Algebra and Discrete Mathematics Volume 13 (2012). Number 2. pp. 273 – 288 © Journal "Algebra and Discrete Mathematics"

On inverse operations in the lattices of submodules

A. I. Kashu

Dedicated to Prof. V.V. Kirichenko on the occasion of his seventieth birthday

ABSTRACT. In the lattice $L({}_{R}M)$ of submodules of an arbitrary left *R*-module ${}_{R}M$ four operation were introduced and investigated in the paper [3]. In the present work the approximations of inverse operations for two of these operations (for α -product and ω -coproduct) are defined and studied. Some properties of *left quotient* with respect to α -product and *right quotient* with respect to ω -coproduct are shown, as well as their relations with the lattice operations in $L({}_{R}M)$ (sum and intersection of submodules). The particular case ${}_{R}M = {}_{R}R$ of the lattice $L({}_{R}R)$ of left ideals of the ring *R* is specified.

1. Preliminaries

Let R be an associative ring with unity and R-Mod be the category of unitary left R-modules. We denote by $L(_RM)$ the lattice of submodules of an arbitrary left R-module $_RM$, and by $L^{ch}(_RM)$ the lattice of *characteristic* (fully invariant) submodules of $_RM$ (i.e. submodules $N \in L(_RM)$) such that $f(N) \subseteq N$ for every $f : _RM \to _RM$).

We remind that a *preradical* r in the category R-Mod is a subfunctor of identity functor of R-Mod, i.e. $r(M) \subseteq M$ and $f(r(M)) \subseteq r(M')$ for every

²⁰¹⁰ MSC: 16D90, 16S90, 06B23.

Key words and phrases: ring, module, preradical, lattice, α -product of submodules, left (right) quotient.

 $f: {}_{R}M \to {}_{R}M'$ ([4], [5], [6]). Every pair $N \subseteq M$, where $N \in L({}_{R}M)$, defines two preradicals α_{N}^{M} and ω_{N}^{M} by the rules:

$$\alpha_N^M(X) = \sum_{f: M \to X} f(N), \quad \omega_N^M(X) = \bigcap_{f: X \to M} f^{-1}(N),$$

for each $X \in R$ -Mod. We mention the following two particular cases: every module $_{R}M$ defines the preradical r^{M} by $r^{M}(X) = \sum_{\substack{f:M \to X \\ f: X \to M}} Im f$ (i.e. $r^{M} = \alpha_{M}^{M}$) and the preradical r_{M} by $r_{M}(X) = \bigcap_{\substack{f:X \to M \\ f:X \to M}} Ker f$ (i.e. $r_{M} = \omega_{0}^{M}$). We denote by $Gen(_{R}M)$ the class of modules generated by $_{R}M$.

Using the preradicals of types α_N^M and ω_N^M , in the works [1], [2] and [3] four operations in $L(_RM)$ were introduced and studied for an arbitrary module $_RM$. We remind two of these operations (α -product and ω -coproduct), which will be used in continuation.

Definition 1.1. Let $K, N \in L({}_{R}M)$. The α -product of K and N is defined as the following submodule of ${}_{R}M$:

$$K \cdot N = \alpha_K^M(N) = \sum_{f: M \to N} f(K).$$

In the next statement we give some properties of this operation ([1], [2], [3]).

Proposition 1.1. 1) The operation of α -product is monotone in both variables:

 $\begin{array}{rcl} K_1 \ \subseteq \ K_2 \ \Rightarrow \ K_1 \cdot N \ \subseteq \ K_2 \cdot N, \ for \ every \ N \in \boldsymbol{L}(_RM); \\ N_1 \ \subseteq \ N_2 \ \Rightarrow \ K \cdot N_1 \ \subseteq \ K \cdot N_2, \ for \ every \ K \in \boldsymbol{L}(_RM). \end{array}$

- 2) $K \cdot N = 0 \Leftrightarrow K \subseteq \bigcap_{f:M \to N} \operatorname{Ker} f (= r_N(M));$ in particular, $0 \cdot N = 0$ and $K \cdot 0 = 0.$
- 3) $M \cdot N = \sum_{f: M \to N} f(M) \ (= r^M(N)); \ M \cdot N = N \Leftrightarrow N \in Gen(_RM).$
- 4) $(K \cdot N) \cdot L \subseteq K \cdot (N \cdot L)$, for every $K, N, L \in L(_RM)$.
- 5) If $_{R}M$ is a projective module, then the operation of α -product is associative, i.e. $(K \cdot N) \cdot L = K \cdot (N \cdot L)$, for every $K, N, L \in L(_{R}M)$.
- 6) $\left(\sum_{\alpha \in \mathfrak{A}} K_{\alpha}\right) \cdot N = \sum_{\alpha \in \mathfrak{A}} (K_{\alpha} \cdot N), \text{ for every } K_{\alpha}, N \in L(_{R}M).$
- 7) If $_{R}M = _{R}R$, then the α -product of two left ideals $K, N \in L(_{R}M)$ coincides with their ordinary product in the ring $R: K \cdot N = KN.\Box$

Now we remind the definition of ω -coproduct in $L({}_{R}M)$ and some properties of this operation ([1], [2], [3]).

Definition 1.2. Let $N, K \in L({}_{\mathbb{R}}M)$. The ω -coproduct of N and K is defined as the following submodule of $_{R}M$:

$$N \odot K = \pi_N^{-1} (\omega_K^M(M/N)) = \{ m \in M \mid m + N \in \bigcap_{f : M/N \to M} f^{-1}(K) \} =$$

= $\{ m \in M \mid f(m+N) \in K \; \forall f : M / N \to M \},$

where $\pi_N: M \to M / N$ is the natural morphism. Therefore:

$$(N \odot K) / N = \omega_K^M(M / N) = \bigcap_{f:M/N \to M} f^{-1}(K).$$

In other form:

$$N \odot K = \{m \in M \mid g(m) \in K \forall g : M \to M, g(N) = 0\}.$$

In the next statement we enumerate some properties of ω -coproduct which are necessary for the further investigations.

Proposition 1.2. 1) $N \odot K \supseteq N$, for every $N, K \in L(_RM)$; if $K \in \mathbf{L}^{ch}(_{\mathbb{R}}M)$, then $N \odot K \supseteq K$.

- 2) $M \odot K = M$, for every $K \in L({}_{\mathbb{R}}M)$; $N \odot M = M$, for every $N \in \boldsymbol{L}(_{R}M).$
- 3) $0 \odot K$ is the greatest characteristic submodule of M which is con-
- tained in K; therefore, if $K \in \mathbf{L}^{ch}(_{R}M)$, then $0 \odot K = K$. 4) $N \odot 0 = \pi_{N}^{-1} (\bigcap_{f:M/N \to N} \operatorname{Ker} f) = \pi_{N}^{-1} (r_{M}(M/N))$, for every $N \in \mathbb{R}$. $L(_{R}M).$
- 5) The operation of ω -coproduct is monotone in both variables.
- 6) $(N \odot K) \odot L \subseteq N \odot (K \odot L)$, for every $K, L, N \in L(_RM)$.
- 7) If the module $_{B}M$ is injective and artinian, then the operation of ω -coproduct in $L(_{B}M)$ is associative:
- $(N \odot K) \odot L = N \odot (K \odot L), \text{ for every } K, L, N \in L(_RM).$ 8) $N \odot (\bigcap K_{\alpha}) = \bigcap (N \odot K_{\alpha}), \text{ for every } N, K_{\alpha} \in L(_{\mathbb{R}}M).$
- 9) If $_{R}M \stackrel{\alpha \in \mathfrak{A}}{=} _{R}R$, then $\stackrel{\alpha \in \mathfrak{A}}{N} \odot K = (K \odot (0 \odot N)_{r})_{l}$, for every left *ideals* $K, N \in L(_{R}R)$. \square

2. Left quotient with respect to α -product

Now we introduce a new operation in the lattice $L({}_{R}M)$, which in some sense can be considered as an (approximation of) inverse operation for the α -product (just as the left quotient $(N:K)_l = \{a \in R \mid a K \subseteq N\}$ of left ideals of R can be considered as the inverse operation for the product of left ideals in R).

Definition 2.1. Let $K, N \in L({}_{R}M)$. The **left quotient** of N by K with respect to α -product is defined as the greatest among submodules $L_{\alpha} \in L({}_{R}M)$ with the property $L_{\alpha} \cdot K \subseteq N$. We denote this submodule by N / K and observe that it is defined by the conditions:

- a) $(N / K) \cdot K \subseteq N;$
- b) if $L \cdot K \subseteq N$ for some $L \in L(_{\mathbb{R}}M)$, then $L \subseteq N / K$.

The next statement is useful for applications.

Proposition 2.1. If $K, N, L \in L({}_{R}M)$, then: $L \cdot K \subseteq N \Leftrightarrow L \subseteq N/.K$.

Proof. (\Rightarrow) The condition b) in Definition 2.1.

(⇐) If $L \subseteq N / K$, then by the monotony of α -product and condition a), we have: $L \cdot K \subseteq (N / K) \cdot K \subseteq N$.

From the properties of α -product *the existence* of the left quotient for every pair of submodules follows.

Proposition 2.2. For every submodules $K, N \in L(_RM)$ there exists the left quotient N / K with respect to α -product and it can be represented in the form:

$$N / K = \sum \{ L_{\alpha} \in \boldsymbol{L}(RM) \mid L_{\alpha} \cdot K \subseteq N \}.$$

Proof. The indicated family of submodules L_{α} with $L_{\alpha} \cdot K \subseteq N$ is not empty, since it contains the submodule 0, because $0 \cdot K = 0 \subseteq N$. By the distributivity of α -product with respect to the sum of submodules (Proposition 1.1, 6)) we obtain: $\left(\sum_{\alpha \in \mathfrak{A}} L_{\alpha}\right) \cdot K = \sum_{\alpha \in \mathfrak{A}} (L_{\alpha} \cdot K) \subseteq N$. Therefore the submodule $\sum_{\alpha \in \mathfrak{A}} L_{\alpha}$ satisfied the condition a), and by construction it is clear that it is the greatest submodule with this property. \Box

In continuation we indicate other two forms of the left quotient N / Kwith respect to α -product.

Proposition 2.3. For every submodules $K, N \in L(_RM)$ we have: $N \mid K = \{l \in M \mid f(l) \in N \; \forall f : M \to K\}.$

Proof. Denote by L the right side of this relation. Then $L \in L({}_{R}M)$ and since $f(L) \subseteq N$ for every $f: M \to K$, we obtain $L \cdot K = \sum_{\substack{f: M \to K}} f(L) \subseteq N$. Moreover, if $L_1 \cdot K \subseteq N$ for some $L_1 \in L({}_{R}M)$, then $\sum_{\substack{f: M \to K}} f(L_1) \subseteq N$, so $f(L_1) \subseteq N$ for every $f: M \to K$. From definition of L we have $L_1 \subseteq L$, therefore L is the greatest submodule of M with $L \cdot K \subseteq N$, i.e. L = N / K.

Corollary 2.4. $N / K = \bigcap_{f: M \to K} f^{-1}(N \cap K)$ for every $K, N \in L(_RM)$.

Proof. (\supseteq) If $l \in \bigcap_{f:M \to K} f^{-1}(N \cap K)$, then $f(l) \in N$ for every $f: M \to K$, so by Proposition 2.3 $l \in N / K$.

Now we will show the value of left quotient N / K in some particular cases.

Proposition 2.5. 1) If $K \subseteq N$, then N / K = M. If $K \in Gen(_RM)$, then the inverse implication is true: $N / K = M \Rightarrow K \subseteq N$. In particular, N / 0 = M for every $N \in L(_RM)$ and M / K = M for every $K \in L(_RM)$.

- 2) If N = 0, then $0/.K = \bigcap_{f:M \to K} Ker f = r_K(M)$ for every $K \in L(RM)$.
- If K = M, then for every N ∈ L(_RM) the left quotient N /. M is the greatest characteristic submodule of M which is contained in N.

Proof. 1) If
$$K \subseteq N$$
, then by Corollary 2.4
 $N \not . K = \bigcap_{f:M \to K} f^{-1}(N \cap K) = \bigcap_{f:M \to K} f^{-1}(K) = M.$

If $K \in Gen(_R M)$, then every element $k \in K$ is of the form $k = \sum_{i=1}^{n} f_i(m_i)$, where $f_i : M \to K$ and $m_i \in M$. Therefore, if N / K = M then $f_i(m_i) \in N$, for every i = 1, ..., n, so $k \in N$, i.e. $K \subseteq N$.

2) It follows from definitions:

 $0 / K = \bigcap_{f:M \to K} f^{-1}(K \cap 0) = \bigcap_{f:M \to K} f^{-1}(0) = \bigcap_{f:M \to K} Ker f = r_K(M).$

3) If K = M, then by Corollary 2.4

$$L = N / M = \bigcap_{\substack{f: M \to M \\ f^{-1}(N) \\ N}} f^{-1}(N) \subseteq N,$$

since for $f = 1_M$ we have $f^{-1}(N) = N$.

Moreover, the submodule L = N / M is characteristic in ${}_{R}M$. Indeed, for every $g: M \to M$ and $l \in L$ we have $f(g(l)) = (f g)(l) \in N$ for every $f: M \to M$, so $g(l) \in L$. Therefore $g(L) \subseteq L$, i.e. $L \in \mathbf{L}^{ch}({}_{R}M)$.

If $L_1 \subseteq N$ and $L_1 \in \mathbf{L}^{ch}(_R M)$, then for every $f: M \to M$ and $l_1 \in L_1$ we have $f(l_1) \in L_1 \subseteq N$ and by definition of L = N / M it follows $l_1 \in L$, i.e. $L_1 \subseteq L$. Thus L is the greatest characteristic submodule in $_R M$ which is contained in N.

The next two statements show the connection between the left quotient N / K and the partial order (\subseteq) in $L(_RM)$.

Proposition 2.6. (Monotony in the numerator). If $N_1 \subseteq N_2$, then $N_1 / K \subseteq N_2 / K$ for every $K \in L(_RM)$.

Proof. If $N_1 \subseteq N_2$, then $(N_1 / \cdot K) \cdot K \subseteq N_1 \subseteq N_2$ and by the definition of left quotient it follows that $N_1 / \cdot K \subseteq N_2 / \cdot K$.

Proposition 2.7. (Antimonotony in the denominator). If $K_1 \subseteq K_2$, then $N / K_2 \subseteq N / K_1$ for every $N \in L(_RM)$.

Proof. From $K_1 \subseteq K_2$ and the monotony of α -product it follows: $(N / K_2) \cdot K_1 \subseteq (N / K_2) \cdot K_2 \subseteq N$, therefore $N / K_2 \subseteq N / K_1$. \Box

Proposition 2.8. $(L \cdot N) / N \supseteq L$ for every submodules $N, L \in L(_RM)$.

Proof. By definition $(L \cdot N) / N$ is the greatest among submodules L_{α} with $L_{\alpha} \cdot N \subseteq L \cdot N$, and since L is one of such submodules, we have $L \subseteq (L \cdot N) / N$.

Some properties of the left quotient N / K with respect to α -product can be proved by assumption that the operation of α -product in $L(_RM)$ is *associative* (for example, it is sufficient to suppose that the module $_RM$ is projective, see Proposition 1.1, 5)).

Proposition 2.9. Let $_{R}M$ be a module with the property that in $L(_{R}M)$ the operation of α -product is associative. Then for every submodules $K, N, L \in L(_{R}M)$ the following relations are true:

- 1) $(N / K) / L = N / (L \cdot K);$
- 2) $(N / K) / (L / K) \supseteq N / L;$
- 3) $(N \cdot K) /_{\bullet} (L \cdot K) \supseteq N /_{\bullet} L;$
- 4) $N \cdot (K / L) \subseteq (N \cdot K) / L.$

Proof. 1) (\subseteq) From the definition of left quotient it follows:

 $N \ \supseteq \ (N \ / \ K) \cdot K, \quad N \ / \ K \ \supseteq \ [(N \ / \ K) \ / \ L] \cdot L.$

Multiplying on the right the last relation by K and using the monotony and associativity of α -product, we obtain:

$$N \supseteq (N / K) \cdot K \supseteq ([(N / K) / L] \cdot L) \cdot K =$$
$$= [(N / K) / L] \cdot (L \cdot K).$$

By definition of left quotient (or by Proposition 2.1) we have: $(N / K) / L \subseteq N / (L \cdot K)$.

(⊇) By definition of left quotient and associativity of α -product we obtain:

 $N \ \supseteq \ \left[N \ /_{{\scriptscriptstyle \bullet}} \left(L \cdot K \right) \right] \cdot \left(L \cdot K \right) = \left(\left[N \ /_{{\scriptscriptstyle \bullet}} \left(L \cdot K \right) \right] \cdot L \right) \cdot K,$

therefore $N / K \supseteq [N / (L \cdot K)] \cdot L$, which means that $(N / K) / L \supseteq N / (L \cdot K)$.

2) This statement (as well as the property 3)) follows from 1), but we prefer the direct proof.

By definition $L \supseteq (L/.K) \cdot K$. Applying the monotony and associativity of α -product we have:

 $N \supseteq (N / . L) \cdot L \supseteq (N / . L) \cdot [(L / . K) \cdot K] = [(N / . L) \cdot (L / . K)] \cdot K.$ Therefore $(N / . L) \cdot (L / . K) \subseteq N / . K$, thus

$$N / L \subseteq (N / K) / (L / K).$$

3) From $(N / L) \cdot L \subseteq N$, associativity and monotony of α -product it follows: $(N / L) \cdot (L \cdot K) = [(N / L) \cdot L] \cdot K \subseteq N \cdot K$,

therefore $N / L \subseteq (N \cdot K) / (L \cdot K)$.

4) The similar reasons as above imply $(K / . L) \cdot L \subseteq K$ and $[N \cdot (K / . L)] \cdot L = N \cdot [(K / . L) \cdot L] \subseteq N \cdot K$, therefore $N \cdot (K / . L) \subseteq (N \cdot K) / . L$.

Now we will discuss the question of the relations between the left quotient N / K in $L(_RM)$ and the lattice operations of $L(_RM)$ (sum and intersection of submodules).

Proposition 2.10. $(N_1 \cap N_2) / K = (N_1 / K) \cap (N_2 / K)$ for every submodules $N_1, N_2, K \in L(_RM)$.

Proof. (\subseteq) It follows from the monotony of left quotient in the numerator (Proposition 2.6).

(⊇) We denote the right side of relation by *L*. Then $L \subseteq N_1 / K$ and $L \subseteq N_2 / K$, therefore $L \cdot K \subseteq N_1$ and $L \cdot K \subseteq N_2$, so $L \cdot K \subseteq N_1 \cap N_2$ and $L \subseteq (N_1 \cap N_2) / K$. □

Corollary 2.11. $N / K = (N \cap K) / K$ for every $N, K \in L(RM)$.

Proof. Since K / K = M (Proposition 2.5, 1)), from Proposition 2.10 it follows:

$$(N \cap K) / K = (N / K) \cap (K / K) = (N / K) \cap M = N / K. \square$$

Remark. The relation of Proposition 2.10 can be obviously generalized for every family of submodules $\{N_{\alpha} \mid \alpha \in \mathfrak{A}\} \subseteq L({}_{R}M)$:

$$\left(\bigcap_{\alpha\in\mathfrak{A}}N_{\alpha}\right)/.K = \bigcap_{\alpha\in\mathfrak{A}}(N_{\alpha}/.K).$$

Some more statements on this subject follow from the monotony and antimonotony of Propositions 2.6 and 2.7.

Proposition 2.12. 1) $(N_1 + N_2) / K \supseteq (N_1 / K) + (N_2 / K);$

2)
$$N / (K_1 + K_2) \subseteq (N / K_1) \cap (N / K_2);$$

3) $N / (K_1 \cap K_2) \supseteq (N / K_1) + (N / K_2).$

The next two statements show when the cancellation properties for the left quotient hold, supplementing Proposition 2.8.

Proposition 2.13. For every submodules $N, K \in L({}_{R}M)$ the following conditions are equivalent:

- 1) $(N \cdot K) / K = N;$
- 2) N = L / K for some submodule $L \in L(_RM)$.

Proof. $(1) \Rightarrow 2)$ is obvious.

2) \Rightarrow 1). If N = L / K, then using the inclusion $(L / K) \subseteq L$ and the monotony of left quotient in the numerator, we obtain:

 $(N \cdot K) / K = [(L / K) \cdot K] / K \subseteq L / K = N.$

By Proposition 2.8 $(N \cdot K) / K \supseteq N$, therefore $(N \cdot K) / K = N$. \Box

Proposition 2.14. For every submodules $N, K \in L(_RM)$ the following conditions are equivalent:

- 1) $(N / K) \cdot K = N;$
- 2) $N = L \cdot K$ for some submodule $L \in L(_RM)$.

Proof. 1) \Rightarrow 2) is obvious.

there

2) \Rightarrow 1). Let $N = L \cdot K$. By definition $(N / K) \cdot K \subseteq N$ and by Proposition 2.8 $(L \cdot K) / K \supseteq L$. Now the monotony implies:

$$(N / K) \cdot K = [(L \cdot K) / K] \cdot K \supseteq L \cdot K = N,$$

fore $(N / K) \cdot K = N.$

Finishing this section we consider the particular case when $_{R}M = _{R}R$.

Proposition 2.15. In the lattice $L(_RR)$ of left ideals of the ring R the left quotient N / K of left ideals $N, K \in L(_RR)$ coincides with their ordinary left quotient in R:

$$N / K = (N : K)_l = \{a \in R \mid a K \subseteq N\}.$$

Proof. In the lattice $L(_RR)$ the α -product coincides with the ordinary product of left ideals in R (Proposition 1.1, 7)): $L \cdot K = L K$. So we have $(N:K)_l K \subseteq N$ and it is obvious that $(N:K)_l$ is the greatest left ideal of R with this property.

Since the α -product (\equiv product) of left ideals in $L(_RR)$ is associative ($_RR$ is projective), all mentioned above properties of left quotients hold in the lattice $L(_RR)$.

3. Right quotient with respect to ω -coproduct

In this section we introduce and investigate the inverse operation for the ω -coproduct (see Section 1) in the lattice of submodules $L(_RM)$ of an arbitrary module $_RM \in R$ -Mod.

Definition 3.1. Let $K, N \in L({}_{\mathbb{R}}M)$. The **right quotient** of K by N with respect to ω -coproduct is defined as the least submodule $L \in L({}_{\mathbb{R}}M)$ with the property $N \odot L \supseteq K$. We denote this submodule by $N_{}_{} \otimes K$. It is determined by the conditions:

- a) $N \odot (N \otimes K) \supseteq K;$
- b) if $N \odot L \supseteq K$ for some $L \in L({}_{\mathbb{R}}M)$, then $L \supseteq N \otimes K$.

The right quotient $N \otimes K$ is described by the following statement. **Proposition 3.1.** If $K, N, L \in L({}_{R}M)$, then:

 $K \subseteq N \odot L \iff N \odot K \subseteq L.$

Proof. (\Rightarrow) The condition b) of Definition 3.1. (\Leftarrow) If $N \otimes K \subseteq L$, then from the condition a) and the monotony of the operation \odot it follows:

 $K \subseteq N \odot (N \odot K) \subseteq N \odot L.$

From the properties of ω -coproduct (Proposition 1.2) the *existence* of the right quotient N_{\odot} K for every pair of submodules of _RM follows.

Proposition 3.2. For every submodules $K, N \in L(_RM)$ there exists the right quotient $N \otimes K$ with respect to ω -coproduct, and it can be presented in the form:

$$N \otimes K = \cap \{L_{\alpha} \in \boldsymbol{L}(_{R}M) \mid N \odot L_{\alpha} \supseteq K\}.$$

Proof. Since $N \odot M = M \supseteq K$, the indicated family of submodules is not empty. By Proposition 1.2, 8) we have:

$$N \odot \left(\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha}\right) = \bigcap_{\alpha \in \mathfrak{A}} (N \odot L_{\alpha}) \supseteq K,$$

therefore $\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha}$ has the property a), while b) follows from construction.

Remark. For every submodules $N, K, L \in L({}_{\mathbb{R}}M)$ from the definition of $N \odot L$ it follows that:

$$N \odot L \supseteq K \Leftrightarrow f(k+N) \in L \ \forall \ k \in K, \ \forall \ f : M/N \to N \Leftrightarrow f((K+N)/N) \subseteq N \ \forall \ f : M/N \to N.$$

Now we can indicate another form of representation of the right quotient $N \otimes K$.

Proposition 3.3. If $N, K \in L(_RM)$ then:

$$N \otimes K = \sum_{f:M/N \to N} f((K+N)/N).$$

Proof. We denote the right side of this relation by L. Since $f((K+N)/N) \subseteq L$ for every $f: M/N \to N$, from the above remark we have $N \odot L \supseteq K$.

If $N \odot L' \supseteq K$ for some $L' \in L({}_{\mathbb{R}}M)$, then $f((K+N)/N) \subseteq L'$ for every $f: M/N \to N$ and so $L \subseteq L'$. Therefore L is the least submodule of ${}_{\mathbb{R}}M$ with $N \odot L \supseteq K$, i.e. $L = N \odot K$. **Proposition 3.4.** If $K \in L^{ch}(_{\mathbb{R}}M)$, then $N \otimes K \subseteq K$ for every $N \in L(_{\mathbb{R}}M)$.

Proof. From $K \in \mathbf{L}^{ch}(_{\mathbb{R}}M)$ it follows that $K \subseteq N \odot K$ (Proposition 1.2, 1)), therefore by Proposition 3.1 we have $N_{\odot} \setminus K \subseteq K$. \Box

Now we indicate the behaviour of the right quotient with respect to the order relation (\subseteq) of $L(_RM)$.

Proposition 3.5. (Monotony in the numerator). If $K_1 \subseteq K_2$, then $N \otimes K_1 \subseteq N \otimes K_2$ for every $N \in L({}_{\mathbb{R}}M)$.

Proof. By definition $N \odot (N_{\odot} \setminus K_2) \supseteq K_2 \supseteq K_1$, therefore Proposition 3.1 implies: $N_{\odot} \setminus K_2 \supseteq N_{\odot} \setminus K_1$.

Proposition 3.6. (Antimonotony in the denominator). If $N_1 \subseteq N_2$, then $N_2 \otimes K \subseteq N_1 \otimes K$ for every $K \in L(_RM)$.

Proof. By definition of right quotient, using the inclusion $N_1 \subseteq N_2$ and the monotony of ω -coproduct, we obtain:

$$K \subseteq N_1 \odot (N_1 \otimes K) \subseteq N_2 \odot (N_1 \otimes K),$$

therefore by Proposition 3.1 $N_2 \otimes K \subseteq N_1 \otimes K$.

Proposition 3.7. For every submodules $N, L \in L(_{\mathbb{R}}M)$ we have the relation: $N \gg (N \odot L) \subseteq L$

Proof. If we denote $K = N \odot L$, then by Proposition 3.1 from the inclusion $K \subseteq N \odot L$ it follows that $N \odot K \subseteq L$.

The next statement show the value of the right quotient $N_{\odot} \setminus K$ in some particular cases.

Proposition 3.8. 1) If $K \subseteq N$, then $N \otimes K = 0$. Therefore:

a) if N = M, then $M_{\odot} \setminus K = 0$ for every $K \in L(_{\mathbb{R}}M)$;

b) if K = 0, then $N_{\odot} = 0$ for every $N \in L(_RM)$;

c) if N = K, then $N \ge N = 0$.

2) If N = 0, then $0 \otimes K$ is the least characteristic submodule of M which contains K; so if $K \in \mathbf{L}^{ch}(_{\mathbb{R}}M)$, then $0 \otimes K = K$.

3) If K = M, then $N \otimes M = \sum_{f:M/N \to M} Im f (= r^{M/N}(M))$ for every $N \in L({}_{\mathbb{R}}M)$.

Proof. 1) Let $K \subseteq N$. Since $N \bigotimes K = \cap \{L_{\alpha} \in \boldsymbol{L}(_{R}M) \mid N \odot L_{\alpha} \supseteq K\}$, we have $N \odot L_{\alpha} \supseteq N \supseteq K$ for every $L_{\alpha} \in \boldsymbol{L}(_{R}M)$. Therefore $\cap L_{\alpha} = 0$, i.e. $N \bigotimes K = 0$.

2) If N = 0, then from Proposition 3.3 we obtain:

$$L = 0 \, \operatorname{cond} K = \sum_{f: M \to M} f(K) = \alpha_K^M(M) \supseteq K.$$

Therefore $L = 0 \otimes K$ is a characteristic submodule of M containing K. If $K' \in \mathbf{L}^{ch}(_{\mathbb{R}}M)$ and $K \subseteq K'$, then $f(K') \subseteq K'$ for every $f: M \to M$ and so $f(K) \subseteq f(K') \subseteq K'$. Therefore $L = \sum_{f: M \to M} f(K) \subseteq K'$ and $L = 0 \otimes K$ is the least characteristic submodule of M containing K.

3) If K = M, then for every $N \in L({}_{R}M)$ by definition of right quotient $N_{\bigcirc} M = \cap \{L_{\alpha} \in L({}_{R}M) \mid N \odot L_{\alpha} = M\}$. Now by definition of ω -coproduct we obtain:

$$N \odot L_{\alpha} = M \Leftrightarrow \omega_{L_{\alpha}}^{M}(M/N) = M/N \Leftrightarrow Im f \subseteq L_{\alpha} \ \forall \ f : M/N \to M \Leftrightarrow \\ \Leftrightarrow \sum_{f : M/N \to M} Im f \subseteq L_{\alpha}.$$

Therefore

$$N_{\odot} M = \bigcap \{ L_{\alpha} \in \boldsymbol{L}(RM) \mid \sum_{f:M/N \to M} Im f \subseteq L_{\alpha} \} = \sum_{f:M/N \to M} Im f. \square$$

Now we formulate some properties of the right quotient $N_{\odot} \setminus K$ which hold in the case when the operation of ω -coproduct in $L(_{R}M)$ is associative (Proposition 1.2, 7)).

Proposition 3.9. Let $_{R}M$ be a module with the property that in the lattice $L(_{R}M)$ the operation of ω -coproduct is associative. Then for every submodules $K, N, L \in L(_{R}M)$ the following relations hold:

- 1) $L_{\odot}(N_{\odot}K) = (N \odot L)_{\odot}K;$
- $2) \hspace{0.1in} (L_{\bigcirc} \hspace{0.1in} N)_{\bigcirc} \hspace{0.1in} (L_{\bigcirc} \hspace{0.1in} K) \hspace{0.1in} \subseteq \hspace{0.1in} N_{\bigcirc} \hspace{0.1in} K;$
- 3) $(L \odot N) \land (L \odot K) \subseteq N \land K;$
- $4) \quad L_{\bigcirc} (N \odot K) \subseteq (L_{\bigcirc} N) \odot K.$

Proof. 1) (⊇) By definition, $K \subseteq N \odot (N_{\odot} \setminus K)$ and $N_{\odot} \setminus K \subseteq L \odot [L_{\odot} (N_{\odot} \setminus K)]$. By the monotony and the associativity of ω -coproduct we obtain:

$$\begin{split} K &\subseteq N \odot (N_{\textcircled{O}} \setminus K) \subseteq N \odot [L \odot (L_{\textcircled{O}} \setminus (N_{\textcircled{O}} \setminus K))] = \\ &= (N \odot L) \odot [L_{\textcircled{O}} (N_{\textcircled{O}} \setminus K)]. \end{split}$$

From Proposition 3.1 it follows that $(N \odot L) \otimes K \subseteq L \otimes (N \otimes K)$.

(\subseteq) The inverse inclusion in 1) is obtained by the definition of right quotient and associativity of ω -coproduct:

 $K \subseteq (N \odot L) \odot [(N \odot L) \land K] = N \odot [L \odot ((N \odot L) \land K)].$

Applying Proposition 3.1 we have $N \otimes K \subseteq L \odot [(N \odot L) \otimes K]$ and $L \otimes (N \otimes K) \subseteq (N \odot L) \otimes K$.

2) By definition, $N \subseteq L \odot (L_{\odot} \setminus N)$. From the monotony and associativity of ω -coproduct it follows:

$$\begin{array}{rcl} K & \subseteq & N \boxdot (N \underset{\odot}{\wedge} K) \\ & = & L \underset{\odot}{\odot} & [L \underset{\odot}{\odot} & (L \underset{\odot}{\wedge} N)] \odot (N \underset{\odot}{\wedge} K) = \\ & = & L \underset{\odot}{\odot} & [(L \underset{\odot}{\wedge} N) \underset{\odot}{\odot} & (N \underset{\odot}{\wedge} K)]. \end{array}$$

By Proposition 3.1 $L_{\odot} \setminus K \subseteq (L_{\odot} \setminus N) \odot (N_{\odot} \setminus K)$, therefore $(L_{\odot} \setminus N)_{\odot} \setminus (L_{\odot} \setminus K) \subseteq N_{\odot} \setminus K$.

3) By definition, $K \subseteq N \odot (N_{\odot} \setminus K)$. From the monotony and associativity of ω -coproduct it follows:

$$L \odot K \subseteq L \odot [N \odot (N_{\odot} \land K)] = (L \odot N) \odot (N_{\odot} \land K),$$

therefore $(L \odot N) \otimes (L \odot K) \subseteq N \otimes K$.

4) In a similar way we have $N \subseteq L \odot (L_{\odot} \setminus N)$ and

$$N \odot K \subseteq [L \odot (L_{\odot} \setminus N)] \odot K = L \odot [(L_{\odot} \setminus N) \odot K],$$

therefore $L_{\odot}(N \odot K) \subseteq (L_{\odot} \setminus N) \odot K$.

Now we will indicate some relations between the right quotient with respect to ω -coproduct and the lattice operations of $L(_RM)$.

Proposition 3.10. For every $N \in L({}_{R}M)$ and every family of submodules $\{K_{\alpha} \in L({}_{R}M) \mid \alpha \in \mathfrak{A}\}$ the following relation holds:

$$N_{\odot} (\sum_{\alpha \in \mathfrak{A}} K_{\alpha}) = \sum_{\alpha \in \mathfrak{A}} (N_{\odot} K_{\alpha}).$$

Proof. (\supseteq) It follows from the monotony of right quotient in the numerator (Proposition 3.5).

(\subseteq) We denote $N_0 = \sum_{\alpha \in \mathfrak{A}} (N \otimes K_\alpha)$. Since $N \otimes K_\alpha \subseteq N_0$ for every $\alpha \in \mathfrak{A}$, by the definition and monotony we have:

$$K_{\alpha} \subseteq N \odot (N \otimes K_{\alpha}) \subseteq N \odot N_{0}$$

for every $\alpha \in \mathfrak{A}$. Therefore $\sum_{\alpha \in \mathfrak{A}} K_{\alpha} \subseteq N \odot N_0$ and from Proposition 3.1 it follows that $N \otimes \left(\sum_{\alpha \in \mathfrak{A}} K_{\alpha}\right) \subseteq N_0$.

Corollary 3.11. $N \otimes K = N \otimes (K + N)$ for every $N, K \in L(RM)$. *Proof.* Since $N \otimes N = 0$ (Proposition 3.8, 1)), from Proposition 3.10 it follows:

$$N_{\odot} (K+N) = (N_{\odot} K) + (N_{\odot} N) = N_{\odot} K.$$

We formulate also some more relations between the right quotient and the lattice operations of $L(_RM)$, which immediately follow from the properties of monotony and antimonotony of Propositions 3.5 and 3.6.

Proposition 3.12. In the lattice $L(_RM)$ the following relations hold:

1) $N_{\textcircled{\alpha}} \left(\bigcap_{\alpha \in \mathfrak{A}} K_{\alpha} \right) \subseteq \bigcap_{\alpha \in \mathfrak{A}} (N_{\textcircled{\alpha}} \setminus K_{\alpha});$ 2) $\left(\sum_{\alpha \in \mathfrak{A}} N_{\alpha} \right)_{\textcircled{\alpha}} \setminus K \subseteq \bigcap_{\alpha \in \mathfrak{A}} (N_{\alpha} \underset{\alpha}{\otimes} K);$ 3) $\left(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha} \right)_{\textcircled{\alpha}} \setminus K \supseteq \sum_{\alpha \in \mathfrak{A}} (N_{\alpha} \underset{\alpha}{\otimes} K).$

In the next two statements it is shown when the cancellation properties hold (see Proposition 3.7).

Proposition 3.13. Let $K, N \in L({}_{R}M)$. The following conditions are equivalent:

- 1) $N = K_{\odot} (K \odot N);$
- 2) $N = K_{\odot} L$ for some submodule $L \in L(_{\mathbb{R}}M)$.

Proof. 1) \Rightarrow 2) is obvious.

2) \Rightarrow 1). Let $N = K_{\odot} \setminus L$, where $L \in L(_{\mathbb{R}}M)$. By definition and monotony we have $K \odot (K_{\odot} \setminus L) \supseteq L$ and

 $K_{\bigcirc} [K \odot (K_{\bigcirc} L)] \supseteq K_{\bigcirc} L.$

From Proposition 3.7 the inverse inclusion follows and so we obtain:

$$N = K_{\odot} \land L = K_{\odot} \land [K \odot (K_{\odot} \land L)] = K_{\odot} \land (K \odot N).$$

Proposition 3.14. Let $K, N \in L({}_{\mathbb{R}}M)$. The following conditions are equivalent:

- 1) $N = K \odot (K \otimes N);$
- 2) $N = K \odot L$ for some submodule $L \in L(_RM)$.

Proof. 1) \Rightarrow 2) is obvious.

2) \Rightarrow 1). Let $N = K \odot L$, where $L \in \mathbf{L}(_{\mathbb{R}}M)$. From Proposition 3.7 it follows that $K_{\odot}(K \odot L) \subseteq L$ and by monotony

$$K \odot [K_{\odot} (K \odot L)] \subseteq K \odot L.$$

On the other hand, from the definition the inverse inclusion follows, therefore:

$$N = K \odot L = K \odot [K_{\odot} (K \odot L)] = K \odot (K_{\odot} N).$$

Finally, we consider the case $_{R}M = _{R}R$ and show the form of the right quotient $N_{\odot} \setminus K$ for the left ideals of the ring R. It is known (Proposition 1.2, 9)) that for every $N, K \in L(_{R}R)$ the ω -coproduct of these left ideals is of the form:

$$N \odot K = (K : (0 : N)_r)_l = \{a \in R \mid a \, b \in K \ \forall \ b \in R, \ N \, b = 0\}.$$

Proposition 3.15. $N_{\odot} \setminus K = K \cdot (0 : N)_r$, for every left ideals $K, N \in L(_RR)$, where $(0 : N)_r = \{b \in R \mid Nb = 0\}$.

Proof. Denote $L = K \cdot (0:N)_r$, and verify the conditions a) and b) of Definition 3.1.

a) Since $N \odot L = (L : (0 : N)_r)_l$, we have:

$$N \odot L = N \odot [K \cdot (0:N)_r] = ([K \cdot (0:N)_r]: (0:N)_r)_l \supseteq K.$$

b) If $N \odot L_0 \supseteq K$, then $(L_0 : (0 : N)_r)_l \supseteq K$, therefore $K \cdot (0:N)_r \subseteq L_0$, i.e. $L \subseteq L_0$.

This form of the right quotient in $L(_RR)$ is convenient for proving a series of properties of this operation. For example (see Proposition 3.10):

$$N_{\odot} \setminus \left(\sum_{\alpha \in \mathfrak{A}} K_{\alpha}\right) = \left(\sum_{\alpha \in \mathfrak{A}} K_{\alpha}\right) \cdot (0:N)_{r} = \sum_{\alpha \in \mathfrak{A}} \left(K_{\alpha} \cdot (0:N)_{r}\right) = \sum_{\alpha \in \mathfrak{A}} (N_{\odot} \setminus K_{\alpha}).$$

References

- L. Bican, P. Jambor, T. Kepka, P. Nemec, *Prime and coprime modules*, Fundamenta Mathematicae, **107**(1), 1980, pp. 33–45.
- [2] A.I. Kashu, Preradicals and characteristic submodules: connections and operations, Algebra and discrete mathematics, v. 9, N.2, 2010, pp. 61–77.
- [3] A.I. Kashu, On some operations in the lattice of submodules determinined by preradicals, Bulet. A.Ş.M. Matematica, N.2 (66), 2011, pp. 5–16.

- [4] L. Bican, P. Kepka, P. Nemec, *Rings, modules and preradicals*, Marcel Dekker, New York, 1982.
- [5] J.S. Golan, Linear topologies on a ring, Longman Sci. Techn., New York, 1987.
- [6] F. Raggi, J.R. Montes, H. Rincon, et al., The lattice structure of preradicals, Commun. in Algebra, 30(3), 2002, pp. 1533–1544.

CONTACT INFORMATION

A. I. Kashu Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, 5 Academiei str., Chişinău, MD - 2028 MOLDOVA *E-Mail:* kashuai@math.md

Received by the editors: 22.02.2012 and in final form 22.02.2012.