Survey of generalized pregroups and a question of Reinhold Baer

Anthony M. Gaglione, Seymour Lipschutz and Dennis Spellman

Communicated by I. Ya. Subbotin

Abstract

There has been recent interest in Stallings' Pregroups. (See [2] and [12].) This paper gives a survey of generalized pregroups. We also answer a question of Reinhold Baer [1] on pregroups and answer a generalization of this question for generalized pregroups.

1. Preliminary results

There has been recent interest in Stallings' Pregroups. For example:

- [12] Pregroups and the Big Powers Condition: Kvaschuk, Miasnikov, Serbin, Algebra and Logic, Vol. 48, No. 3, 2009
- [2] Geodesic Rewriting Systems and Pregroups, Diekert, Duncan, Miasnikov, 2009, Preprint

First we give some preliminary results.
Let P be a nonempty set with a partial operation, called an "add" by Baer [1] (1950). Formally, a partial operation on P is a mapping $\mathrm{m}: D \rightarrow P$ where $D \subseteq P \times P$. If (p, q) belongs to D, we denote $m(p, q)$ by $p q$ and say that $p q$ is defined or exists. (Baer denoted $m(p, q)$ by $p+q$.)

An add P will be called a BS-pree or simply a pree (term invented by Rimlinger [15]) if it satisfies the following three axioms of Stallings:

2000 MSC: Primary 20E06.
Key words and phrases: Pregroups, Kushner Axiom K. small cancellation.
[P1] (Identity) There exists $1 \in P$ such that for all a, we have $1 a$ and $a 1$ are defined and $1 a=a 1=a$.
[P2] (Inverses) For each $a \in P$, there exists $a^{-1} \in P$ such that $a a^{-1}$ and $a^{-1} a$ are defined, and $a a^{-1}=a^{-1} a=1$
$[\mathbf{P} 4]=[\mathbf{A}]$ (Weak Associative Law) If $a b$ and $b c$ are defined, then $(a b) c$ is defined if and only if $a(b c)$ is defined, in which case $(a b) c=$ $a(b c)$. (We then say the triple $a b c$ is defined.)

Remark 1.1. Stallings also gave the axiom:
[P3] If $a b$ is defined, then $b^{-1} a^{-1}$ is defined and $(a b)^{-1}=b^{-1} a^{-1}$.
However, one can show that $[\mathbf{P} 3]$ follows from $[\mathbf{P} 1],[\mathbf{P} 2]$, and $[\mathbf{P} 4]$.
It is not difficult to show that: (i) inverses are unique in a pree, (ii) if $a b$ is defined, then $(a b) b^{-1}=a$ and $a^{-1}(a b)=b$.

A sequence $X=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ of n elements of P is called a word with length $|X|=n$. The word $X=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ is said to be defined if each pair

$$
a_{1} a_{2}, a_{2} a_{3}, \ldots, a_{n-1} a_{n}
$$

is defined. A triple in X is a subsequence $a_{i} a_{i+1} a_{i+2}$.
A prouct $a b=c$ in a pree may be viewed as a triangle as shown in Fig. 1-1. Bob Gilman [4] noted that the associative law is equivalent to the statement that if three triangles in a pree P fit around a common vertex then the perimeter is also a valid triangle in P. Figure 1-2 illustrates the associative law; that is, the side X is equal to $a(b c)$ and also $(a b) c$.

Fig. 1-1 Product $a b=c$
Fig.1-2 Associative law
Definition 1.2. The universal group $G(P)$ of a pree P is the group with presentation $G(P)=g p(P$; operation $m)$

That is, P is the set of generators for $G(P)$ and the defining relations of $G(P)$ are of the form $z=x y$ where $m(x, y)=z$.

Definition 1.3. A pree P is said to be group-embeddable or simply embeddable if P can be embedded in its universal group $G(P)$.

Theorem 1.4. The question of whether or not a finite pree P embeds in its universal group $G(P)$ is undecidable.

Bob Gilman [4] noted that this theorem is a special case of a result of Trevor Evans [Embeddable and the word problem] which says that if the embedding problem is solvable for a class of finite partial algebras, then the word problem is solvable for the corresponding class of algebras.

Next follows classical examples of embeddable prees.
Example 1.5. Let K and L be groups with isomorphic subgroups A, pictured in Fig. 1-3. Then the amalgam $P=K \cup_{A} L$ is a pree which is embeddable in $G(P)=K *_{A} L$, the free product of K and L with A amalgamated. A typical element w in $G(P)$ is of the form $w=a$ in A or $w=x_{1} y_{1} \cdots x_{n} y_{n}$ where x_{i} and y_{i} come from different factors in $G(P)$ outside of A.

Fig 1-3

Fig 1-4

Example 1.6. Let K, H, L be groups. Suppose K and H have isomorphic groups A, and suppose H and L have isomorphic groups B, pictured in Fig. 1-4. Then the amalgam $P=K \cup_{A} H \cup_{B} L$ is a pree which is embeddable in $G(P)=K *_{A} H *_{B} L$ the free product of K, H, L with subgroups A and B amalgamated.

Example 1.7. Let $T=\left(K_{i} ; A_{r s}\right)$ be a tree graph of groups with vertex groups K_{i}, and with edge groups $A_{r s}$. Here $A_{r s}$ is a subgroup of vertex groups K_{r} and K_{s}. Let $P=\bigcup_{i}\left(K_{i} ; A_{r s}\right)$, the amalgam of the groups in T. Then P is a pree which is embeddable in $G(P)=*\left(K_{i} ; A_{r s}\right)$, the tree product of the vertex groups K_{i} with the subgroups $A_{r s}$ amalgamated.

Example 1.8. Let $G=\left(K_{i} ; A_{r s}\right)$ be a graph of groups with vertex groups K_{i} and with edge groups $A_{r s}$. Again $A_{r s}$ is a subgroup of vertex groups K_{r} and K_{s}. Let $P=\bigcup_{i}\left(K_{i} ; A_{r s}\right)$. Then P is a pree but P may not be embeddable in $G(P)=*\left(K_{i} ; A_{r s}\right)$, the free product of groups K_{i} with the subgroups $A_{r s}$ amalgamated. In fact, there are cases where $G(P)=\{e\}$.

2. Stallings' pregroup

Overall Problem: Find additional axioms so that a pree P is embeddable.

Notation: If X is a set of axioms, then an X-pree will be a pree which also satisfies the axioms in X.

Stallings [16] (1971) invented the name "pregroup" for a pree P and the following axiom:
$[\mathbf{P} 5]=[\mathbf{T 1}]$ If $a b, b c$, and $c d$ are defined, then $a b c$ or $b c d$ is defined.
[The reason for the 1 in [$\mathbf{T} \mathbf{1}]$ is explained in Remark 6.3.]
Theorem 2.1. (Stallings): A pregroup P is embedded in $G(P)$.
[Note: A pregroup P is a T1-pree.]
We quickly outline Stallings' proof of the theorem. A word $w=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is reduced if no $x_{i} x_{i+1}$ is defined. Suppose w is reduced and suppose $x_{i} a$ and $a^{-1} x_{i+1}$ are defined. Then one can show that

$$
w * a=\left(x_{1}, x_{2}, \ldots, x_{i} a, a^{-1} x_{i+1}, \ldots, x_{n}\right)
$$

is also reduced. Stallings called $w * a$ an interleaving of w by a.
Define $w \approx v$ if v can be obtained from w by a sequence of interleavings.
Lemma 2.2. $w \approx v$ is an equivalence relation on the set of reduced words.

Lemma 2.3. For any $a \in P$, we define f_{a} on reduced words by:

$$
f_{a}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}\left(a, x_{1}, x_{2}, \ldots, x_{n}\right) & \text { if ax } x_{1} \text { is not defined } \\ \left(a x_{1}, x_{2}, \ldots, x_{n}\right) & \text { if ax } x_{1} \text { is defined } \\ & \text { but ax } x_{1} x_{2} \text { is not defined, } \\ \left(a x_{1} x_{2}, x_{3} \ldots, x_{n}\right) & \text { if } a x_{1} x_{2} \text { is defined }\end{cases}
$$

Lemma 2.4. f_{a} is a permutation on the equivalence classes of reduced words.

Lemma 2.5. (Main Lemma): If $a b$ is defined then $f_{a b}=f_{a} f_{b}$.
The proof of the main lemma consists of the nine possibilities of $f_{a b}$.
Theorem 2.6. $G(P)=\left\{\right.$ permuations $\left.f_{a}\right\}$ and P is embedded in $G(P)$ by

$$
a \mapsto f_{a} .
$$

Remark 2.7. The pree $P=K \cup_{A} L$ in Example 1.5 is an example of a pregroup.

3. Baer's question

Reinhold Baer ["Free sums of groups and their generalizations", 1950, [1]] also considered the embedding of prees. In particular, the following appears in his paper:

Postulate XI: (Consists of three parts)
(a) If $a b, b c, c d$ exist, then $a(b c)$ or $(b c) d$ exist.
(b) If $b c, c d$ and $a(b c)$ exist, then $a b$ or $(b c) d$ exist.
(c) If $a b, b c$ and $(b c) d$ exist, then $a(b c)$ or $c d$ exist.

Baer then states:
"In certain instances it is possible to deduce properties (b), (c) from (a); but whether or not this is true in general, the author does not know."

The following theorem (L. and Shi, [14]) answers Baer's question:
Theorem 3.1. The following conditions on a pree P are equivalent.
(i) $[\mathbf{P 5}]=[\mathbf{T 1}]$: If $a b, b c, c d$ are defined, then $a(b c)$ or $(b c) d$ is defined.
(ii) [A1]: If $a b,(a b) c,((a b) c) d$ are defined then $b c$ or $c d$ is defined.
(iii) [A2]: If $c d, b(c d), a(b(c d))$ are defined, then $a b$ or $b c$ is defined.
(iv) $[\mathbf{A 3}]$: If $b c, c d, a(b c)$ are defined, then $a b$ or $(b c) d$ is defined.
(v) [A4]: If $a b, b c,(b c) d$ are defined, then $a(b c)$ or $c d$ is defined.

Note: $[\mathbf{P 5}]=[\mathbf{T} 1]$ is Baer's (a), [A3] is Baer's (b) and $[\mathbf{A 4}]$ is Baer's (c).

Corollary 3.2. Let P be a pree which satisfies one of the axioms in Theorem 3.1. Then P is embeddable in its universal group $G(P)$.

4. Kushner's generalization of a pregroup. T2-prees

Note again that $G=K *_{A} L$ in Example 1.5 is a pregroup since $[\mathbf{P} 5]=[\mathbf{T 1}]$ does hold in G. However, $G=K *_{A} H *_{B} L$ in Example 1.6 is not a pregroup since $[\mathbf{P} 5]=[\mathbf{T 1}]$ does not hold in G. For example, let $x \in K \backslash A, y \in L \backslash B, a \in A, b \in B$, as pictured in Fig. 4-1. Then $x a \in K, a b \in H$ and $b y \in L$ are defined, but $x a b$ and $a b y$ need not be defined.

Fig.4-1
On the other hand, $G=K *_{A} H *_{B} L$ does satisfy the axiom:
[T2] If $a b, b c, c d, d e$ are defined, then $a b c, b c d$, or $c d e$ is defined. That is, if $X=[a, b, c, d, e]$ is defined, then a triple in X is defined.

Theorem 4.1 (Kushner). Let P be a T2-pree. Then P is embeddable in $G(P)$.

We outline the proof of Kushner's theorem.
Recall that in a pregroup, a reduced word is still reduced under an interleaving. This is not true for a T2-pree. For example, let $x \in K \backslash A, y \in$ $L \backslash B, a \in A, b \in B$, as pictured in Fig.4-1. The word $w=[x, a b, y]$ is reduced in $G=K *_{A} H *_{B} L$. But

$$
w * a=\left[x a, a^{-1}(a b), y\right]=[x a, b, y]
$$

is not reduced since by is defined. Thus a reduced word in a T2-pree may not be reduced by an interleaving.

The following definitions are new.
Definition 4.2. The word $w=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is fully reduced if w is reduced and w is reduced under any sequence of interleavings.

Definition 4.3. Suppose $w=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is reduced and suppose $x_{i}=a b$ where $x_{i-1} a$ and $b x_{i+1}$ are defined. Then x_{i} is said to split in w, and w is reducible to $v=\left(x_{1}, \ldots, x_{i-1} a, b x_{i+1}, \ldots x_{n}\right)$.

Note first that if w is reducible to v then $|v|<|w|$. Note also that in the above reduced word $w=[x, a b, y]$, the element $a b$ splits in w, and w is reducible to $v=[x a, b y]$.

Lemma 4.4. (Main Lemma) If $w=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is reduced in a T2pree P, but not fully reduced, then some x_{i} in w splits.

That is, w is fully reduced if and only if w is nonsplitable.
Define $w \approx v$ if v can be obtained from w by a sequence of interleavings.
Lemma 4.5. $w \approx v$ is an equivalence relation on the set of fully reduced words.

If $w=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is fully reduced, then $f_{a}(w)=f_{a}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ has 5 possible cases (rather the 3 in a pregroup). Thus then following lemma requires 25 cases (not 9).

Lemma 4.6. $f_{a b}=f_{a} f_{b}$.
Theorem 4.7. $G(P)=\left\{\right.$ permuations $\left.f_{a}\right\}$ and P is embedded in $G(P)$ by

$$
a \mapsto f_{a}
$$

5. Baer's question for T2-prees. Open questions for T2prees

The following theorem generalizes Bair's question for the axiom [T2].
Theorem 5.1 (Gaglione, L, Spellman, 2010). The following are equivalent in a pree P where a, b, c, d, e are elements in P.

1) [T2] If $a b, b c, c d$, de are defined, then $a(b c), b(c d)$, or $c(d e)$ is defined.
2) [B1] If $b c, c d, a(b c),(c d) e$ are defined, then $a b,(b c) d$, or de is defined.
3) [B2] If $a b,(a b) c$, de, $c(d e)$ are defined, then $b c, c d$, or $(a b) c(d e)$ is defined.

We Prove Theorem 5.1 in Section 9.

5.1. Transitive order in a pree

The following transitive order relation on a pree P is due to Stallings:
Definition 5.2. Let $L(x)=\{a \in P: a x$ is defined $\}$. Put $x \leq y$ if $L(y) \subseteq L(x)$ and $x<y$ if $L(y) \subseteq L(x)$ and $L(y) \neq L(x)$. Also, we let $x \sim y$ if $L(x)=L(y)$.

Example 5.3. Let $P=K \cup_{A} L$ as in Fig.1-3. Let $x \in K \backslash A, y \in K \backslash A$, and $a \in A$. Then $L(x)=K, L(y)=K, L(a)=P$. Thus, $a<x$ and $a<y$. Also, $x \sim y$.

Theorem 5.4 (Rimlinger, Hoare). The following conditions on a pree P are equivalent.
(i) $[\mathbf{P} 5]=[\mathbf{T 1}]$: If $a b, b c, c d$ are defined, then $a(b c)$ or $(b c) d$ is defined.
(ii) If x^{-1} aand $a^{-1} y$ are defined but $x^{-1} y$ is not defined, then $a<x$ and $a<y$.
(iii) If $x^{-1} y$ is defined, then $x \leq y$ or $y \leq x$.

Problem (1): Find analogous conditions which are equivalent to [T2].

Theorem 5.5. (Hoare, Chiswell) The universal group $G(P)$ of a pregroup P admits an integer-valued length function in the sense of Lyndon.

Problem (2): Prove that an integer-valued length function (in the sense of Lyndon) exists for the universal group $G(P)$ for a T2-pree P.

6. Kushner's axiom K, generalizing [T2]

The proof by Kushner (in his doctoral thesis) that a T2-pree is embeddable was very long and involved (for example, the proof of $f_{a b}=$ $f_{a} f_{b}$ required 25 cases instead of 9 cases). Thus the following localization axiom was added in order to shorten the proof:
$[\mathbf{K}]$ If $a b, b c, c d$ and $(a b)(c d)$ are defined, then $a b c$ or $b c d$ is defined.

Theorem 6.1 (Kushner-L). Let P be a KT2-pree. Then P is embeddable in $G(P)$.

After the paper appeared, Hoare independently obtained Kushner's original result with a considerably shorter and less involved proof (by reducing the proof of $f_{a b}=f_{a} f_{b}$ to only 9 cases):

Theorem 6.2 (Hoare). Let P be a T2-pree. Then P is embeddable in $G(P)$.

Consider the following axioms for $n \geq 1$.
[Tn] If $X=\left[a_{1}, a_{2}, \ldots, a_{n+3}\right]$ is defined, then some triple in X is defined.

That is, if $a_{1} a_{2}, a_{2} a_{3}, \ldots, a_{n+2} a_{n+3}$ are defined, then $\left(a_{1} a_{2}\right) a_{3}$, $\left(a_{2} a_{3}\right) a_{4}, \ldots$, or $\left(a_{n+1} a_{n+2}\right) a_{n+3}$ is defined.

Remark 6.3. We emphasize that [Tn] holds for a tree pree P in Example 1.7 when the diameter of the tree does not exceed n.

Theorem 6.4 (Kushner-L, 1993). Let P be a KT3-pree. Then P is embeddable in $G(P)$.

We note that Theorem 6.4 requires Axiom $[\mathbf{K}]$. The proof of the above theorem again requires:

Lemma 6.5. (Main Lemma) Let P be a KT3-pree. If $w=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is reduced but not fully reduced, then some x_{i} in w splits.

Problem (3): Prove that if P is a T3-pree, then P is embeddable in $G(P)$.

7. Further generalization

We extend the above Theorem 6.4 to all tree products of groups with finite diameters.

Theorem 7.1. (L Let P be a KTn-pree. Then P is embeddable in $G(P)$.
The above theorem requires a generalizing of the notion of a splitting. Specifically:

Definition 7.2. Let $w=\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, a_{2} b_{2}, a_{3} b_{3}, a_{4} b_{4}, \ldots\right.$, $\left.a_{n-1} b_{n-1}, x_{n}\right)$ where $x_{1} a_{2}, b_{2} a_{3}, b_{3} a_{4}, \ldots, b_{n-1} x_{n}$ are defined. Then we say w is reducible to

$$
v=\left(x_{1} a_{2}, b_{2} a_{3}, b_{3} a_{4}, \ldots, b_{n-1} x_{n}\right)
$$

and the factorization $a_{2} b_{2}, a_{3} b_{3}, a_{4} b_{4}, \ldots, a_{n-1} b_{n-1}$ is called a general splitting of w.

Remark 7.3. We note that in the above general splitting, $|v|<|w|$.
Example 7.4. Figure 7-1 illustrates a general splitting. Specifically, $w=[x, a b, c d, y]$ need not be reduced where $x \in K_{1}, y \in K_{5}, a \in A, b \in$ $B, c \in C, d \in D$. Also, $a b$ need not split and $c d$ need not split. However, $x a, b c$ and $d y$ are defined. Accordingly, $w=[x, a b, c d, y]$ reduces, by a general splitting, to $v=[x a, b c, d y]$.

Fig. 7-1
The following Lemma is essential in the proof of Theorem 7.1.

Lemma 7.5. Suppose w is reduced but not fully reduced in a KTn-pree. Then w contains a general splitting.

We would like to find a theorem which generalizes Bair's question for Axiom [Tn]. Theorem5.1 answers Baire's question for axiom [T2]. We do have an answer to Baer's question for Axiom [T6] which we prove in Section 10. Specifically:

Theorem 7.6. The following axioms, [T6], [C6-1], and [C6-2], are equivalent in a pree P :
[T6] Suppose $X=\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right]$ is defined, that is, each $a_{i} a_{i+1}$ is defined. Then a triple in X is defined.
[C6-1] Suppose all the following are defined:

$$
\begin{aligned}
& \text { (1) } b_{2} b_{3}, b_{3} b_{4}, b_{1}\left(b_{2} b_{3}\right),\left(b_{3} b_{4}\right) b_{5} \\
& \text { (2) } b_{6} b_{7}, b_{7} b_{8}, b_{5}\left(b_{6} b_{7}\right),\left(b_{7} b_{8}\right) b_{9}
\end{aligned}
$$

Then one of the following is defined:

$$
b_{1} b_{2},\left(b_{2} b_{3}\right) b_{4}, b_{4} b_{5},\left(b_{3} b_{4}\right) b_{5}\left(b_{6} b_{7}\right), b_{5} b_{6},\left(b_{6} b_{7}\right) b_{8}, \text { or } b_{8} b_{9}
$$

[C6-2] Suppose all the following are defined:

$$
\begin{aligned}
& \text { (1) } b_{1} b_{2},\left(b_{1} b_{2}\right) b_{3}, b_{4} b_{5}, b_{3}\left(b_{4} b_{5}\right) \\
& \text { (2) } b_{5} b_{6},\left(b_{5} b_{6}\right) b_{7}, b_{8} b_{9}, b_{7}\left(b_{8} b_{9}\right) .
\end{aligned}
$$

Then one of the following is defined:
$b_{2} b_{3},\left(b_{1} b_{2}\right) b_{3}\left(b_{4} b_{5}\right), b_{3} b_{4},\left(b_{4} b_{5}\right) b_{6}, b_{6} b_{7},\left(b_{5} b_{6}\right) b_{7}\left(b_{8} b_{9}\right)$, or $b_{7} b_{8}$.

Remark 7.7. Note that (2) in both cases [C6-1] and [C6-2] can be obtained from (1) by adding 4 to each subscript.

Remark 7.8. The proof of Theorem 7.6 for [T6] is very similar to the proof of Theorem 5.1 for [$\mathbf{T} 2$] by mainly adding 4 to various subscripts. Likely one can prove an analogous theorem for [Tm] where $m \equiv 2(\bmod 4)$.

Problem (4): Find a theorem which generalizes Bair's question for axioms [T3], [T4] and/or [T5].

8. Further, further generalizations

Consider Baer's (1953) axioms:
$\left[\mathbf{S}_{\mathbf{n}}, n \geq 4\right]$ Suppose $a_{1}^{-1} a_{2}=b_{1}, a_{2}^{-1} a_{3}=b_{2}, \ldots, a_{n-1}^{-1} a_{n}=b_{n-1}$, $a_{n}^{-1} a_{1}=b_{n}$ are defined in a pree P. Then at least one of the products $b_{i} b_{i+1}$ is also defined. (The product may be $b_{n} b_{1}$.) In other words, for some $i, a_{i}^{-1} a_{i+2}(\bmod n)$ is defined.

Definition 8.1. An \mathbf{S}-pree is a pree P which satisfies all axioms $\mathbf{S}_{\mathbf{n}}$ for $n \geq 4$.

Axiom $\mathbf{S}_{\mathbf{n}}$ is illustrated in Fig. 8-1.

Fig. 8-1
Theorem 8.2. (Baer) Let P be an \mathbf{S}-pree. Then P is embeddable in $G(P)$.

Consider two other axioms:
[L] Suppose $a b, b c, c d$ are defined, but $[a b, c d]$ and $[a, b c, d]$ are reduced. If $(a b) z$ and $z^{-1}(c d)$ are defined, then $b z$ and $z^{-1} c$ are defined.
[M] Equivalent fully reduced words have the same length.
Axiom [M], which we call Baer's axiom, is analogous to his axiom: "Similar irreducible vectors have the same length"

Theorem 8.3. (L, 1996) Let P be a KLM-pree. Then P is embeddable in $G(P)$.

The theorem requires the following proposition which is due to Hoare:
Proposition 8.4 (Hoare). In a KLM-pree, X is fully reduced if and only if X is nonsplittable.

Remark 8.5. A KLM-pree includes all tree products of groups, even those without finite diameter.

Theorem 8.6 (Gilman (preprint), Hoare 1998). Let P be a $K L$-pree $=$ $S_{4} S_{5}$-pree. Then P is embeddable in $G(P)$.

Hoare proved the theorem by showing that axiom [M] follows from [K] and [L].

Gilman proved the theorem using small-cancellation. In particular, Gilman's preprint ["Generalized small cancelation presentations"] indicates an intimate relationship between pregroups and small cancellation theory.

9. Proof of Theorem 5.1

First we restate Theorem 5.1 using different letters for axioms [T2], [B1], and [B2].

Theorem 9.1. The following are equivalent in a pree P :
[T2] If $X=\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right]$ is defined, then a triple in X is defined.
[B1] If $b_{2} b_{3}, b_{3} b_{4}, b_{1}\left(b_{2} b_{3}\right),\left(b_{3} b_{4}\right) b_{5}$ are defined, then one of the following is defined:

$$
b_{1} b_{2}, \quad\left(b_{2} b_{3}\right) b_{4} \quad \text { or } \quad b_{4} b_{5}
$$

[B2] If $b_{1} b_{2},\left(b_{1} b_{2}\right) b_{3}, b_{4} b_{5}, b_{3}\left(b_{4} b_{5}\right)$ are defined, then one of the following is defined:

$$
b_{2} b_{3}, b_{3} b_{4}, \text { or }\left(b_{1} b_{2}\right) b_{3}\left(b_{4} b_{5}\right)
$$

Lemma 9.2. [T2] and [B1] are equivalent.
(1) Assume [T2] holds. Suppose the hypothesis of [B1] holds, that is, suppose $b_{2} b_{3}, b_{3} b_{4}, b_{1}\left(b_{2} b_{3}\right),\left(b_{3} b_{4}\right) b_{5}$ are defined. Let

$$
a_{1}=b_{1}, a_{2}=b_{2} b_{3}, a_{3}=b_{3}^{-1}, a_{4}=b_{3} b_{4}, a_{5}=b_{5}
$$

Then the hypothesis of [T2] holds, that is, $\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right]$ is defined. By [T2], one of the following is defined:

$$
a_{1} a_{2} a_{3}=b_{1} b_{2}, \quad a_{2} a_{3} a_{4}=\left(b_{2} b_{3}\right) b_{4}, \text { or } a_{3} a_{4} a_{5}=b_{4} b_{5} .
$$

This is the conclusion of [B1]. Thus [T2] implies [B1].
(2) Assume [B1] holds. Suppose the hypothesis of [T2] holds, that is, suppose $\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right]$ is defined. Let

$$
b_{1}=a_{1}, b_{2}=a_{2} a_{3}, b_{3}=a_{3}^{-1}, b_{4}=a_{3} a_{4}, b_{5}=a_{5}
$$

Then the hypothesis of $[\mathbf{B 1}]$ holds, that is, $b_{\boldsymbol{2}} b_{3}, b_{3} b_{4}, b_{1}\left(b_{2} b_{3}\right),\left(b_{3} b_{4}\right) b_{5}$ are defined. By [B1], one of the following is defined:

$$
b_{1} b_{2}=a_{1} a_{2} a_{3},\left(b_{2} b_{3}\right) b_{4}=a_{2} a_{3} a_{4}, \text { or } b_{4} b_{5}=a_{3} a_{4} a_{5}
$$

This is the conclusion of [T2]. Thus [B1] implies [T2].
By (1) and (2), [$\mathbf{T} \mathbf{2}]$ and $[\mathbf{B 1}]$ are equivalent in a pree P.
Lemma 9.3. [T2] and [B2] are equivalent.
(1) Assume [T2] holds. Suppose the hypothesis of [B2] holds, that is, suppose $b_{1} b_{2},\left(b_{1} b_{2}\right) b_{3}, b_{4} b_{5}, b_{3}\left(b_{4} b_{5}\right)$ are defined. Let

$$
a_{1}=b_{1}^{-1}, a_{2}=b_{1} b_{2}, a_{3}=b_{3}, a_{4}=b_{4} b_{5}, a_{5}=b_{5}^{-1}
$$

Then the hypothesis of [T2] holds, that is, $\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right]$ is defined. By [T2], one of the following is defined:

$$
a_{1} a_{2} a_{3}=b_{2} b_{3}, a_{2} a_{3} a_{4}=\left(b_{1} b_{2}\right) b_{3}\left(b_{4} b_{5}\right), \text { or } a_{3} a_{4} a_{5}=b_{3} b_{4} .
$$

This is the conclusion of [B2]. Thus [T2] implies [B2].
(2) Assume [B2] holds. Suppose the hypothesis of [T2] holds, that is, suppose $\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right]$ is defined. Let

$$
b_{1}=a_{1}^{-1}, b_{2}=a_{1} a_{2}, b_{3}=a_{3}, b_{4}=a_{4} a_{5}, b_{5}=a_{5}^{-1}
$$

Then the hypothesis of [B2] holds, that is, $b_{1} b_{2},\left(b_{1} b_{2}\right) b_{3}, b_{4} b_{5}, b_{3}\left(b_{4} b_{5}\right)$ are defined. By [B2], one of the following is defined:

$$
b_{2} b_{3},=a_{1} a_{2} a_{3}, b_{3} b_{4}=a_{3} a_{4} a_{5}, \text { or }\left(b_{1} b_{2}\right) b_{3}\left(b_{4} b_{5}\right)=a_{2} a_{3} a_{4}
$$

This is the conclusion of [T2]. Thus [B2] implies [T2].
By (1) and (2), [T2] and [B2] are equivalent in a pree P.
Lemma 9.2 and Lemma 9.3 prove Theorem 5.1.

10. Proof of Theorem 7.6.

First we restate Theorem 7.6.
Theorem 10.1. The following are equivalent in a pree P, where a_{1}, a_{2}, $a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}$ are elements in P.
[T6] Suppose $X=\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right]$ is defined, that is, each $a_{i} a_{i+1}$ is defined. Then a triple in X is defined.
[C6-1] Suppose all the following are defined:
(1) $b_{2} b_{3}, b_{3} b_{4}, b_{1}\left(b_{2} b_{3}\right),\left(b_{3} b_{4}\right) b_{5}$,
(2) $b_{6} b_{7}, b_{7} b_{8}, b_{5}\left(b_{6} b_{7}\right),\left(b_{7} b_{8}\right) b_{9}$.

Then one of the following is defined:
$b_{1} b_{2},\left(b_{2} b_{3}\right) b_{4}, b_{4} b_{5},\left(b_{3} b_{4}\right) b_{5}\left(b_{6} b_{7}\right), b_{5} b_{6},\left(b_{6} b_{7}\right) b_{8}$, or $b_{8} b_{9}$.
[C6-2] Suppose all the following are defined:
(1) $b_{1} b_{2},\left(b_{1} b_{2}\right) b_{3}, b_{4} b_{5}, b_{3}\left(b_{4} b_{5}\right)$,
(2) $b_{5} b_{6},\left(b_{5} b_{6}\right) b_{7}, b_{8} b_{9}, b_{7}\left(b_{8} b_{9}\right)$.

Then one of the following is defined:
$b_{2} b_{3},\left(b_{1} b_{2}\right) b_{3}\left(b_{4} b_{5}\right), b_{3} b_{4},\left(b_{4} b_{5}\right) b_{6}, b_{6} b_{7},\left(b_{5} b_{6} b_{7}\left(b_{8} b_{9}\right)\right.$, or $b_{7} b_{8}$.
Remark 10.2. Note that (2) in [C6-1] and (2) in [C6-2] can each be obtained from (1) by adding 4 to each subscript.

Lemma 10.3. In a pree P, axiom [T6] is equivalent to [C6-1].
(1) Proof that [T6] implies [C6-1].

Assume [T6] holds. Suppose the hypothesis of [C6-1] holds, that is, the following are defined:

$$
\text { (1) } b_{2} b_{3}, b_{3} b_{4}, b_{1}\left(b_{2} b_{3}\right),\left(b_{3} b_{4}\right) b_{5}
$$

(2) $b_{6} b_{7}, b_{7} b_{8}, b_{5}\left(b_{6} b_{7}\right),\left(b_{7} b_{8}\right) b_{9}$.

Let

$$
\begin{array}{llll}
a_{1}=b_{1}, & a_{2}=b_{2} b_{3}, & a_{3}=b_{3}^{-1}, & a_{4}=b_{3} b_{4}, \\
a_{5}=b_{5}, & a_{6}=b_{6} b_{7}, & a_{7}=b_{7}^{-1}, & a_{8}=b_{7} b_{8},
\end{array} \quad a_{9}=b_{9} .
$$

Then each $a_{i} a_{i+1}$ is defined, that is, the hypothesis of [T6] holds. By [T6], one of the following is defined:

$$
\begin{aligned}
a_{1} a_{2} a_{3} & =b_{1} b_{2}, & a_{2} a_{3} a_{4}=\left(b_{2} b_{3}\right) b_{4}, & a_{3} a_{4} a_{5}=b_{4} b_{5}, \\
a_{4} a_{5} a_{6} & =\left(b_{3} b_{4}\right) b_{5}\left(b_{6} b_{7}\right), & a_{5} a_{6} a_{7}=b_{5} b_{6}, & a_{6} a_{7} a_{8}=\left(b_{6} b_{7}\right) b_{8}, \\
\text { or } a_{7} a_{8} a_{9} & =b_{8} b_{9} . & &
\end{aligned}
$$

This is the conclusion of [C6-1]. Thus [T6] implies [C6-1].
(2) Proof that [C6-1] implies [T6].

Assume [C6-1] holds. Suppose the hypothesis of [T6] holds, that is, suppose $a_{1} a_{2}, a_{2} a_{3}, \cdots, a_{8} a_{9}$ are defined. Let

$$
\begin{aligned}
b_{1} & =a_{1}, b_{2}=a_{2} a_{3}, b_{3}=a_{3}^{-1}, b_{4}=a_{3} a_{4} \\
b_{5} & =a_{5}, b_{6}=a_{6} a_{7}, b_{7}=a_{7}^{-1}, b_{8}=a_{7} a_{8}, b_{9}=a_{9}
\end{aligned}
$$

Then the hypothesis of $[\mathbf{C 6 - 1}]$ holds, that is, the following are defined:

$$
\begin{aligned}
& b_{2} b_{3}, b_{3} b_{4}, b_{1}\left(b_{2} b_{3}\right),\left(b_{3} b_{4}\right) b_{5}, b_{6} b_{7}, \\
& b_{7} b_{8}, b_{5}\left(b_{6} b_{7}\right),\left(b_{7} b_{8}\right) b_{9}
\end{aligned}
$$

By [$\mathbf{C 6 - 1}]$, one of the following is defined:

$$
\begin{aligned}
b_{1} b_{2} & =a_{1} a_{2} a_{3}, & \left(b_{2} b_{3}\right) b_{4}=a_{2} a_{3} a_{4}, & b_{4} b_{5}=a_{3} a_{4} a_{5} \\
\left(b_{3} b_{4}\right) b_{5}\left(b_{6} b_{7}\right) & =a_{4} a_{5} a_{6}, & b_{5} b_{6}=a_{5} a_{6} a_{7}, & \left(b_{6} b_{7}\right) b_{8}=a_{6} a_{7} a_{8} \\
\text { or } b_{8} b_{9} & =a_{7} a_{8} a_{9} & &
\end{aligned}
$$

This is the conclusion of [T6]. Thus [C6-1] implies [T6].
By (1) and (2), Lemma 10.3 is proved.
Lemma 10.4. In a pree P, axiom [T6] is equivalent to [C6-2].

1) Proof that [T6] implies $[\mathbf{C 6 - 2}]$

Assume [T6] holds. Suppose the hypothesis of [C6-2] holds, that is, that the following are defined:

$$
b_{1} b_{2},\left(b_{1} b_{2}\right) b_{3}, b_{4} b_{5}, b_{3}\left(b_{4} b_{5}\right), b_{5} b_{6},\left(b_{5} b_{6}\right) b_{7}, b_{8} b_{9}, b_{7}\left(b_{8} b_{9}\right)
$$

Let:

$$
\begin{aligned}
& a_{1}=b_{1}^{-1}, a_{2}=b_{1} b_{2}, a_{3}=b_{3}, a_{4}=b_{4} b_{5}, a_{5}=b_{5}^{-1} \\
& a_{6}=b_{5} b_{6}, a_{7}=b_{7}, a_{8}=b_{8} b_{9}, a_{9}=b_{9}^{-1}
\end{aligned}
$$

Then each $a_{i} a_{i+1}$ is defined, that is, the hypothesis of [T6] holds. By [T6], one of the following is defined:

$$
\begin{aligned}
& a_{1} a_{2} a_{3}=b_{2} b_{3}, a_{2} a_{3} a_{4}=\left(b_{1} b_{2}\right) b_{3}\left(b_{4} b_{5}\right), a_{3} a_{4} a_{5}=b_{3} b_{4}, a_{4} a_{5} a_{6}=\left(b_{4} b_{5}\right) b_{6}, \\
& a_{5} a_{6} a_{7}=b_{6} b_{7}, a_{6} a_{7} a_{8}=\left(b_{5} b_{6}\right) b_{7}\left(b_{8} b_{9}\right), \text { or } a_{7} a_{8} a_{9}=b_{7} b_{8} .
\end{aligned}
$$

This is the conclusion of [C6-2]. Thus [T6] implies [C6-2].
(2) Proof that [C6-2] implies [T6].

Assume [C6-2] holds. Suppose the hypothesis of [T6] holds, that is, suppose $a_{1} a_{2}, a_{2} a_{3}, \cdots, a_{8} a_{9}$ are defined. Let:

$$
\begin{aligned}
b_{1} & =a_{1}^{-1}, b_{2}=a_{1} a_{2}, b_{3}=a_{3}, b_{4}=a_{4} a_{5}, b_{5}=a_{5}^{-1} \\
b_{6} & =a_{5} a_{6}, b_{7}=a_{7}, b_{8}=a_{8} a_{9}, b_{9}=a_{9}^{-1}
\end{aligned}
$$

Then the hypothesis of [C6-2] holds, that is, the following are defined:

$$
b_{1} b_{2},\left(b_{1} b_{2}\right) b_{3}, b_{4} b_{5}, b_{3}\left(b_{4} b_{5}\right), b_{5} b_{6},\left(b_{5} b_{6}\right) b_{7}, b_{8} b_{9}, b_{7}\left(b_{8} b_{9}\right)
$$

By [C6-2], one of the following is defined:
$b_{2} b_{3}=a_{1} a_{2} a_{3},\left(b_{1} b_{2}\right) b_{3}\left(b_{4} b_{5}\right)=a_{2} a_{3} a_{4}, b_{3} b_{4}=a_{3} a_{4} a_{5},\left(b_{4} b_{5}\right) b_{6}=a_{4} a_{5} a_{6}$,
$b_{6} b_{7}=a_{5} a_{6} a_{7},\left(b_{5} b_{6}\right) b_{7}\left(b_{8} b_{9}\right)=a_{6} a_{7} a_{8}$, or $b_{7} b_{8}=a_{7} a_{8} a_{9}$.
This is the conclusion of [T6]. Thus [C6-2] implies [T6].
By (1) and (2), Lemma 10.4 is proved.
Lemma 10.3 and Lemma 10.4, prove Theorem 7.6.

References

[1] R. Baer, Free sums of groups and their generalizations II, III, Amer. J. Math. 72 (1950), 625-670.
[2] Diekert, Duncan, Miasnikov, Geodesic Rewriting Systems and Pregroups, (2009), Preprint
[3] Evans, Trevor, Embeddable and the word problem, Preprint
[4] R. H. Gilman, Generalized small cancellation presentations, 1998, preprint.
[5] A. Gaglione, S. Lipschutz, D. Spellman, Note on a Question of Reinhold Baer on Pregroups II, (2011), Preprint
[6] A. H. M. Hoare, Pregroups and length functions, Math. Proc. Camb. Phil. Soc. (1988), 104, 21-30.
[7] \qquad , On generalizing Stallings' pregroup, J. of Algebra 145 (1992), 113-119
[8] \qquad , On generalizing Stallings' pregroup II, (1998), preprint.
[9] H. Kushner, On prestars and their universal groups, Ph. D. Thesis, Temple University, 1987.
[10] H. Kushner and S. Lipschutz, A generalization of Stallings' pregroup, J. of Algebra 119 (1988), 170-184.
[11] \qquad , On embeddable prees, J. of Algebra 160 (1993), 1-15.
[12] Kvaschuk, Miasnikov, Serbin, Pregroups and the Big Powers Condition, Algebra and Logic 48, No. 3, (2009),
[13] S. Lipschutz, Generalizing the Baer-Stallings pregroup, Contemporary Math. 169 (1994), 415-430.
[14] S. Lipschutz and W. Shi, Note on a question of Reinhold Baer on pregroups, Publ. Inst. Math. (Beograd) (N.S.) B (2000), 53-58.
[15] F.S. Rimlinger, Pregroups and Bass-Serre Theory, Mem. Amer. Math. Soc. no 361 (American Mathematical Society, 1987).
[16] J. Stallings, Group Theory and Three-Dimensional Manifolds, Yale Monograph 4, (Yale University Press, 1971).

CONTACT INFORMATION

A. M. Gaglione \quad Department of Mathematics \quad U.S. Naval Academy \quad Annapolis, MD 21402, U.S.A.

S. Lipschutz	Department of Mathematics
	Temple Universiy
	Philadelphia, PA 19122, U.S.A.
	E-Mail: seymour@temple.edu

D. Spellman	Department of Statisitcs
	Temple Universiy
	Philadelphia, PA 19122, U.S.A.

Received by the editors: 07.02.2012
and in final form 03.04.2012.

