1.
2. If set ∆k1k2...kn...

c1c2...cn...
is countable, then its Lebesgue measure is equal

to 0 by the properties of the Lebesgue measure. So, it is enough to prove
statement 2 if it is a continuum set.

Let Fk be a closure of a union of all cylinders of rank k whose interior
contains point from the set ∆k1k2...kn...

c1c2...cn...
. Since Fkn

⊃ Fkn+1 and

∆k1k2...kn...
c1c2...cn...

=
∞
⋂

n=1

Fkn
,

we have λ(∆k1k2...kn...
c1c2...cn...

) = lim
n→∞

λ(Fkn
) by the continuity from above of the

Lebesgue measure.
From the basic metric relation it follows that

|∆L
c1c2...ck+1

| =
1

ck+1(ck+1 + 1)
|∆L

c1c2...ck
|.

Thus

λ(Fkn+1
) =

∑

i1∈N,...,ikn+1−1∈N

|∆L
i1i2...c1...c2...cn...ikn+1−1ckn+1

| =

=
1

ckn+1
(ckn+1

+ 1)

∑

i1∈N,...,ikn+1−1∈N

|∆L
i1i2...c1...c2...cn...ikn+1−1

| =

=
1

ckn+1
(ckn+1

+ 1)
λ(Fkn+1−1).

From the definition of ∆k1k2...kn...
c1c2...cn...

it follows Fkn
= Fkn+1 = . . . =

Fkn+1−1. Thus,

λ(Fkn+1
) =

λ(Fkn
)

ckn+1
(ckn+1

+ 1)
= λ(Fk1

)
n+1
∏

i=2

1

cki
(cki

+ 1)
n→∞
−−−→ 0.
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152 Expansions of numbers in positive Lüroth series

4. Shift operator for L-representation

In the set ZL
(0,1] of all L-representations of numbers belonging to (0, 1]

we introduce a binary relation of equivalence “to have the same tail” (we
denote it by ∼).

Definition 4. Two L-representations ∆L
α1α2...αn...

and ∆L
β1β2...βn...

have
the same tail or they are in relation ∼ if there exist positive integers
m and k such that αm+j = βk+j for any j ∈ N . It is evident that ∼ is
an equivalence relation (i.e., it is reflexive, symmetric, and transitive)
and partitions set where it is defined on the equivalence classes. Any
equivalence class is a tail set. Any tail set is determinated uniquely by
arbitrary its element (representative). Two numbers x and y have the
same tail (or they are in relation ∼), if their L-representations are in
relation ∼. We denote it by x ∼ y.

Lemma 3. Any tail set is a countable dense in (0, 1] set.

Proof. Let H be any equivalence class, and x0 = ∆L
c1...ck...

be its representa-
tive. Then for any positive integer m there exists set Hm of numbers x such
that αm+j(x) = αk+j(x0) for any j ∈ N , k = 1, 2, . . .. Set H =

⋃

m∈N
Hm

is a countable union of countable set. So, it is countable.

Since number x belongs to set H independently of any finite number
of the first L-symbols, we have that there exits point from H in any
cylinder of any rank m. Thus, H is an everywhere dense in (0, 1] set.

Corollary. Factor set G ≡ (0, 1]/ ∼ is a continuum set.

In the set ZL
(0,1] we consider shift operator ϕ for L-symbols defined

by equality ϕ(∆L
α1α2...αn...

) = ∆L
α2α3...αn...

. This operator is a function
ϕ : (0, 1] → (0, 1].

It is clear that function ϕ has a countable set of invariant points
{∆L

(c), where c ∈ N}. It is surjective but not injective, because preimages

of ∆L
c1c2...ck...

are points ∆L
cc1c2...ck...

, where c ∈ N (countable set).

Lemma 4. Function ϕ is: 1) decreasing on any cylinder of 1st rank; 2)
continuous at any point of cylinder of 1st rank and left-continuous at right
endpoint of this interval.

Proof. 1. Let us consider two points x1 = ∆L
α1α2(x1)...αn(x1)... and x2 =

∆L
α1α2(x2)...αn(x2)... belonging to interval ∆L

α1
such that x1 < x2. Since
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αn(ϕ(x)) = αn+1(x) and their L-symbols satisfy conditions (1), we have
ϕ(x1) > ϕ(x2), and this proves first statement.

2. Since function ϕ is monotonic and bounded on any cylinder of
1st rank, it has finite right and left limits at any point of this interval.
Moreover, it has finite left limit at the right endpoint and finite right limit
at the left endpoint.

Let x = ∆L
α1α2(x)...αn(x)... be any irrational point of int ∆L

α1
, and (xk)

be any sequence of points xk such that lim
k→∞

xk = x.

It is easy to prove that lim
k→∞

xk = x is equivalent to lim
k→∞

mk = ∞,

where mk is minimal positive integer such that αmk
(xk) 6= αmk

(x). In
fact, lim

k→∞
xk = x is equivalent to the following fact: for any M > 0 there

exists mk > M and cylinder ∆L
α1α2(x)...αmk

(x) of rank mk containing all

xk starting from some k0.

So, from equalities lim
k→∞

xk = x and αn(ϕ(x)) = αn+1(x) it follows

that lim
k→∞

ϕ(xk) = ϕ(x), and this proves continuity of the function ϕ at

the point x.

Now let x = ∆L
α1α2(x)...αn(x) be any rational point of int ∆L

α1
. Let us

consider sequence x′
k = ∆L

α1α2(x)...αn(x)k converging to x and x′
k < x. It

is evident that lim
k→∞

ϕ(x′
k) = ϕ(x), i.e., function ϕ is left continuous at

point x.

Now let us consider sequence x′′
k = ∆L

α1α2(x)...(αn(x)−1)1k converging

to x and x′′
k > x. It is evident that lim

k→∞
ϕ(x′′

k) = ϕ(x), i.e., function ϕ is

right continuous at point x.

Remark. All points x, ϕn(x), n ∈ N , belong to the same tail set, and
x ∼ y iff there exists positive integers k and m such that ϕk(x) = ϕm(y).

5. Sets with restrictions on use of L-symbols

Definition 5. A number x is called L-rational if its L-representation
has a period (1), i.e., x = ∆L

c1c2...cm(1). A number is called L-irrational if
it is not L-rational.

Any L-rational number is a right endpoint of cylinder, moreover number
∆L
c1c2...cm(1) is a right endpoint of ∆L

c1c2...cm
. Vice versa, right endpoint

of any cylinder is L-rational number. It is easy to prove that any L-
rational number is rational, but not all rational numbers are L-rational.
For example, number ∆(12) is rational, but is not L-rational.
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154 Expansions of numbers in positive Lüroth series

Theorem 4. The set C ≡ C[L, V ] = {x : x = ∆L
d1d2...dn...

, dn(x) ∈ V ⊂
N} is

1. a half-interval (0, 1] if V = N ;
2. a nowhere dense non-closed set of zero Lebesgue measure coinciding

with its closure with respect to countable set if V 6= N ;
3. self-similar if V is a finite set and N -self-similar if V is an infinite

set; moreover, its self-similar (N -self-similar) dimension αs is a solution
of equation

∑

v∈V

(

1

v(v + 1)

)x

= 1 if |V | < ∞; (2)

and is a number

αs = sup
n







x :
∑

v:V ∋v≤n

(

1

v(v + 1)

)x

= 1







if |V | = ∞. (3)

Proof. Statement 1 is evident. 2. Let V 6= N . It is easy to see that

C ⊂
⋃

k∈V

∆L
k , C ⊂

⋃

ki∈V
i∈N

∆L
k1k2...kn

≡ Fn ⊂ Fn−1, C =
∞
⋂

k=1

Fk = lim
k→∞

Fk.

Let (a, b) be any subinterval of (0, 1]. It is evident that cylinder
∆L
d1(b)...dm(b)dm+1(b)+1 ⊂ (a, b), where dm(b) 6= dm(a). Let α and β be

the endpoints of the cylinder ∆L
d1(b)...dm(b)(dm+1(b)+1)v, where v ∈ N\V .

Then the interval (α, β) does not contain points of the set C. So, the set
C is a nowhere dense set by definition.

For Lebesgue measure λ of the set C the following relation holds:

λ(C) ≤
∑

k1∈V

. . .
∑

kn∈V

|∆L
k1...kn

| =
∑

k1∈V

. . .
∑

kn∈V

n
∏

i=1

1

ki(ki + 1)
= bn

n→∞
−−−→ 0,

where 0 < bn =
∑

k∈V 6=N

1

k(k + 1)
< 1. So, λ(C) = 0.

3. Since C =
⋃

v∈V
[∆L

v ∩ C] and

1) C
kv∼ ∆L

v ∩ C, where k =
1

v(v + 1)
, 2) (∆L

vi
∩ C) ∩ (∆L

vj
∩ C) = ∅,

the set C is self-similar if V is finite, and N -self-similar if V is infinite.
According to the definition, a self-similar (N -self-similar) dimension

is a solution of (2) (or determined by (3) respectively).
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6. Random variable with independent L-symbols

Theorem 5. Random variable ξ = ∆L
τ1τ2...τk...

with the following distribu-
tions of L-symbols τk: P{τk = i} = pik, i ∈ N , has a pure Lebesgue type,
moreover, 1. discrete iff

M =
∞
∏

k=1

max
i

{pik} > 0;

2. absolutely continuous iff

S =
∞
∏

k=1

( ∞
∑

i=1

√

pik
i(i + 1)

)

> 0; (4)

3. singular in other cases, i.e., if M = 0 = S.

Proof. Let {(Ωk, Bk, µk)} and {(Ωk, Bk, νk)} be two sequences of prob-
ability spaces such that Ωk = N , Bk is a σ-algebra of all subsets of
Ωk,

µk(i) = pik, νk(i) =
1

i(i + 1)
, k ∈ N,

where pik is an element of the matrix ‖pik‖ determining the distribution
of the random variable ξ. It is evident that measure µk is absolutely
continuous with respect to measure νk (µk ≪ νk) for all k ∈ N . Let us
consider the infinite products of probability spaces

(Ω, B, µ) =
∞
∏

k=1

(Ωk, Bk, µk), (Ω, B, ν) =
∞
∏

k=1

(Ωk, Bk, νk).

From Kakutani’s theorem [6] it follows that µ ≪ ν iff

∞
∏

k=1

∫

Ωk

√

dµk
dνk

dνk > 0, where integral is the Hellinger integral.

In this case the last inequality is equivalent to condition (4). Therefore,
from the condition (4) it follows that the measure µ is absolutely continu-

ous with respect to the measure ν. Let us consider the mapping Ω
f
−→ [0; 1]

defined by equality

∀ω = (ω1, . . . , ωk, . . .) ∈ Ω : f(ω) = ∆L
ω1...ωk...

.
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For any Borel set E, we define the measures µ∗ and ν∗ as the image
measures of µ and ν under mapping f : µ∗(E) = µ(f−1(E)), ν∗(E) =
ν(f−1(E)). The measure µ∗ coincides with the probabilistic measure Pξ
and the measure ν∗ coincides with the probabilistic measure Pψ, which
equivalent to Lebesgue measure λ. From the absolutely continuity of the
measure µ with respect to the measure ν it follows that the measure µ∗

is absolutely continuous with respect to the measure ν∗. Since ν∗ ∼ λ,
from condition (4) it follows that the random variable ξ is of absolutely
continuous distribution.

7. L-representation and fractal analysis of subsets of [0, 1]

Definition 6. Hausdorff-Besicovitch dimension of bounded set E ⊂ R1

is a number α0(E) = sup{α : Hα(E) 6= 0} = inf{α : Hα(E) = 0}, where
Hα(E) is a α-dimensional Hausdorff measure of E defined by equality

Hα(E) = lim
ε→0

inf
d(Ei)<ε

{

∑

i

dα(Ei) : E ⊂
⋃

i

Ei

}

,

d(Ei) is a diameter of the set Ei.

Let W be a class of sets such that they are unions of L-cylinders of
the following form:

(1)
n
⋃

i=k

∆L
c1...cmi

, (2)
∞
⋃

i=k

∆L
c1...cmi

,

where k, n are arbitrary positive integers. It is clear that any cylinder
belongs to class W , because for k = 1 set (2) is a cylinder as well as set (1)
is a cylinder for k = n.

Lemma 5. For any u ≡ (a, b) ⊂ (0, 1] there exists at most 4 sets belonging
to class W covering u and having length not exceeding |u|.

Proof. The following cases are possible: 1. Numbers a and b belong to
different L-cylinders of rank 1; 2. a and b belong to the same L-cylinder
of rank 1.

Consider every case separately.

1.1. Let a and b belong to neighbouring L-cylinders of 1st rank ∆L
d1(b)+1

and ∆L
d1(b) respectively, and c = sup ∆L

d1(b)+1.
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a) If a = c (it is equivalent to dj(a) = 1 for j > 1), then for covering
u it is enough two sets from W :

∞
⋃

j=d2(b)+1

∆L
d1(b)j , ∆L

d1(b)d2(b), (5)

having the length not exceeding b − a (first one belongs to (a, b], second
satisfies Property 6 of cylinders).

b) If a 6= c, then there exists dk(a) 6= 1. Let us consider the least such
k. Then ∆L

d1(a)...dk−1(a)1 ⊂ (a, c] and sets

dk(a)−1
⋃

j=1

∆L
d1(a)...dk(a)j and ∆L

d1(a)...dk(a) (6)

cover (a, c] and have length not exceeding c−a, and therefore, not exceeding
b − a. Half-interval (c, b] is covered by two sets (6).

So, for covering (a, b] it is enough 4 sets belonging to W .
1.2. If there exists cylinder ∆L

m ⊂ (a, b], then (a, b] is covered by the
sets

∞
⋃

j=m

∆L
j ,

∞
⋃

j=d2(b)+1

∆L
d1(b)j , ∆L

d1(b)d2(b),

belonging to W and having length lesser than b − a.
2. Let a and b belong to the same cylinder of 1st rank ∆L

d1(b). Then
there exists positive integer m such that a and b belong to the same
cylinder of rank m, but to different cylinders of rank m + 1:

∆L
d1(b)...dm(b)dm+1(a) and ∆L

d1(b)...dm(b)dm+1(b).

Repeating the same arguments as in the case 1, we obtain the same result:
for covering (a, b] it is enough at most four sets belonging to W and having
length not exceeding b − a.

Theorem 6. For determination of Hausdorff-Besicovitch dimension of
any Borel subset of (0, 1] it is enough to use covering by sets belonging to
class W .

Proof. In fact, if u is an arbitrary half-interval belonging to covering E,
then there exists at most 4 sets ω1, ω2, ω3, ω4 belonging to W such that
|ωi|

α ≤ |uα| for any α > 0. If

lαε (E) = inf
|vk|≤ε

∑

k

|vk|
α,
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where E ⊂
⋃

k

vk and vk ∈ W , then mα
ε (E) ≤ lαε (E) ≤ 4mα

ε (E) for any

ε > 0. Therefore Hα(E) ≤ Hα
L(E) ≡ lim

ε→∞
lαε (E) ≤ 4Hα(E), that is

Hα
L(E) and Hα(E) simultaneously (with respect to α) take the values 0

and ∞. Consequently, α0(E) = inf{α : Hα
L(E)}.

Theorem 7. Continuous strictly increasing probability distribution func-
tion F of the random variable with independent identically distributed
L-symbols preserve the Hausdorff-Besicovitch dimension iff

pi =
1

i(i + 1)
, ∀ i ∈ N. (7)

Proof. If Equality (7) holds, then distribution is uniform on [0, 1], and it
is evident that probability distribution function preserve the Hausdorff-
Besicovitch dimension.

Suppose that there exists pm 6= 1
m(m+1) . Let pm < 1

m(m+1) . Then

there exists pc > 1
c(c+1) , i.e., there exist pm and pc such that

(

pm −
1

m(m + 1)

)(

pc −
1

c(c + 1)

)

< 0.

Then for any a ∈ N , m 6= a 6= c, there exists g ∈ {m, c} such that

(

pa −
1

a(a + 1)

)(

pg −
1

g(g + 1)

)

≥ 0. (8)

Let us consider set C ≡ C[L, {a, g}] and its image C ′ = F (C) under
transformation F . These sets are self-similar and their self-similar dimen-
sions coincides with Hausdorff-Besicovitch dimensions and are solutions
of the following equations

a−x(a + 1)−x + g−x(g + 1)−x = 1 and pxa + pxg = 1

respectively. However, from (8) and pg 6= g−1(g +1)−1 it follows that their
solutions does not coincide. Thus, α0(C) 6= α0(C ′). This contradiction
proves the theorem.
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