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Abstract. A subgroup H of a group G is said to be transi-
tively normal in G, if H is normal in every subgroup K > H such
that H is subnormal in K. We described some infinite groups, whose
non–finitely generated subgroups are transitively normal.

Introduction

We say that a subgroup H of a group G is pronormal in G if
for each element g ∈ G there exists an element u ∈ 〈H, Hg〉 such that
Hg = Hu. Pronormal subgroups have naturally appeared in the process of
investigation of such important subgroups of finite (soluble) group as Sylow
subgroups, Hall subgroups, system normalizers, and Carter subgroups.
The term “a pronormal subgroup” belongs to P. Hall. The pronormal
subgroups possess the following essential property. Let G be an arbitrary
group and K be a pronormal subgroup of G. If L is a subgroup of G such
that K ≤ L and K is subnormal in L, then K is normal in L. Observe
that not only pronormal subgroups, but some its generalizations have this
property also. Quite recently in the paper [1], the concept of transitively
normal subgroup has been introduced. A subgroup H of a group G is
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said to be transitively normal in G, if H is normal in every subgroup
K ≥ H such that H is subnormal in K. As we can see, every pronormal
subgroup is transitively normal, but converse is not true. Indeed, every
self-normalizing subgroup H (that is H = NG(H)) is transitively normal.
Note that a pronormal and self-normalizing subgroup is abnormal (see,
for example, [2, § 6, Theorem 7 ]). Recall that a subgroup A of a group G
is called abnormal in G, if x ∈ 〈A, Ax〉 for each element x ∈ G. We note
that every subgroup which includes an abnormal subgroup is abnormal
and therefore is self-normalizing too (see, for example, [2, § 6, Theorem 1]).
However, not every self-normalizing subgroup is abnormal.

The property “to be transitively normal subgroups” is connected with
another important property. A group G is said to be a T -group if every
subnormal subgroup of G is normal. In other words, G is a T -group if
the property “to be normal subgroup” is transitive in G. Abelian groups
and groups whose all subgroups are normal (the Dedekind groups) are
trivial examples of T -groups. R. Baer [3] proved that every Dedekind
group G either is abelian or G = Q × D × B where Q is a quaternion
group, D is an elementary abelian 2-subgroup and B is a periodic abelian
subgroup such that 2 6∈ Π(B). The structure of finite soluble T -groups has
been established by W. Gaschütz [4]. We note that in general case, not
every subgroup of T -group is a T -group itself; so we come to the following
type of groups. A group G is said to be a T -group if every subgroup
of G is a T -group. It turns out that a finite T -group is metabelian. W.
Gaschütz proved that every finite soluble T -group is a T -group although
this is no longer true for infinite soluble groups. In finite soluble T -groups
and T -groups have been studied by D.J.S. Robinson [5]. We observed
that T -groups have many pronormal subgroups, actually every finitely
generated subgroup of a T-group is pronormal. Converse is also true.
T.A. Peng [6] proved that a finite group G is a T-group if and only if
every cyclic subgroup of G is pronormal. This result was extended to
infinite locally soluble groups by N.F. Kuzennyj and I.Ya. Subbotin [7].
In particular, we obtain the following characterization of locally solubleT -
group: a locally soluble group G is a T -group if and only if every finitely
generated subgroup of G is pronormal. In this connection, it is natural to
consider an opposite case, that is the groups in which every non-finitely
generated subgroup is pronormal. In this paper, we will consider more
general situation, more precisely we will study the groups whose non-
finitely generated subgroups are transitively normal. Of course, we will
consider these groups under some natural restrictions. As the results of
A.Yu. Olshanskij (see the book [8]) show, in many cases it is not realistic
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86 Groups with many pronormal subgroups

to expect meaningful results on groups beyond the class of generalized
soluble groups. We will study our groups under the following restriction.
Recall that a group G is said to be radical if it has an ascending series
whose factors are locally nilpotent. Some standard properties of radical
groups can be found in [9]. In this paper we start the consideration of
radical groups, whose non-finitely generated subgroups are transitively
normal. Recall that a periodic radical group is locally soluble. But converse
is not true.

The fist main result of this paper is the following description of
the locally soluble groups, whose non-finitely generated subgroups are
transitively normal.

Theorem A. Let G be a locally soluble periodic group whose non-finitely
generated subgroups are transitively normal. If G is not a Chernikov
group, then G is a T -group. If G is a Chernikov group, then either G is
a Dedekind group or the divisible part Y of G is a quasicyclic group and
G/Y is a finite T -group.

We observe that the conditions of Theorem A are also sufficient.
Indeed, let G be a Chernikov group, Y be the divisible part of G, and
suppose that Y is quasicyclic and G/Y is a finite T -group. If H is a
subgroup of G such that H is non-finitely generated, then clearly Y ≤ H.
Since G/Y is a T -group, H/Y is transitively normal in G/Y . Then H is
transitively normal in G.

First natural step in every study of radical group is a consideration of
locally nilpotent case. For these groups we proved

Theorem B. Let G be a locally nilpotent group whose non-finitely gener-
ated subgroups are transitively normal. Then every subgroup of G, which
is non-finitely generated, is normal in G.

The groups, whose non-finitely generated subgroups are normal, have
been studied by L.A. Kurdachenko and V.V. Pylaev [10], G. Cutolo [11],
G. Cutolo and L.A. Kurdachenko [12]. In particular, locally nilpotent
groups, whose non-finitely generated subgroups are normal, were described
quite completely.

The last main result of this paper is following

Theorem C. Let G be a radical group whose non-finitely generated
subgroups are transitively normal. Suppose that G is not periodic. If a
locally nilpotent radical of G is non minimax group, then G is abelian.

The case of minimax groups, whose non-finitely generated subgroups
are transitively normal, requires separate consideration.
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1. Preliminary results

1.1. Lemma. Let G be a group whose non-finitely generated subgroups
are transitively normal. Let L be an ascendant locally nilpotent subgroup of
G and suppose that L = Drλ∈ΛLλ where the subgroups Lλ is non-identity
for each. If the index set is infinite, then L is normal in G, moreover,
every subgroup Lλ is G-invariant for each λ ∈ Λ.

Proof. Since the set Λ is infinite, the subgroup L cannot be finitely
generated. Hence it is transitively normal in G. Being ascendant in G, it
is normal in G [1, Lemma 1.1].

Let λ be an arbitrary index, put M = Λ\{λ}. Then the subset M
is infinite, so that there are two infinite subset M1, M2 of M such that
M = M1 ∪ M2, M1 ∩ M2 = ∅. The subgroup Kj = Lλ × 〈Lµ|µ ∈ Mj〉
is non-finitely generated, because the set Mj is infinite, so that Kj is
transitively normal in G, j ∈ {1, 2}. Since Kj is normal in L, it is ascendant
in G, which follows that Kj is normal in G[1, Lemma 1.1], j ∈ {1, 2}.
The equation Lλ = K1 ∩ K2 implies that Lλ is normal in G.

1.2. Lemma. Let G be a locally nilpotent group. If a cyclic subgroup 〈g〉
is transitively normal in G, then 〈g〉 is normal in G.

Proof. Let F be an arbitrary finitely generated subgroup of G, containing
an element g. Then F is nilpotent, which follows that 〈g〉 is subnormal in
F . Being transitively normal, a subgroup 〈g〉 is normal in F . Since it is
true for every finitely generated subgroup of G, 〈g〉 is normal in G.

1.3. Lemma. Let G be a group and T be a normal subgroup of G. Suppose
that T = Drp∈Π(T )Tp where Lp is a Sylow p-subgroup of T . If a set Π(T )
is infinite, then the subgroup 〈g, T 〉 is non-finitely generated for each
element g ∈ G.

Proof. Suppose the contrary, let K = 〈g, T 〉 is finitely generated. If g has
finite order, then the index |K : T | is finite. But in this case, the subgroup
T must be finitely generated (see, for example, [13, Corollary 7.2.1]), and we
obtain a contradiction. Let g has infinite order. Then T has the elements
x1, . . . , xn such that T = 〈x1〉K . . . 〈xn〉K [14, p. 421 and 426]. There
exists a finite subset π of Π(T ) such that x1, . . . , xn ∈ Drp∈πTp = Tπ.
Clearly, every subgroup Tp is G-invariant, so that Tπ is normal in G. Then
Tπ includes the normal subgroup 〈x1〉K . . . 〈xn〉K . Since Π(T ) is infinite,
Tπ 6= T , and we obtain a contradiction. This contradiction shows that
the subgroup K is non-finitely generated.
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88 Groups with many pronormal subgroups

1.4. Lemma. Let G be a group whose non-finitely generated subgroups
are transitively normal. Let L be a periodic locally nilpotent subgroup of
G and suppose that the set Π(L) is infinite. If K is a locally nilpotent
subgroup of NG(L), then K is a Dedekind group; moreover, if K is not
periodic, then it is abelian.

Proof. Since L is locally nilpotent, L = Drp∈Π(L)Lp, where Lp is a Sylow
p-subgroup of L, p ∈ Π(L). Clearly, every subgroup Lp is K-invariant. Let
h be an arbitrary element of K. If h has infinite order, then 〈h〉 ∩ L = 〈1〉.
If the order of h is finite, then there exists an infinite subset M of Π(L)
such that 〈h〉 ∩ Drp∈M Lp = 〈1〉. Thus in every case, there exists an
infinite subset M of Π(L) with the property 〈h〉 ∩ Drp∈M Lp = 〈1〉. Being
infinite, M includes two infinite subset Θ, Ξ such that M = Ξ ∪ Θ and
Ξ ∩ Θ = ∅. Let U = Drp∈ΘLp and V = Drp∈ΞLp, then both subgroups
U, V are K — invariant and 〈1〉 = U ∩ V . By Lemma 1.3, a subgroup
〈h, U〉 respectively 〈h, V 〉 ) is non-finitely generated. It follows that 〈h, U〉
(respectively 〈h, V 〉) is transitively normal in G. By Lemma 1.2, 〈h〉U/U
(respectively 〈h〉V/V ) is normal in K/U (respectively in K/V ), so that
〈h, U〉 and 〈h, V 〉 are normal in K. Then 〈h〉 = 〈h〉U ∩ 〈h〉V is normal
in K. In other words, every cyclic subgroup of K is normal in K. This
means that K is a Dedekind group.

1.5. Lemma. Let G be a group whose non-finitely generated subgroups are
transitively normal. Let p be a prime and P be a locally finite p-subgroup
of G. If P is not a Chernikov group, then P is a Dedekind group.

Proof. Let x be an arbitrary element of P and F be an arbitrary finite
subgroup of P , contains x. Since P is not a Chernikov group, P includes
an infinite elementary abelian p-subgroup A, which is F -invariant [15].
Let A = Drλ∈ΛAλ, where Aλ = 〈aλ〉 is a cyclic subgroup of order p, λ ∈ Λ.
By Lemma 1.1 every subgroup Aλ is F -invariant, λ ∈ Λ. There exists
an infinite subset M of such that 〈x〉 ∩ Drλ∈M Aλ = 〈1〉. Being infinite,
M includes two infinite subset ΘΞ, such that M = Ξ ∪ Θ and Ξ ∩
Θ = ∅. Let U = Drλ∈ΘAλ and V = Drλ∈ΞAλ, then both subgroups
U, V are F -invariant and U ∩ V = 〈1〉. By Lemma 1.3, the subgroup
〈x, U〉 (respectively 〈x, V 〉) is non-finitely generated. It follows that 〈x, U〉
(respectively 〈x, V 〉) is transitively normal in G. By Lemma 1.2, 〈x〉U/U
(respectively 〈x〉V/V ) is normal in FA/U (respectively in FA/V ), so that
〈x, U〉 and 〈x, V 〉 are normal in FA. Then 〈x〉 = 〈x〉U ∩ 〈x〉V is normal
in FA. In particular, 〈x〉 is normal in F . Since it is true for each finite
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subgroup F of P, 〈x〉 is normal in P . Thus every cyclic subgroup of P is
normal in P . This means that P is a Dedekind group.

1.6. Lemma. Let G be a group whose non-finitely generated subgroups
are transitively normal. Let P be a Chernikov subgroup of G. If P is not
a Dedekind group, then its divisible part D is quasicyclic; moreover, if P
is locally nilpotent, then P/D is a Dedekind group.

Proof. Suppose that D is not quasicyclic. Let x be an arbitrary element of
D. Since D is divisible, there exists a quasicyclic subgroup X of D, which
contains x. Being quasicyclic, the subgroup X is non-finitely generated,
so that it is transitively normal. Since X is subnormal in P, X is normal
in P [1, Lemma 1.1]. Since X is quasicyclic, every subgroup of X is
P -invariant. In particular, a subgroup 〈x〉 is normal in P . It follows that
every subgroup of D is normal in P . Let g be an arbitrary element of P .
Without loss of generality we may suppose that g is a p-element for some
prime p. Then 〈y〉 = 〈g〉∩D is a cyclic p-subgroup. In this case D includes
a quasicyclic p-subgroup Y such that 〈y〉 ≤ Y . Since Y is divisible, there
exists a subgroup Z such that D = Y × Z [16, Theorem 21.2]. As we
proved above, this subgroup Z is P -invariant. The subgroups 〈g〉Y and
〈g〉Z are both infinite, therefore they are non-finitely generated. It follows
that both subgroups 〈g〉Y and 〈g〉Z are transitively normal in G. By
Lemma 1.2, 〈g〉Y/Y (respectively 〈g〉Z/Z) is normal in P/Y (respectively
in P/Z), so that 〈g〉U and 〈g〉Z are normal in P . Then the equations

〈g〉Y ∩ 〈g〉Z = 〈g〉(〈g〉Y ∩ Z) = 〈g〉(〈g〉Y ∩ D ∩ Z) =

〈g〉(〈y〉 ∩ Z) = 〈g〉

shows that 〈g〉 is normal in P . Thus every cyclic subgroup of P is normal
in P . This means that P must be a Dedekind group. This contradiction
shows that D is a quasicyclic subgroup.

Assume that P is locally nilpotent. For every element g ∈ P the
subgroup 〈g, D〉 is non-finitely generated. It follows that 〈g, D〉 is are
transitively normal in G. By Lemma 1.2, 〈g〉D/D is normal in P/D. Thus
every cyclic subgroup of P/D is normal in P/D. This means that P/D is
a Dedekind group.

We need now information about structure of finite groups whose cyclic
subgroups are transitively normal.
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1.7. Lemma. Let G be a finite group whose cyclic subgroups are transi-
tively normal. If Gp is a Sylow p-subgroup of G, then Gp is a Dedekind
group. Moreover, G = HλG2; in particular, G is soluble.

Proof. Since Gp is nilpotent, every cyclic subgroup of Gp by Lemma 1.2
is normal. It follows that every subgroup of Gp is normal in Gp. This
means that Gp is a Dedekind group.

Let V = NG(G2), then V = G2λS where S is a Hall 2’-subgroup of V .
If x is an element of G2 of order 2, then the subgroup 〈x〉 is subnormal in V .
Lemma 1.2 implies that 〈x〉 is normal in V . We remark that any normal
subgroup of order 2 lies in the center of a group. Put Ωk(G2) = 〈g|g ∈ G2

and |g| ≤ 2k〉. Then Ω1(G2) ≤ ζ(V ). Using similar arguments we prove
that Ωk+1(G2)/Ωk(G2) ≤ ζ(V/Ωk(G2)) for every positive integer k. It
follows that the upper hypercenter of V includes G2. It follows that
V = G2 × S. By Theorem 1 of the paper [17], G = HλG2.

1.8. Lemma. Let G be a finite group whose cyclic subgroups are transi-
tively normal. Then G is supersoluble.

Proof. Let U, V be normal subgroups of G such that U ≤ V and a factor
V/U is chief. Lemma 1.7 shows that V/U is an elementary abelian p-group
for some prime p.

Let x ∈ V \U . The subgroup 〈x〉 is transitively normal in G, so that
〈x〉U/U is transitively normal in G/U . Lemma 1.2 shows that 〈x〉U/U
is normal in G/U . Since the factor V/U is G-chief, V/U = 〈x〉U/U .
Hence every G-chief factor of G is cyclic. It follows that a group G is
supersoluble.

Let G be a group and X be a class of groups. Then the intersection
GX of all normal subgroups H of G such that G/H ∈ X is called the
X-residual of a group G.

In particular, if G is finite group and X = N is a class of all nilpotent
groups, then we will say about the nilpotent residual GN of a group
G. We observe that in this case, G/GN is nilpotent.

If X = LN is a class of all locally nilpotent groups, then we will say
about the locally nilpotent residual GLN of a group G. We observe that
in general the factor-group G/GLN is not locally nilpotent. However, if a
group G is locally finite, then G/GLN is locally nilpotent.



Jo
ur

na
l
A
lg

eb
ra

D
is
cr

et
e

M
at

h.

L.A. Kurdachenko, N.N. Semko (Jr.), I .Ya. Subbotin 91

1.9. Corollary. Let G be a finite group whose cyclic subgroups are transi-
tively normal. If L is a nilpotent residual of G, then the following assertions
hold:

(i) L is abelian;

(ii) 2 ∈ Π(L);

(iii) G/L is a Dedekind group;

(iv) every subgroup of L is G-invariant.

Proof. By Lemma 1.7, G = HλG2 where G2 is a Sylow 2-subgroup of G.
In particular, G/H is nilpotent. It follows that L ≤ H, so that 2 6∈ Π(L).
By Lemma 1.8, G is supersoluble, and therefore the derived subgroup
[G, G] is nilpotent. Clearly, the inclusion L ≤ [G, G] implies that L is
nilpotent. Finally, using again Lemma 1.7 and take into account that
2 6∈ Π(L), we obtain that the Sylow p-subgroups of L are abelian for
every prime p, so that L is abelian itself. Since G/L is nilpotent, 〈g〉L/L
is normal in G/L by Lemma 1.2. It follows that G/L is a Dedekind group.
Finally, Lemma 1.2 proves (iv).

1.10. Corollary. Let G be a finite group whose cyclic subgroups are
transitively normal. Then the derived length dl(G) is at most 3.

Proof. By Corollary 1.9, the locally nilpotent residual L of G is abelian
and G/L is a Dedekind group. Then dl(G/L) ≤ 2, so that dl(G) ≤ 3.

1.11. Lemma. Let G be a locally soluble periodic group whose non-
finitely generated subgroups are transitively normal. Suppose that G is not
a Chernikov group. If F is an arbitrary finite subgroup of G, then every
cyclic subgroup of F is transitively normal in F .

Proof. Since G is not a Chernikov group, it includes an F -invariant infinite
abelian subgroup A = Drλ∈ΛAλ, where Aλ = 〈aλ〉 is a cyclic subgroup of
prime order, λ ∈ Λ [15]. By Lemma 1.1, every subgroup Aλ is F -invariant,
λ ∈ Λ. Since F is finite, there exists an infinite subset M of such that
F ∩ Drλ∈M Aλ = 〈1〉. Let V = Drλ∈M Aλ. We note that the subgroup
V is F -invariant and F ∩ V = 〈1〉. Let x be an arbitrary element of F .
Lemma 1.3 shows that the subgroup 〈x, V 〉 is non-finitely generated. It
follows that 〈x, V 〉 is transitively normal in G. In particular, 〈x〉V/V is
transitively normal in FV/V . The isomorphism F ∼= F/(F ∩ V ) ∼= FV/V
shows that 〈x〉 is transitively normal in F .
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1.12. Corollary. Let G be a locally soluble periodic group whose non-
finitely generated subgroups are transitively normal. Suppose that G is
not a Chernikov group. Then the following assertions hold:

(i) the locally nilpotent residual L is abelian;

(ii) 2 6∈ (L);

(iii) G/L is a Dedekind group;

(iv) every subgroup of L is G-invariant.

Proof. Let L be a local system of G consisting of all finite subgroups.
If F ∈ L, then Lemma 1.11 shows that every cyclic subgroup of F is
transitively normal in F . Since G/L is locally nilpotent, the isomorphism
F/(F ∩ L) ∼= FL/L shows that F/(F ∩ L) is nilpotent. It follows that
F ∩ L includes a nilpotent residual KF of the subgroup F . On the other
hand, if H is a finite subgroup of G such that F ≤ H and KH is the
nilpotent residual of the subgroup K, then using again the isomorphism
F/(F ∩KH) ∼= FKH/KH , we obtain that F/(F ∩KH) is nilpotent, which
implies KF ≤ F ∩ KH ; in particular, F ≤ H implies that KF ≤ KH . In
other words, the system K = {KF |F ∈ L} is also local. It follows that
K = ∩F ∈LKF is a normal subgroup of G. For every finite subgroup F
we have F ∩ K = KF , so that F/(F ∩ K) = F/KF is nilpotent. The
isomorphism F/(F ∩ K) ∼= FK/K shows that every finite subgroup of
G/K is nilpotent. It follows that G/K is locally nilpotent, so that L ≤ K.
On the other hand, as we showed above, L includes the nilpotent residual
KF of each finite subgroup F of G, so that L includes ∪F ∈LKF = K. Hence
L = ∪F ∈LKF . Using now Lemma 1.11 and Corollary 1.9 we conclude that
L is abelian and 2 6∈ Π(L). Let x, y be two arbitrary element of G, put
X = 〈x, y〉. Then X is finite. Using again Lemma 1.11 and Corollary 1.9
we obtain that X/KX = X/(X ∩ L) ∼= XL/L is a Dedekind group. It
follows that (xL)yL = (xL)t for some positive integer t. This means that
G/L is a Dedekind group.

Similarly, let g ∈ L and let h be an arbitrary element of G, put
F = 〈g, h〉. Then F is finite and g ∈ F ∩ L = KF . Using Lemma 1.11
we obtain that every cyclic subgroup of F is transitively normal in F .
Corollary 1.9 implies that gh = gm for some positive integer m. Since it is
true for an arbitrary element h ∈ G, the subgroup 〈g〉 is G-invariant.

Proof of theorem A

Assume first that G is not a Chernikov group. Let L be the locally
nilpotent residual of G. Suppose that Π(L) ∩ Π(G/L) 6= ∅, and choose
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a prime q with the property q ∈ Π(L) ∩ Π(G/L). By Corollary 1.12, L
is abelian, thus L = Drp∈Π(L)Lp where Lp is the Sylow p-subgroup of
L. Let Q = Lq and R = Drp6=qLp. Then Q ∼= L/R. Since q ∈ Π(G/L),
the Sylow q-subgroup S/L is non-identity. We recall that G/L is locally
nilpotent by Corollary 1.12, so that S/L is normal in G/L. It follows
that S/R is a normal Sylow q-subgroup of G/R. Let x ∈ S\R, g be an
arbitrary element of G. Put F = 〈x, g〉. Lemma 1.11 shows that every
cyclic subgroup of F is transitively normal in F . The subgroups S ∩F and
R ∈ F are normal in F and (S ∩ F )/(R ∩ F ) is a q-group. By Lemma 1.2,
every cyclic subgroup of (S ∩ F )/(R ∩ F ) is F -invariant, in particular,

(x(R ∩ F ))g(R∩F ) = (x(R ∩ F ))t = xt(R ∩ F )

for some positive integer t. It follows that (xR)gR = xtR = (xR)t. Since
this is true for every element g ∈ G, the subgroup 〈xR〉 is G-invariant.
If we suppose that S/R ≤ ζ(G/R), then the factor-group G/R is locally
nilpotent, and we obtain a contradiction with the choice of R. This
contradiction shows that G/R 6= CG/R(S/R). Since S/R is a Sylow q-
subgroup of G/R, there exists the q′-element zR 6∈ CG/R(S/R). Choose
the element y ∈ S\R such that (zR)(yR) 6= (yR)(zR). Let H/R be
an arbitrary finite subgroup of S/R, containing yR. By proved above,
every subgroup of H/R is 〈zR〉-invariant and zR 6∈ CG/R(H/R). Then
H/R is abelian [18]. It follows that S/R is abelian. If we suppose that
L/R ≤ ζ(G/R), then the factor-group G/R is locally nilpotent, and we
obtain a contradiction with the choice of R. This contradiction shows that
G/R 6= CG/R(L/R). Since S/R is an abelian Sylow q-subgroup of G/R,
there exists a q-element vR ∈ CG/R(L/R). Choose the element d ∈ S\L
such that dp ∈ L. By proved above, the subgroup 〈dR〉 is G-invariant,
which implies that 〈dL〉 is also G-invariant. Since G/L is locally nilpotent,
D/L = 〈dL〉 ≤ ζ(G/L). Then [D/L, vR]L/R, in particular, [D/R, vR] 6=
D/R. Since S/R is an abelian q-group, Proposition 2.12 of the paper [19]
shows that [D/R, vR] × CD/R(vR) = D/R. Then from [D/R, vR] 6= D/R
we obtain that CD/R(vR) 6= 〈1〉. Choose now in CD/R(vR) an element cR
of order p. Let now aR be an element of [D/R, vR] having order p. Since
every subgroup of D/R is 〈vR〉-invariant and aR 6∈ CD/R(vR), (aR)xR =
(aR)m where m is a p′-number; moreover, m 6≡ 1(modp). We have

(acR)xR = ((aR)(cR))xR = (aR)xR(cR)xR = (aR)xR(cR) = (aR)m(cR).

On the other hand, since acR 6∈ CD/R(vR), (acR)xR = (acR)t where t
is also p′-number such that t 6≡ 1(mod p). Hence (aR)m(cR) = (acR)t =
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(aR)t(cR)t, it follows that m ≡ t(mod p) and t ≡ 1(mod p), and we ob-
tain a contradiction. This contradiction proves that Π(L) ∩ Π(G/L) 6= ∅.

Corollary 1.12 shows that L is abelian, 2 6∈ Π(L), G/L is a Dedekind
group, every subgroup of L is G-invariant. In other words, all conditions of
Theorem 6.1.1 of paper [5] are satisfied. By this theorem G is a T -group.

Consider now the case when G is a Chernikov group. Suppose that D
is not a Dedekind group. Then Lemma 1.6 shows that Y is a quasicyclic
group. Let H/Y is an arbitrary subgroup of G/Y . Clearly, H is non-finitely
generated, so that H is transitively normal in G. Hence every subgroup
of G/Y is transitively normal. It follows that G/Y is a T -group.

1.14. Corollary. Let G be a periodic (locally soluble)-by finite group
whose non-finitely generated subgroups are transitively normal. If G is
not a Chernikov group, then G is a T -group.

Proof. Let K be a normal locally soluble subgroup of G. Then K is
not a Chernikov group. If g ∈ G K, then the subgroup 〈g, K〉 is non-
finitely generated. It follows that 〈g, K〉 is transitively normal in G. Then
〈g, K〉/K = 〈g〉K/K is transitively normal in G/K. In other words, every
cyclic subgroup of G/K is transitively normal in G/K. Corollary 1.10
shows that G/K is soluble. Then G is locally soluble, and we can apply
Proposition 1.13.

2. The locally nilpotent groups whose non-finitely
generated subgroups are transitively normal

A group G is said to have finite 0-rank r0(G) = r if G has an
ascending series whose factors are either infinite cyclic or periodic and
if the number of infinite cyclic factors is exactly r. If G has another
ascending series whose factors are either infinite cyclic or periodic, then
it is not hard to see that the number of infinite cyclic factors in this new
series is also r. It shows that r0(G) is an invariant of the group G.

If G has an ascending series with periodic and infinite cyclic factors
and the set of infinite cyclic factors are infinite, then we will say that the
group G has infinite 0-rank.

Otherwise we will say that G has no 0-rank.

2.1. Lemma. Let G be a group whose non-finitely generated subgroups
are transitively normal. If G includes a normal free abelian subgroup of
infinite 0-rank, then G is a Dedekind group.
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Proof. Let A be a normal free abelian subgroup of infinite 0-rank, then
A = Drλ∈ΛAλ where Aλ = 〈aλ〉 is an infinite cyclic subgroup, λ ∈ Λ.
By Lemma 1.1, every subgroup Aλ is G-invariant, λ ∈ Λ. Let x be an
arbitrary element of a group G. There exists an infinite subset M of Λ
such that 〈x〉 ∩ DrλßM Aλ = 〈1〉. Being infinite, M includes two infinite
subset ΘΞ, such that M = Ξ ∪ Θ and Ξ ∩ Θ = ∅. Let U = Drλ∈ΘAλ and
V = Drλ∈ΞAλ; then both subgroups U, V are G-invariant and U ∩V = 〈1〉.
By Lemma 1.3, the subgroup 〈x, U〉 (respectively 〈x, V 〉) is non-finitely
generated. It follows that 〈x, U〉 (respectively 〈x, V 〉) is transitively normal
in G. By Lemma 1.2 〈x〉U/U (respectively 〈x〉V/V ) is normal in G/U
(respectively in G/V ), so that 〈x, U〉 and 〈x, V 〉 are normal in G. Then
〈x〉 = 〈x〉U ∩ 〈x〉V is normal in G. In particular, 〈x〉 is normal in G.
Thus every cyclic subgroup of G is normal in G. This means that G is a
Dedekind group.

2.2. Corollary. Let G be a group whose non-finitely generated subgroups
are transitively normal. If G includes an ascendant free abelian subgroup
of infinite 0-rank, then G is a Dedekind group.

Proof. Let A be an ascendant free abelian subgroup of infinite 0-rank. By
Lemma 1.1, the subgroup A is normal in G, so we may apply Lemma 2.1.

If G is a group, then by Tor(G) we will denote the maximal normal
periodic subgroup of G. We recall that if G is a locally nilpotent group,
then Tor(G) is a (characteristic) subgroup of G and G/Tor(G) is torsion-
free.

2.3. Lemma. Let G be a group whose non-finitely generated subgroups
are transitively normal. Suppose that L is a locally nilpotent radical of G.
If its periodic part Tor(L) is not a Chernikov group, then L is a Dedekind
group.

Proof. Let T = Tor(L). Then T = Drp∈Π(L)Tp where Tp is a Sylow
p-subgroup of L, p ∈ Π(L). Clearly every subgroup Lp is G-invariant.
The fact p ∈ Π(L) means that Tp 6= 〈1〉. Thus if Π(L) is infinite, then
the decomposition T = Drp∈Π(L)Tp is infinite. Suppose now that the set
Π(L) is finite. Then it includes a prime p such that the Sylow p-subgroup
Tp of T is not a Chernikov group. By Lemma 1.5, the subgroup Tp is a
Dedekind group. If p 6= 2, then Tp is abelian. If p = 2, then either Tp is
abelian or Tp = Q × B where Q is a quaternion group and B is abelian.
In both cases, Tp includes the G-invariant elementary abelian p-subgroup
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A. We have A = Drλ∈ΛAλ, whereAλ = 〈aλ〉 is a cyclic subgroup of
order p, λ ∈ Λ. By Lemma 1.1, every subgroup Aλ is G-invariant. Thus
in every case, L includes the subgroup D = Drλ∈ΛDλ, where Dλ is a
non-identity G-invariant subgroup for each λ ∈ Λ and F the index set
Λ is infinite. Let g be an arbitrary element of L and F be an arbitraty
finitely generated subgroup of L, which contains g. Since F is finitely
generated and nilpotent, it satisfies the maximal condition. It follows that
F ∩D ≤ Drλ∈KDλ for some finite subset K. Then F ∩Drλ∈Λ KDλ = 〈1〉.
Since the subset Λ K is infinite, the subgroup 〈g〉(Drλ∈Λ KDλ) is non-
finitely generated. It follows that 〈g〉(Drλ∈Λ KDλ) is transitively normal
in G, in particular, it is transitively normal in F (Drλ∈Λ KDλ). On the
other hand, F ∼= F/(F ∩ Drλ∈Λ\KDλ) ∼= F (Drλ∈Λ\KDλ)/(Drλ∈Λ\KDλ).
From this isomorphism we obtain that 〈g〉 is transitively normal in F .
Since F is nilpotent, Lemma 1.2, shows that 〈g〉 is normal in F . Since
it is true for every finitely generated subgroup of L, 〈g〉 is normal in L. It
follows that L is a Dedekind group.

2.4. Lemma. Let G be a nilpotent torsion-free group whose non-finitely
generated subgroups are transitively normal. If its center ζ(G) is non-
finitely generated, then G is abelian.

Proof. Put Z = ζ(G). Choose in Z a free abelian subgroup C such
that Z/C is periodic. If r0(C) is infinite, then G is a Dedekind group
by Corollary 2.2. Suppose now that C is finitely generated. Since G is
torsion-free, G/Z is also torsion-free (see, for example, [20, § 66]). Put
Dn = Cn, n ∈ N . If Π(Z/C) is infinite, then Π(Z/Dn) is also infinite for
each n ∈ N . Lemma 2.3 shows that in this case, the factor-group G/Dn is
a Dedekind group, n ∈ N . Since G/Z is torsion-free, G/Dn is not periodic
and, being a Dedekind group, is abelian. It is true for each n ∈ N , so that
[G, G] ≤ Dn for each n ∈ N . Hence [G, G] ≤ ∩n∈N Dn = 〈1〉.

Assume now that a set Π(Z/C) is finite. Let π = P\(Z/C) (here
P is the set of all prime numbers). Then π is infinite. Since C is free
abelian, ∩p∈πDp = 〈1〉. By the choice of π, C/Dp is a Sylow p-subgroup
of Z/Dp. It follows that Z/Dp = C/Dp × Qp/Dp where Qp/Dp is a
Sylow p′-subgroup of Z/Dp. In particular, C ∩ Qp = Dp. The finiteness
of C/Dp implies that the subgroup Qp is non-finitely generated. Since
G is nilpotent, the subgroup 〈g, Qp〉 is non-finitely generated. Hence
〈g, Qp〉 is transitively normal in G. We recall that in a nilpotent group
every subgroup is subnormal. Hence 〈g, Qp〉 being transitively normal
and subnormal in G is normal in G [1, Lemma 1.1]. In other words, every
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cyclic subgroup of G/Qp is normal. It follows that G/Qp is a Dedekind
group. Since it is not periodic, it is abelian. This is true for each p ∈ π, so
that [G, G] ≤ Dp for each p ∈ π. Hence [G, G] ≤ ∩p∈πQp = Q. We have

Q ∩ C = (∩p∈πQp) ∩ C = ∩p∈π(Qp ∩ C) = ∩p∈πDp = 〈1〉.

Thus Q ∼= Q/(Q∩C) ∼= QC/C ≤ Z/C. We remark that Z/C is a periodic
group, so that Q must be periodic. On the other hand, G is torsion-free,
hence every its periodic subgroup is identity. Consequently Q = 〈1〉, which
follows that [G, G] = 〈1〉 and G is abelian.

2.5. Proposition. Let G be a nilpotent torsion-free group whose non-
finitely generated subgroups are transitively normal. If G is non-finitely
generated, then G is abelian.

Proof. Suppose that G has an infinite 0-rank. Then G includes a free
abelian subgroup A having infinite 0-rank [21, Theorem 5]. Since G is
nilpotent, A is subnormal in G. Then Corollary 2.2 implies that G is a
Dedekind group. Being not periodic, G is abelian. Assume now that G
has finite 0-rank. If we suppose that ζ(G) is finitely generated, then G is
finitely generated [22, Corollary 1 of Lemma 2.6]. Thus ζ(G) is non-finitely
generated, and we can apply Lemma 2.4.

2.6. Proposition. Let G be a locally nilpotent torsion-free group and
A a free abelian subgroup of infinite countable 0-rank. If F is a finitely
generated subgroup of G, then either 〈F, A〉 includes the F -invariant
subgroups K, L such that K ≤ L, K of finite 0-rank and L/K is an
abelian torsion-free group of infinite 0-rank, or 〈F, A〉 has an infinite
central series

〈1〉 = D0 ≤ D1 ≤ D2 ≤ . . . ≤ Dn ≤ Dn+1 ≤ . . .

whose factors are torsion free and of finite 0-rank.

Proof. We have A = Drn∈N An, where An = 〈an〉 is an infinite cyclic
subgroup, n ∈ N . Put Ln = 〈F, a1, . . . , an〉, n ∈ N . By this choice, Ln

is an infinite finitely generated subgroup for each n ∈ N . We remark
that the center Zn = ζ(Ln) is a pure subgroup of Ln for each n ∈ N
(see, for example, [20, § 66, 67]). The inclusion F ≤ Ln implies that
Zn is an F -invariant subgroup for each n ∈ N . The subgroup Z1 is
abelian, therefore Z1Z2 is also abelian. Since L2/Z2 is torsion-free, then
either Z1 ≤ Z2 or r0(Z1Z2)〉r0(Z)1). By the same reason a product
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(Z1Z2)Z3 is abelian and either (Z1Z2) ≤ Z3 or r0(Z1Z2Z3)〉r0(Z1Z2).
Using the similarly arguments, we obtain that the subgroups Z1 . . . Zn

are abelian for each n ∈ N . Then and its union C1 = ∪n∈N Z1 . . . Zn is
abelian. We note that every subgroup Z1 . . . Zn is F -invariant for each
n ∈ N , therefore C1 is also F -invariant. We have the following two
possibilities: C1 has an infinite 0-rank, or r0(C1) is finite. In the first
case, put K = 〈1〉, L = C1. In the second case, there exists a positive
integer t such that r0(Z1 . . . Zt) = r0(Z1 . . . Zt+n) for all n ∈ N . As we
have seen above, this means that Z1 . . . Zt−1 ≤ Zt ≤ Zt+1 ≤ . . .. It
follows that C1 ≤ ζ(〈F, A〉), in particular, ζ(〈F, A〉) = D1 6= 〈1〉. We
remark that r0(D1) = r0(C1). In this case, we consider the factor-group
〈F, A〉/D1. This factor-group is torsion-free (see, for example, [20, § 66, 67]),
therefore we can repeat all previous arguments. Then either 〈F, A〉/D1

includes an F -invariant abelian subgroup C2/D1 having infinite 0-rank
or D2/D1 = ζ(〈F, A〉/D1) is a non-identity subgroup having finite 0-rank.
In the first case, put K = D1, L = C2. In the second case, we will consider
the factor-group 〈F, A〉/D2. Similar arguments prove the result.

2.7. Proposition. Let G be a locally nilpotent torsion-free group whose
non-finitely generated subgroups are transitively normal. If G is non-
finitely generated, then G is abelian.

Proof. Suppose that G has finite 0-rank. Then G is nilpotent [21, Theorem
5], and we can apply Proposition 2.5. Suppose now that G has infinite 0-
rank. Then G includes a free abelian subgroup A having infinite countable
0-rank [21, Theorem 5]. Let F be an arbitrary finitely generated subgroup
of G. Consider the subgroup 〈F, A〉. Proposition 2.6 shows that either
〈F, A〉 includes F -invariant subgroups K, L such that K ≤ L, K has finite
0-rank and L/K is an abelian torsion-free group of infinite 0-rank, or
〈F, A〉 has an infinite central series 〈1〉 = D0 ≤ D1 ≤ D2 ≤ . . . ≤ Dn ≤
Dn+1 ≤ . . ., whose factors are torsion free and have finite 0-rank.

Consider the first case. Put S = 〈F, L〉. There exists a hypercenter C
of S with a natural number including the subgroup K [23]. By Lemma 2.1,
S/K is a Dedekind group, in particular, it is nilpotent. Then S is likewise
nilpotent. Proposition 2.5 shows that S is abelian. It follows that F is
abelian.

Consider now the second case. Put D = ∪n∈N Dn and V = 〈F, D〉.
Since V/D = FD/D ∼= F/(F ∩ D) is nilpotent, V is hypercentral. By
the construction of D, r0(D) is infinite. Then V includes a free abelian
subgroup B having infinite countable 0-rank [21, Theorem 5]. We recall
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that the subgroup V satisfies the normalizer condition (see, for example,
[20, § 63]). It follows that the subgroup B is ascending. Using Corollary 2.2,
we obtain that V is a Dedekind group. Being non-periodic, V is abelian;
in particular, its subgroup F is abelian.

Consequently, every finitely generated subgroup of G is abelian. It
follows that G is abelian.

Proof of theorem B

Let T = Tor(G). If T is a non-Chernikov subgroup, then Lemma 2.3
shows that G is a Dedekind group. In particular, every subgroup of G,
which is non-finitely generated, is normal in G. Suppose now that T is a
Chernikov subgroup. Since G is locally nilpotent, some hypercenter of G
includes T . By Proposition 2.7, G/T is abelian or finitely generated. In
the second case G/T is nilpotent. Hence in both cases G is hypercentral.
We note that a hypercentral group satisfies the normalizer condition (see,
for example, [20, § 63]). In other words, every subgroup of G is ascendant.
In particular, every subgroup K of G, which is non-finitely generated,
is ascendant in G. Being transitively normal in G, K is normal in G
[1, Lemma 1.1].

3. The radical groups whose non-finitely generated sub-
groups are transitively normal

Following A.I. Maltsev [21] we say that a group G is a soluble A3-
group if G has a finite subnormal series 〈1〉 = K0 ⊳ K1 ⊳ . . . ⊳ Kn = G
whose factors either are abelian Chernikov group or torsion-free abelian
group of finite 0-rank.

3.1. Lemma. Let G be a group whose non-finitely generated subgroups
are transitively normal. Suppose that L is a locally nilpotent radical of G.
If L is a non-A3-group, then every subgroup of L is G-invariant.

Proof. Taking into account the results of papers [10, 11, 12] we can see
that Theorem 2.8 implies that L is a Dedekind group. If L is not periodic,
then L is abelian. If L is periodic, then L is nilpotent and abelian-by-finite.
Hence in every case, L includes a subgroup D = Drλ∈ΛDλ where D is a
non-identity cyclic subgroup for each and the index set is infinite. Let g
be an arbitrary element of L. Then 〈g〉 ∩ D ≤ Drλ∈KDλ for some finite
subset K, so that 〈g〉 ∩ Drλ∈Λ\KDλ = 〈1〉. Since subset Λ\K is infinite, it
includes two infinite subsets Θ, Ξ such that Λ\K = Ξ ∪ Θ and Ξ ∩ Θ = ∅.
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Let U = Drλ∈ΘDλ and V = Drλ∈ΞDλ, then U ∩ V = 〈1〉. Clearly the
subgroup 〈g, U〉 (respectively 〈g, V 〉) is non-finitely generated, therefore
〈g, U〉 (respectively 〈g, V 〉) is transitively normal in G. Being subnormal
in G, 〈g, U〉 (respectively 〈g, V 〉) is normal in G. Then 〈g〉 = 〈g〉U ∩ 〈g〉V
is normal in G. Thus every cyclic subgroup of L is normal in G. This
means that every subgroup of L is G-invariant.

3.2. Corollary. Let G be a radical group whose non-finitely generated
subgroups are transitively normal. Suppose that L is a locally nilpotent
radical of G. If L is a non-A3-group, then G/L is abelian.

Proof. By Lemma 3.1 every subgroup of L is G-invariant. Then G/CG(L)
is abelian (see, for example [24, Theorem 1.5.1]). We note that in a radical
group, the locally nilpotent radical includes its centralizer [9, Lemma 4].
It follows that G/L is abelian.

3.3. Proposition. Let G be a radical group whose non-finitely generated
subgroups are transitively normal. Suppose that G is not periodic. If the
locally nilpotent radical of G is a non-A3-group, then G is abelian.

Proof. Let L be the locally nilpotent radical of G. By Lemma 3.1, every
subgroup of L is G-invariant, and Corollary 3.2 shows that G/L is abelian.
It follows that G is an FC-nilpotent group. Then every finitely generated
subgroup of G is nilpotent-by-finite [25, Corollary 3.20], in particular,
it satisfies the maximal condition for all subgroups. As in the proof of
Lemma 3.1 we can obtain that L includes the subgroup D = Drn∈N Dn,
where Dn is a non-identity cyclic subgroup for each n ∈ N . Since G
is non-periodic, G contains an element g of infinite order. Let F be an
arbitrary finitely generated subgroup of G containing element g. There
exists a positive integer k such that 〈g〉 ∩ D ≤ Dr1≤n≤kDn. Put Kj =
Drn≥k+j+1Dn, j ∈ N , so that 〈g〉∩Kj = 〈1〉 for each j ∈ N . Furthermore,
∩j∈N Kj = 〈1〉. Consider the subgroup FKj . If we suppose that it is finitely
generated, then by proved above it satisfies the maximal condition for all
subgroups. In particular, its subgroup Kj satisfies the maximal condition
for all subgroups. On the other hand, Kj = Drn≥k+j+1Dn, and we obtain
a contradiction. This contradiction shows that FKj cannot be finitely
generated. Then FKj is transitively normal in G. By Lemma 3.1 the
subgroup Kj is normal in G, so that FKj/Kj is transitively normal in
G/Kj . Thus every finitely generated subgroup of G/Kj is transitively
normal in G/Kj . Furthermore, every subgroup of G/Kj , which is non-
finitely generated, is transitively normal in G/Kj . Hence each subgroup of



Jo
ur

na
l
A
lg

eb
ra

D
is
cr

et
e

M
at

h.

L.A. Kurdachenko, N.N. Semko (Jr.), I .Ya. Subbotin 101

G/Kj is transitively normal in G/Kj . In other words, G/Kj is a T -group.
The equation 〈g〉 ∩ Kj = 〈1〉 shows that G/Kj is non-periodic. Then
G/Kj is abelian [5, Theorem 6.1.1]. It follows that [G, G] ≤ Kj . Since it
is true for each j ∈ N, [G, G] ≤ ∩j∈N Kj = 〈1〉 and G is abelian.

Proof of theorem C

Let L be a locally nilpotent radical of G. If G is a non-A3-group, then
G is abelian by Proposition 3.3. Therefore suppose that L is a soluble
A3-group. Let T = Tor(G), then T is a Chernikov subgroup. Let D be a
divisible part of T . Denote by L1/D the locally nilpotent radical of G/D
and put T1/D = Tor(L1/D). Suppose that T1/D is a not a Chernikov
group. Then G/D is abelian by Proposition 3.3. We recall that a periodic
automorphism group of a Chernikov group is also Chernikov [26]. It
follows that T2 = CG(D) ∩ T1 is a not a Chernikov group. Since T2 is
nilpotent, T2 ≤ Tor(L), and we obtain a contradiction. This contradiction
shows that T1/D is a Chernikov group. Let D1/D be a divisible part of
T1/D. Then D1 is a Chernikov group, and being divisible, it is abelian.
It follows that D1 ≤ Tor(L), so that D1 = D. Thus T1/D is finite.

Since L/T is non-finitely generated, Proposition 2.5 shows that L/T is
abelian. Since T/D is finite, L/D is nilpotent. Proposition 2 of the paper
[27] shows that L/D includes a normal torsion-free subgroup H/D such
that L/H is bounded. In particular, the isomorphisms

H/D ∼= (H/D)/(H/D ∩ T/D) ∼= (H/D)(T/D)/(T/D) =

= (HT/D)/(T/D) ∼= HT/T ≤ L/T

shows that H/D is abelian. Let t be a positive integer such that the orders
of elements of L/H divide t, then (L/D)t = K/D ≤ H/D. We note that
K/D is a characteristic subgroup of L/D, so that K/D is G-invariant.
The inclusion K/D ≤ H/D shows that K/D is torsion-free.

Suppose that G/K is periodic. Being radical, it is locally finite. Let F
be an arbitrary finitely generated subgroup of G. Then FK/K is finite, so
that F1 = F ∩K has finite index in F . But in this case, the subgroup F ∩K
must be finitely generated (see, for example, [13, Corollary 7.2.1]). Then
F1/(F1 ∩ D) is finitely generated and nilpotent. Being finitely generated
and abelian-by-nilpotent, F1 satisfies the maximal condition for normal
subgroups [14, Theorem 3]. It follows that its normal abelian subgroup
F1 ∩D is bounded. Being a Chernikov group, it is finite. Hence F1 is finite-
by-nilpotent and F is polycyclic. It follows that the subgroup FD cannot
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be finitely generated. Then FD is transitively normal in G. In other
words, every finitely generated subgroup of G/D is transitively normal.
On the other hand, every subgroup, which is non-finitely generated, is
also transitively normal. Hence every subgroup of G/D is transitively
normal. This means that G/D is a T -group. Since G/D is not periodic,
it is abelian [5, Theorem 6.1.1].

Suppose now that G/K is not periodic. Denote by C/D a free abelian
subgroup of K/D such that K/C is periodic. Since L/K is a bounded
A3-group, it is finite. It follows that K/D not minimax, which follows that
the set Π(K/C) is infinite. Thus K/C = Drp∈Π(L/T )Kp/C where Kp/C is
a Sylow p-subgroup of K/C. Since the set Π(K/C) is infinite, it includes
two infinite subset Θ, Ξ such that Π(K/C) = Ξ ∪ Θ and Ξ ∩ Θ = ∅. Let
U/C = Drλ∈ΘKp/C and V/C = DrKp/C, then U ∩V = C. Clearly, both
subgroups U and V are non-finitely generated, and therefore they are
transitively normal in G. Being subnormal in G, the subgroups U and V are
normal in G. Then C = U∩V is normal in G. Let {pn|n ∈ N} be an infinite
set of primes. Put C1/D = (C/D)p1, C2/D = (C1/D)p2, Cn+1/D =
(Cn/D)pn + 1, n ∈ N . Then every subgroup Cn is G-invariant, and the
set Π(K/Cn) is infinite, n ∈ N . Thus the factor-group G/Cn includes the
periodic normal abelian subgroup K/Cn such that the set Π(K/Cn) is
infinite and G/K is not periodic. By Proposition 3.3, G/Cn is abelian, so
that [G, G] ≤ Cn. Since it is true for each n ∈ N, [G, G] ≤ ∩n∈N Cn = D.
It follows that G/D is abelian. Hence in every case, the factor-group G/D
is abelian.

Suppose that D is not quasicyclic. In this case, D includes a quasicyclic
p-subgroup Y such that D 6= Y . Since Y is divisible, there exists a
subgroup Z such that D = Y × Z [16, Theorem 21.2]. Both subgroups
Y, Z are non-finitely generated, and therefore they are transitively normal
in G. Being subnormal, Y, Z are normal in G [1, Lemma 1.1]. Let F be
an arbitrary finitely generated subgroup of G. Being finitely generated
and metabelian, F satisfies the maximal condition for normal subgroups
[14, Theorem 3]. It follows that its normal abelian subgroup F ∩ D is
bounded. Being a Chernikov group, it is finite. Hence F is finite-by-
abelian, in particular, F is polycyclic. It follows that FY is non-finitely
generated, so that FY/Y is transitively normal in G/Y . We remark that
every subgroup, which is non-finitely generated, also is transitively normal.
Hence every subgroup of G/Y is transitively normal. This means that
G/Y is a T -group. Since G/Y is non-periodic, it is abelian [5, Theorem
6.1.1]. By the same reasons, G/Z is abelian. Then [G, G] ≤ Y ∩ Z = 〈1〉,
which shows that G is abelian.
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Hence, if we suppose that G is non-abelian, then D is quasicyclic.
Let g ∈ G\D and consider the mapping Φg : d −→ [g, d], d ∈ D. Since
G/D is abelian, this mapping is a ZG-endomorphism of D. We have
Ker(Φg) = CD(g), Im(Φg) = [g, D], so that

D/Ker(Φg) = D/CD(g) = D/Ker(Φg) ∼= ZG Im(Φg) = [g, D].

If CD(g) is a proper subgroup of D, then it is finite, and the above
isomorphisms show that [g, D] must be infinite. Since D is quasicyclic,
[g, D] = D. Let x be another element of G. Then gx = gd for some element
d ∈ D. The equation [g, D] = D implies that there exists an element
b ∈ D such that d = [g, b]. Then gx = gd = g[g, b] = gg−1b−1gb = gb. It
follows that xb−1 ∈ CG(g). In other words, G = DCG(g). The intersection
CG(g) ∩ D = CD(g) = B is finite. Being finite-by-abelian and locally
nilpotent, B is nilpotent. We have already proved that T/D is finite. It
follows that Tor(B) is finite. Using again Proposition 2 of the paper [27],
we obtain that B includes a normal torsion-free subgroup B1 such that
B/B1 is bounded. Let m be a positive integer such that the orders of
elements of B/B1 divide m, then Bm = B2 ≤ B1. We note that Bm is a
characteristic subgroup of B, which implies that Bm is G-invariant. An
inclusion B2 ≤ B1 shows that B2 is torsion-free. In particular, B2∩D = 〈1〉.
Since B/B2 is bounded A3-group, it is finite.

Since G/D is abelian, [G, G] ≤ D, so that B2 ∩ [G, G] = 〈1〉. This
means that B2 ≤ ζ(G). In particular, the subgroup A = DB2 is a
normal abelian subgroup of G. Every subgroup of A, which is non-finitely
generated, is transitively normal in G. Being subnormal, it is normal in
G. Let F be a finitely generated subgroup of A. Then F ∩ D is finite,
so that DF/F ∼= D/(D ∩ F ) is infinite and hence quasicyclic. Being
divisible, DF/F has a complement in abelian subgroup A/F (see, for
example, [16, Theorem 21.2]). In other words, there exists a subgroup
A1 such that A/F = A1/F × DF/F . Since A/D is not minimax, A/DF
is also not minimax. It follows that A1/F is not minimax. Let T1/F =
Tor(A1/F ). Suppose first that the set π = Π(T1/F ) is infinite. Thus
T1/F = Drp∈πSp/F where Sp/F is a Sylow p-subgroup of T1/F . Since a
set π is infinite, it includes two infinite subset Θ, Ξ such that π = Ξ ∪ Θ
and Ξ ∩ Θ = ∅. Let A2/F = Drp∈ΘSp/F and A3/F = Drp∈ΞSp/F ,
then A2 ∩ A3 = F . Clearly, both subgroups A2 and A3 are non-finitely
generated, therefore they are transitively normal in G. Being subnormal
in G, A2 and A3 are normal in G. Then A2 ∩ A3 = F is normal in G.

Consider now the case when the set Π(T1/F ) is finite. Then T1/F
is a Chernikov subgroup, so that A1/F = T1/F × A4/F . We noted
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that the torsion-free subgroup A4/F is not minimax. Let E/F be a
finitely generated subgroup of A4/F such that A4/E is periodic. Let
{pn|n ∈ N} be an infinite set of primes. Put E1/F = (E/F )p1. Since the
set Π(A4/E1) is infinite, a Sylow p′

1-subgroup R1/E1 of A4/E1 is non-
finitely generated. Hence it is transitively normal and, being subnormal,
is normal. By its construction, R1 ∩ E = E1. Put E2/F = (E1/F )p2.
Again the Sylow p′

2-subgroup R2/E2 of R1/E2 is non-finitely generated.
As above it follows that R2 is normal in G. In a similar way, we define
inductively En+1/F = (En/F )pn + 1 and denote by Rn+1/En+1 the
Sylow pn+1-subgroup of Rn/En+1, n ∈ N . Then Rn+1 is normal in G and
Rn+1 ∩ E = En+1, n ∈ N . Since E/F is free abelian, ∩n∈N En/F = 〈1〉,
that is ∩n∈N En = F . Put R = ∩n∈N Rn. Then F ≤ R and

R/F ∩ E/F = (∩n∈N Rn/F ) ∩ E/F =

= ∩n∈N (Rn/F ∩ E/F ) = ∩n∈N En/F = 〈1〉.

Since A4/E is periodic and A4/F is torsion-free, R/F = 〈1〉 or R = F .
Since every subgroup Rn is normal in G, n ∈ N, F is likewise normal in G.

Thus every subgroup of A is G-invariant. Suppose that G 6= CG(A).
Then |G/CG(B2) = 2 (see, for example [24, Theorem 1.5.7]) and if h is
an element such that G = 〈h〉CG(A), then h2 ∈ CG(A) and ah = a−1 for
each element a ∈ A. It follows that [a, h] = a−2 for each a ∈ A. On the
other hand, if 1 6= a ∈ B2, then the inclusion B2 ≤ ζ(G) implies that
[a, h] = 1, so that a−2 = 1. Thus we obtain a contradiction, because B2

is torsion-free. This contradiction shows that G = CG(A). In particular,
A ≤ ζ(G) and G is nilpotent. Using Theorem 2.8 we obtain that every
subgroup of G, which is non-finitely generated, is normal in G. Since G
is not minimax. From the results of papers [10, 11, 12] it follows that G
must be abelian.
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