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ABSTRACT. We studies symmetry groups of boolean functions
and construct new way of description of this problem in matrices
language. Some theorems about constructions of symmetry groups
with using matrices are presented. Some properties of this approach
are given.

Introduction

The main objects of study of this paper are symmetry groups of boolean
functions. We want to provide some algorithms to describe special kinds
of permutation groups and use groups theoretic techniques to show which
features of constructed boolean functions are important in determining
the representability of this permutation groups.

The starting point of this paper is [3] and [4] where basic structures and
some specific constructions of boolean functions are given. In [7] author
show first known example of permutation groups which is 3 representable
but is not 2 representable. Moreover in [5], [7] and [8] analysis of direct
sum and wreath product of permutation groups is presented.

The problem of symmetry group of boolean functions is important
not only from algebraic point of view. One of the application is associated
with computer science. We take a device (or "module") M with n inputs,
each of which can be in one of two possible states 0 or 1. An outputs
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of M can assume 0 or 1 too. That kind of device can be represented
by boolean function f which n variables (we can consider generalized
modules M which have outputs from the set {0, 1,...,k — 1}). In general
a value of that function depends on order of inputs. Of course there could
exist some permutation which leave f invariant. For example when f is
invariant under any permutation of inputs then we say that module M is
symmetric. In this paper we consider a partial-symmetric functions. It
is possible that study of this problem could help in optimizing module
positioning on integrated circuit in VLSI design technology.

There are many articles related to this problem. In this paper the main
is [3] where authors study boolean functions invariance groups and show
how we can construct examples of boolean functions which represent some
special kinds of permutation groups. Another important work is [7] where
the first known example of permutation groups which is 3 representable
but is not 2 representable is given.

1. Preliminaries

Let {0,1}" is a set of all boolean vectors of length n. A mapping
f:{0,1}" ={0,1,..,k =1}, k> 2

is called k valued boolean function. A set of all k& valued boolean functions
with n variables is denoted as a B,, . We put B,, for a set of all boolean
functions with n variables and two possible values 0 and 1.

Let f € B, and let o is a permutation from a symmetric group S,
of set {1,...,n}. We define an action o on f(z1,...,z,) in the following
way:

fa(mla r2;, ..., xn) = f($0(1)7 La(2)) s xa(n))
Let
S(f)={oceSn:f=f"}

It is easy to see that S(f) is a subgroup of group S,,. A group S(f) of all
permutation o € S, such, that

f(xl’x% ,xn) = f(:Eo(l)vma(Q)’ "->xa(n))

is called a symmetry group of k valued boolean function f. Moreover
the function f is called an invariant of the group S(f). Equivalently the
group S(f) is called an invariant group of boolean function f. We put 0°
or 1* to denote i consecutive 0 or 1.
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A permutation group G < S, such, that G = S(f) for some boolean
function f : {0,1}" — {0,1,...,k — 1} is called a group representable
by the k valued boolean function f (or k representable). A permutation
group G is called representable if it is k representable for some k.

Now let G < S,,. The main point of research on permutation groups
and its representability as a symmetry group of some k valued boolean
function is to check how G act on the set {0,1}" of all boolean vectors of
length n. We can see that any permutation group (G, X) where |X|=n
could be seen as a group which act on the set {0,1}". An action is given
by the following condition:

xz—a%: (1:1,:62, ,.CEn) — ($0(1),:L'U(2), ...,ch(n))

An orbit of element z € X is defined as % = {27, 0 € G}.

We see that if G = S(f) for some f € B, then: (a) if z,y € {0,1}"
are in the same G-orbit, then f(z) = f(y); (b) for every 7 ¢ G there have
to exist element x € X such, that x and 27 are in different G-orbits and
flx) # f(a7).

For example a group S,, for some n is 2 representable. S,, = S(f)
for the constant boolean function f with n variables. A group {id} is
2 representable. The group {id} = S(f) where f(z) = 1 for z in the
form 01"~ and f(z) = 0 in other case (symbols 0° and 1° denote i
consecutive 0 or 1). Interesting and unexpected example is Sy x Sy =
{id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)} which is 3 representable but is not
2 representable. It was presented in [7]. We can ask which permutation
groups are representable (or 2 representable) as symmetry groups of
boolean functions. It is important that we work only with permutation
groups and we do not consider abstract groups at all. It is easy to proof,
that every abstract group is representable as a symmetry group of some
boolean function.

2. Matrix characterization

Let n is a positive integer number. Now we would like to consider a
module M which is represented by boolean function f: {0,1}" — {0,1}.
Every mapping at that form can be represented as a vector

X = (£(00...0), £(00...1), ..., f(11...1)) = (1, ..., x2n)

of value of that function. We say that this vector is the vector of value of
function f and we denote it by X;. We consider an order given by the
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following rule: ; = f(yi1, Vi, -, Yin) iff i = 27 Lyig +2" 200 4+ yi + 1
fori=1,2,...,2".
Let Von is a set of that kind of vector. So

Von ={X = (21, ...,x9n), 2, € {0,1},i = 1,2,..,2"}

Let Per(2™) is a set of all permutation matrices of size 2. An action of
a permutation o € S, at the boolean function f given by the rule

fa(xla PTRE I’n) = f(x0(1)7 Lg(2)y s xa(n))
can be considered as the matrices action in the following way
AXy =Xy (1)

where Xy € Van is a vector of value of function f. Here the vector Xy is
given, and we try to find every matrices A € Per(2") which preserve that
equality. First of all it is easy to see that if matrix A preserve the rule (1)
then A is an element of stabilizer Stabpe,(an)X .

We can characterize the stabilizer of element X;. We know that
Xt € Van so we can notice that there exist sets of indexes I = {i1, 42, ..., i1},
J ={j1,72, -, Jm} » k,m < 2"(I or J can be empty) such that [I|+|J| =

2™ and
& 1 iel
Y10 ied

So we see that
Stabpepany Xy = S(i1, 12, ..., i) © S(J1, 52, -+ Jm) (2)

Now the question is which permutation matrices from Stabpe,(an) Xy
correspond to permutations from S,, in following way: permutation o € S,
correspond to matrix A% € Per(2") iff o € S(f) & A’ Xy = Xy where
f:{0,1}" — {0,1} is some boolean function.

Let f+{0,1}" — {0,1}. Let X is a vector of value of that function.
Now we construct a mapping 1 : S,, — Per(2") such that

O (Stabpern Xr N Y(Sy)) = S(f)

A positive integer number & which is presented in binary form is denoted as
a (k)2. Let o € S,,. Now we consider a vector ¢ = ((0)2, (1)2, ..., (2" — 1)2).
This vector can be considered as a matrix H of size 2" X n where a row
with number ¢ is the ¢ coordinate of the vector ¢, i = 1,2,...,2". We
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denote an element of matrix H by h;;,1 <i < 2", 1 < j < n and'say
that this is a generalized Hamming’s matrix.

We transform a matrix H to H? = [h; ;-1(;)]1<i<2n 1<j<n. Now we
can create a vector h? = [h;]i1<i<an in the following way:

h; = hi,afl(l) conlh oy hi,a*1(2) ot 4 hi,afl(n)

for 1 <7 < 2™ We consider a vector h? in vertical form. In finally step
we create a matrix A% € Per(2"), A7 = [a;):

1 dla hj=j5—-1 . .
aij = { 0 h #i,_ | e (L2027
Now we can define a mapping ¢ : S,, — Per(2") as ¢(o) = A. It is easy
to see that it is an injection.

When we have mapping ¢ we can answer for a question about con-
struction of group S(f).

Theorem 1. Let n is a positive integer number and f :{0,1}" — {0, 1}
is a boolean function. Let Xy is a vector of value of function f and
Y 1S, — Per(2"™) is a mapping which we construct before. Then

S(f) =~ (Stabpe,@any X N(Sn))

Proof. When we have boolean funetion f : {0,1}" — {0,1} we can find a
vector Xy (vector of value of function f) and a group

Stabper(Qn)Xf = S(il,ig, . Zk) D S(jl,jz, ,jm)

as we show in (2). It is easy to see, that a set ¥(S,) N Stabpe,on) Xy
is a set of matrices which held the rule AX; = X, on one hand, and
correspond to some permutation o € S,, which preserve f on the other
hand. Moreover we see, that there are no other permutations 7 € S,
which preserve f, so

w_l(StabPer(Q")Xf N 77/)(‘9%)) = S(f)
0

Now we have a good looking for a problem of 2-representability of
permutation groups. There are no big differences between this situation
and a k-representability for £ > 2. Let f: {0,1}" — {0,1,...,k — 1}. Now
a vector X correspond to the boolean function f can be consider in
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the following way: there exist sets of indexes Iy = {4},9,..,40, }, 11 =
SR | k-1 k=1 k-1 ;
{01,825 ooyl Foooes Tom1 = {8]7 50 sy, Jomy <275 =0,1,0k —

1 (Ij can be empty) and E?;& |I;] = 2™ such that

0 1€ Iy

1 1€l
xTr; =

k—1 1€l

So
Stabperan) X = S(i, ... i) & S(if, oy ipy VB .. ® SV i L)

Then ¢~ (Stabpeyan X N(Sn)) = S(f).

As we could see before it is easy to construct a group Stabpe,(an) Xy for
some k-valued boolean function f. The most difficult problem is to decide
which matrices from Stabp,,(on) Xy correspond to some permutations
from S,, and how we can construct the group S(f). So now we try to
answer for question how we can construct w permutation o € S,, from
A? € Per(2") and which matrices A € Per(2") do not correspond to any
oEeS,.

Let M,,«,, is a set of all matrices of size n.

Definition 1. A matrix X, € M,«, correspond to the permutation
o € S, in the natural way if elements x;; of this matrix hold following
condition:

)1 for o(i)=j . .
ZL‘Z]—{ 0 for o(i) £ i,7 €4{1,2,...,n}

Let A € M, %, be a matrix which elements are only 0 or 1.

Definition 2. Matrix B € M,,«, obtain from a matrix A through chang-
ing an element 0 to o and 1 to 8 (o, 8 € R) is called a matrix (a, 5)-
associate with A. If we know « and /3 then we simply say that A and B
are associate (and we write A ass B).

Let v : S;, — Per(2") is the same mapping which we construct before.
Now with using Hamming’s generalized matrix we proof association of
matrices X, and A°.

Theorem 2. Let o € S,, and X, is a matriz which correspond to permu-
tation o in the natural way. Let (o) = A?. Then there exists matriz H
of size 2" x n such that matriz T := HT A°H and X, are (2"2,2"71)-
associate.
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Proof. Let o € S, A° € Per(2"). We have A% = [a;;], 1 < 4,5 <. 2™
Let H € Many,, is a generalized Hamming’s matrix, that is H = [hy;] ,
1<i<2r1<j<nand hig 2" 4+ hio 2" 2+ .+ hi,=i— 1
Moreover we put H1 A% = [wij], 1<1<n,1<j<2" Because of
construction of matrix A7 we have, that a;; = 1 if and only if

hi,o—l(l) con—l 4 hi7o.—1(2) I R hiyo.—l(n) =5—1
From that condition we get w,-1(;) ; = hj; what is equivalent to
wij = hjati) (3)

Let hy, ha, ..., hy, denote successive rows of matrix HL, while wy,ws, ..., wn
denote successive rows of matrix H” A?. From (3) we get that w; = P (iys
1 <1< n.

Because the matrix H is a generalized Hamming’s matrix and A €
Per(2") then the matrix I' := HT A H = [;;]'1 <4, j < n is consist from
elements in form v;; = o = 2n=2 or Yij & B = on=1,

Let 4,5 € {1,2,...,2"}. If there exists m € {1,2,...,2"} such that
Wim 7 hmj then ;5 = . If for all m € {1,2,...,2"} we have wip, = hmj
then ~;; = (.

So the matrix I' is in the form

[ ai#al)
%J_{B j=oli)

for 1 <i,j <n.
When we consider the mapping 0 — «,1 — 3 we see, that matrix I’
is (272 27~ 1).associate with X,. O

It is easy to see that if matrix A € Per(2") and there in no permutation
o € S, such that ¥(0) = A then matrix I'; := HT AH where H is a
generalized Hamming’s matrix is not associate with any permutation
matrix X of size n.

We can see that the mapping ¢ and the matrix I' := H” A H create
correspondence between S, and Per(2"). Now we ask what we can say
about this correspondence. A next theorem shows it’s two properties.

Theorem 3. Let n be a positive integer number. For any permutation
0,01,09 €85, we have:

a. (AO')T o A0_1 — (Ao)fl;

b. A%192 = A%2 A%1,
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Proof. a. We know, that HT A H and X, are associate and

HT (A H = (HTA°H)T ass XT = X, ass H'A° "H
So (A9)T = A°'. We show, that(A%)T = (A%)~!. This equality is
equivalent to A%(A%)T = E.
Let
c_ 1. )1 hi=j—1
A _[alj]a alj_{ 0 hi?éj—l

where h; = hj s-1(1) - an-l 4 hig-1(2) - 272 ot i .5—1(n)- Moreover

N ] b4 L=
(A> _[blj]a bU—{O h;;ﬁj—l

where h} = h; ,(1) ol i o2) - o2 4 hi o(ny (because of (AT =
A7,

Let A (A%)T = [cij] where ¢35 = Zinzl aiabaj. We know, that a;; = by
S0

Cij = § awz aj — § a’LOéa]Oé

That sum is equal 1 iff a;o = 1 and a;, = 1. We have a;, = 1 so
h@a.fl(l) gl —I—hlg 1) on=2 4 .+ h; iol(n) = @ — 1 and aj, = 1. So
hjo-101) on-t +hj - 1(2) 2n=2 4 —i—h],, 1(n) = @ — 1. From that two
conditions we have i =j so ¢;; = 1 iff i = j.

b. To show, that A%192 = A2 A°! we put

1 hi=j-1
0102 _ [4..] . —
A _[al]]aalj {0 hi?éj—l

where h; = h, -1

1,05 0y ()

-2
A e T A st o S P

Moreover
1 W= =1
o2 __ [}.. — 2
A —[bw]?bw_{o h#j—1
where h; = hi,agl(l) . 2n_1 + hi,a;1(2) . 2n_2 + ...+ hi,agl(ﬂ) and

” 1 W =j-1
A 12[%}»%‘:{ 0 h’.’;éj'—l
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Let A72 A% =

[dij], dij = Zin:l biaCqj. That sum can be reduce to only one component
i.e. dij =1iff bia =1 and Caj = 1. Let dij = 1. Then

Where h;/ = h’L,Ufl(l) . 2”71 + h270;1(2) ‘ 27’1,72 + cee + h’i,Ufl(

bia =1 = hj = hy o100y 27 by o1 2"ty =a—1 (4)

i,05 " (n)

Caj = 1= Y = by o1y 2" by o102 P et (= 1 (5)
Moreover from definition of H we have
ha1 2"Vt ha2 2"+t hap = a1 (6)
From (4) and (6) Y7, hi702—1(,€) 2k = 572 B - 27 F s0

hi)g;l(k) = hoc,ka 1 S k S n (7)

From (5) and (7)

h

o () = B J1<k<n (8)

i,a;lafl(k)
So from (5) and (8) we have, that

1 1 .
ha70;1(1)~2n +"'+ha,afl(n) =h 1 1(1)-2n +"'+hi,a;10fl(n) =7—-1

1,0, 01
S0 G5 = 1 L]

In that way we create a new language to describe symmetry groups
of boolean functions which represent module M. Now when we have
module M and boolean function f of M is given then we can create
a group S(f) in a following way: when we consider a boolean function
f:{0,1}" — {0,1,...,k — 1} then in natural way we can construct a
vector X of value of that function and a set Stabpe,(2n)Xr. Then because
of definition of mapping v : S, — Per(2") the group S(f) is equal to
w_l(StabpeT(Qn)Xf N1 (Sy)). From theorems 2 and 3 we have, that it
is not necessary to know all matrices ¢ (o) for all o € S,, because we
can consider only a matrices from Stabpe,(on) Xy and then through the
construction described in theorem 3 i.e. I' := HT A° H we can create a

group S(f).
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3. Application of matrix characterization to constructions
of symmetry groups of boolean functions

In this section we construct a boolean function which represent direct
sum and wreath product of symmetric groups.

Let (G,X) and (H,Y) are two permutation groups and |X| = n,
Y| = m. For X NY = () we construct a new group (G x H,X UY). An
action is given by the following condition:

(9,h) _ 29 ifze X
& {zh ifzeY

where z € X UY,g € G,h € H. We say that permutation group (G x
H,X UY) is a direct sum of permutation groups (G, X) and (H,Y’) and
denote it as G & H.

There are papers ([3], [7]) where direct sum of two permutation groups
are considered. Although, it is interesting to construct exact boolean
functions for some special kind of groups. Here we present construction of
2 valued boolean function which represent direct product of two symmetric
groups.

Let n1, no are any positive integer numbers, n; +ngo = n. We construct
boolean function f in the following way:

U1 1
V2 1
Vong 1
Xp=| V221 | = 0 (9)
(Y Uy
L UQ” - L 1 -

where v; =1 iff i = s-2"2 s =1,2,...,2™ and 0 otherwise, 1 = 2" +
1,..,2™

Theorem 4. For any positive integer ni, no the 2 valued boolean function
feonstructed in (9) hold the following condition

S(f) :Sm 695712
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Proof. Let ni,ny are any positive integer numbers, n; + no = n. We put
A ={1,2,...,m}, A2 = {n1 + 1,...,n1 + na}. Now we take a boolean
function f defined in (9). Let’s a vector Xy is a vector of value of that
boolean function. Now we show that S(f) = Sy, ® Sp,. If 0 € Sy, @ Sy,
then obviously matrix (o) preserve vector Xr so o € S(f). This situation
take places because permutation o can be thought as a pair (p, 7) where p
act inside block A1 and 7 act inside block Ay so matrix 1)(o) preserve Xy.

We show that if there exist element i € Ay such that o(i) & Aa then
o & S(f). So let there exists such element. We consider a boelean vector
z in the form 0"z, such that coordinate z; = 1.

The element v in the vector Xy corresponds to z is equal 1. Under
an action of matrix ¥ (o) on the X this vector can be transform to the
following elements: (a) v;, which corresponds to vector of type 1™ z5; (b)
v;, which corresponds to vector of type x,0"2; (c) any element v;, where
i#£s-2" s=1,2,..,2™. In situations (a),(b),(¢) we have that

A°X; £ Xy

Moreover element v which corresponds to vector x can not be transform
to element v" which correspond to the vector of type z;1"2. So S(f) =
Sny @ Sny- Ol

Another natural construction is wreath product of two permutation
groups. Let (G, X) and (H,Y") are permutation groups where |X| = n,
Y| = m. We take a group (G x H, X X Y). An action on the set X x Y
is given by the rule

(@) = (a9, y")

where ¢g; € G, for i = 1,2,....,m,h € H. We can see this action as
an action on the set A = {1,2,...,nm}. This set is divided into sets
A = {(i — 1)n+1,...;in}, for i = 1,2,...,m. Group G act inside A;
independently, H act on the indexes of A;.

As before in [3] and [7] authors consider wreath product of two per-
mutation groups, but we are interested in exact boolean function which
represent this product. Here we present construction of 2 valued boolean
function which represent wreath product of two symmetric groups.
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Let’s take ) } o
U1 1
Xf = (Y = (Y (10)
- 7}2’” - L 1 -

where v; = 1 iff vector 2 which corresponds to v; is in the form x;2,...2,,,,
z, =0"ora; =1",i=1,2,....,n9.

Theorem 5. For any positive integer ni, ny the 2 valued boolean function
f constructed in (10) hold following condition

S(f) = Sm ZSnz

Proof. Let ni,ny are any positive integer numbers, nino = n. We put
A1 = {1, 2, ceey nl}, A2 = {n1+1, ciey 2’01}, ceny An2 = {(ng—l)nl-i—l, ceny nlnz}.
Let’s take a boolean function f defined in (10) and a vector X of value
of that boolean function. Now we show that S(f) = Sy, 1 Sp,. It is easy
to see that for every permutation o € Sy, 1.S,, we have Xy = A7 X;.
From the other hand if o ¢ 'S,,, 1S, there exist positive integer ¢ such
that o(A}) # Ajl», for j = 1,2, ...,ny. Without loose of generality we can
assume that ¢ = 1. Now we consider an element v; = 1 which corresponds
to the boolean vector z = 1™0™...0". An action A% X give us a new
vector where element vy = 0. This situation take place because operation
A7 change elements from different blocks, but not all block is changed by
another block. We have
A7 Xy # Xy

50 S(f) = Snyl Sny O

4. Final remarks

The results of this paper show that we can construct the matrix
characterization of symmetry groups of boolean functions. In the section
2 we give some properties of this characterization. We show how we can
create permutations from S(f) when we have matrices which satisfy the
equation AX = X where X is a vector of value of function f. In the
section 3 using linearization techniques we give a special construction
of boolean functions which represent direct sum and wreath product of
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symmetric groups. Interesting question is to apply this characterization
of symmetry groups of boolean functions to construct boolean functions
which represent other well known permutation groups.

1]
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