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Abstract. There has been recent interest in Stallings’ Pre-
groups. (See [2] and [12].) This paper gives a survey of generalized
pregroups. We also answer a question of Reinhold Baer [1] on pre-
groups and answer a generalization of this question for generalized
pregroups.

1. Preliminary results

There has been recent interest in Stallings’ Pregroups. For example:

• [12] Pregroups and the Big Powers Condition: Kvaschuk, Miasnikov,
Serbin, Algebra and Logic, Vol. 48, No. 3, 2009

• [2] Geodesic Rewriting Systems and Pregroups, Diekert, Duncan,
Miasnikov, 2009, Preprint

First we give some preliminary results.
Let P be a nonempty set with a partial operation, called an “add”

by Baer [1] (1950). Formally, a partial operation on P is a mapping
m: D → P where D ⊆ P ×P . If (p, q) belongs to D, we denote m(p, q) by
pq and say that pq is defined or exists. (Baer denoted m(p, q) by p + q.)

An add P will be called a BS-pree or simply a pree (term invented by
Rimlinger [15]) if it satisfies the following three axioms of Stallings:
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[P1] (Identity) There exists 1 ∈ P such that for all a, we have 1a

and a1 are defined and 1a = a1 = a.

[P2] (Inverses) For each a ∈ P , there exists a−1 ∈ P such that
aa−1 and a−1a are defined, and aa−1 = a−1a = 1

[P4]=[A] (Weak Associative Law) If ab and bc are defined, then (ab)c
is defined if and only if a(bc) is defined, in which case (ab)c =
a(bc). (We then say the triple abc is defined.)

Remark 1.1. Stallings also gave the axiom:

[P3] If ab is defined, then b−1a−1 is defined and (ab)−1 = b−1a−1.

However, one can show that [P3] follows from [P1], [P2], and [P4].

It is not difficult to show that: (i) inverses are unique in a pree, (ii) if
ab is defined, then (ab)b−1 = a and a−1(ab) = b.

A sequence X = [a1, a2, ..., an] of n elements of P is called a word with
length |X| = n. The word X = [a1, a2, ..., an] is said to be defined if each
pair

a1a2, a2a3, ..., an−1an

is defined. A triple in X is a subsequence aiai+1ai+2.
A prouct ab = c in a pree may be viewed as a triangle as shown in Fig.

1-1. Bob Gilman [4] noted that the associative law is equivalent to the
statement that if three triangles in a pree P fit around a common vertex
then the perimeter is also a valid triangle in P . Figure 1-2 illustrates the
associative law; that is, the side X is equal to a(bc) and also (ab)c.

Fig. 1-1 Product ab = c Fig.1-2 Associative law

Definition 1.2. The universal group G(P ) of a pree P is the group with
presentation G(P ) = gp(P ; operation m)
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That is, P is the set of generators for G(P ) and the defining relations
of G(P ) are of the form z = xy where m(x, y) = z.

Definition 1.3. A pree P is said to be group-embeddable or simply
embeddable if P can be embedded in its universal group G(P ).

Theorem 1.4. The question of whether or not a finite pree P embeds in
its universal group G(P ) is undecidable.

Bob Gilman [4] noted that this theorem is a special case of a result of
Trevor Evans [Embeddable and the word problem] which says that if the
embedding problem is solvable for a class of finite partial algebras, then
the word problem is solvable for the corresponding class of algebras.

Next follows classical examples of embeddable prees.

Example 1.5. Let K and L be groups with isomorphic subgroups A,
pictured in Fig. 1-3. Then the amalgam P = K ∪A L is a pree which
is embeddable in G(P ) = K ∗A L, the free product of K and L with A

amalgamated. A typical element w in G(P ) is of the form w = a in A or
w = x1y1 · · ·xnyn where xi and yi come from different factors in G(P )
outside of A.

K A————–L K A————–H B—————–L

Fig 1-3 Fig 1-4

Example 1.6. Let K, H, L be groups. Suppose K and H have isomorphic
groups A, and suppose H and L have isomorphic groups B, pictured in
Fig. 1-4. Then the amalgam P = K ∪A H ∪B L is a pree which is
embeddable in G(P ) = K ∗A H ∗B L the free product of K,H, L with
subgroups A and B amalgamated.

Example 1.7. Let T = (Ki; Ars) be a tree graph of groups with vertex
groups Ki, and with edge groups Ars. Here Ars is a subgroup of vertex
groups Kr and Ks. Let P =

⋃

i

(Ki; Ars), the amalgam of the groups in

T . Then P is a pree which is embeddable in G(P ) = ∗(Ki; Ars), the tree
product of the vertex groups Ki with the subgroups Ars amalgamated.

Example 1.8. Let G = (Ki; Ars) be a graph of groups with vertex groups
Ki and with edge groups Ars. Again Ars is a subgroup of vertex groups
Kr and Ks. Let P =

⋃

i

(Ki; Ars). Then P is a pree but P may not be

embeddable in G(P ) = ∗(Ki; Ars), the free product of groups Ki with the
subgroups Ars amalgamated. In fact, there are cases where G(P ) = {e}.
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2. Stallings’ pregroup

Overall Problem: Find additional axioms so that a pree P is em-
beddable.

Notation: If X is a set of axioms, then an X-pree will be a pree
which also satisfies the axioms in X.

Stallings [16] (1971) invented the name “pregroup” for a pree P and
the following axiom:

[P5]=[T1] If ab, bc, and cd are defined, then abc or bcd is defined.

[The reason for the 1 in [T1] is explained in Remark 6.3.]

Theorem 2.1. (Stallings): A pregroup P is embedded in G(P).

[Note: A pregroup P is a T1-pree.]
We quickly outline Stallings’ proof of the theorem. A word w =

(x1, x2, ..., xn) is reduced if no xixi+1 is defined. Suppose w is reduced and
suppose xia and a−1xi+1 are defined. Then one can show that

w ∗ a = (x1, x2, ..., xia, a−1xi+1, ..., xn)

is also reduced. Stallings called w ∗ a an interleaving of w by a.
Define w ≈ v if v can be obtained from w by a sequence of interleavings.

Lemma 2.2. w ≈ v is an equivalence relation on the set of reduced
words.

Lemma 2.3. For any a ∈ P , we define fa on reduced words by:

fa(x1, x2, ..., xn) =



















(a, x1, x2, ..., xn) if ax1is not defined,
(ax1, x2, ..., xn) if ax1 is defined,

but ax1x2 is not defined,
(ax1x2, x3..., xn) if ax1x2 is defined.

Lemma 2.4. fa is a permutation on the equivalence classes of reduced
words.

Lemma 2.5. (Main Lemma): If ab is defined then fab = fafb.

The proof of the main lemma consists of the nine possibilities of fab.

Theorem 2.6. G(P ) = {permuations fa}and P is embedded in G(P )
by

a 7→ fa.

Remark 2.7. The pree P = K ∪A L in Example 1.5 is an example of a
pregroup.



224 Generalized pregroups

3. Baer’s question

Reinhold Baer [“Free sums of groups and their generalizations”, 1950,
[1]] also considered the embedding of prees. In particular, the following
appears in his paper:

Postulate XI: (Consists of three parts)

(a) If ab, bc, cd exist, then a(bc) or (bc)d exist.

(b) If bc, cd and a(bc) exist, then ab or (bc)d exist.

(c) If ab, bc and (bc)d exist, then a(bc) or cd exist.

Baer then states:

“In certain instances it is possible to deduce properties (b), (c) from
(a); but whether or not this is true in general, the author does not know.”

The following theorem (L. and Shi, [14]) answers Baer’s question:

Theorem 3.1. The following conditions on a pree P are equivalent.

(i) [P5] = [T1]: If ab, bc, cd are defined, then a(bc) or (bc)d is defined.

(ii) [A1]: If ab, (ab)c, ((ab)c)d are defined then bc or cd is defined.

(iii) [A2]: If cd, b(cd), a(b(cd)) are defined, then ab or bc is defined.

(iv) [A3]: If bc, cd, a(bc) are defined, then ab or (bc)d is defined.

(v) [A4]: If ab, bc, (bc)d are defined, then a(bc) or cd is defined.

Note: [P5] = [T1] is Baer’s (a), [A3] is Baer’s (b) and [A4] is
Baer’s (c).

Corollary 3.2. Let P be a pree which satisfies one of the axioms in
Theorem 3.1. Then P is embeddable in its universal group G(P).

4. Kushner’s generalization of a pregroup. T2-prees

Note again that G = K ∗A L in Example 1.5 is a pregroup since
[P5] = [T1] does hold in G. However, G = K ∗A H ∗B L in Example 1.6
is not a pregroup since[P5] = [T1] does not hold in G. For example,
let x ∈ K\A, y ∈ L\B, a ∈ A, b ∈ B, as pictured in Fig. 4-1. Then
xa ∈ K, ab ∈ Hand by ∈ L are defined, but xab and aby need not be
defined.
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x → K ———— H ———— L← y
A B
↑ ↑

a b

Fig.4-1

On the other hand, G = K ∗A H ∗B L does satisfy the axiom:
[T2] If ab,bc, cd, de are defined, then abc, bcd, or cde is defined. That

is, if X = [a, b, c, d, e] is defined, then a triple in X is defined.

Theorem 4.1 (Kushner). Let P be a T2-pree. Then P is embeddable in
G(P ).

We outline the proof of Kushner’s theorem.
Recall that in a pregroup, a reduced word is still reduced under an

interleaving. This is not true for a T2-pree. For example, let x ∈ K\A, y ∈
L\B, a ∈ A, b ∈ B,as pictured in Fig.4-1. The word w = [x, ab, y] is
reduced in G = K ∗A H ∗B L. But

w ∗ a = [xa, a−1(ab), y] = [xa, b, y]

is not reduced since by is defined. Thus a reduced word in a T2-pree may
not be reduced by an interleaving.

The following definitions are new.

Definition 4.2. The word w = (x1, x2, ..., xn) is fully reduced if w is
reduced and w is reduced under any sequence of interleavings.

Definition 4.3. Suppose w = (x1, x2, ..., xn) is reduced and suppose
xi = ab where xi−1a and bxi+1 are defined. Then xi is said to split in w,
and w is reducible to v = (x1, ..., xi−1a, bxi+1, ...xn).

Note first that if w is reducible to v then |v| < |w|. Note also that in
the above reduced word w = [x, ab, y], the element ab splits in w, and w

is reducible to v = [xa, by].

Lemma 4.4. (Main Lemma) If w = (x1, x2, ..., xn) is reduced in a T2-
pree P, but not fully reduced, then some xi in w splits.

That is, w is fully reduced if and only if w is nonsplitable.
Define w ≈ v if v can be obtained from w by a sequence of interleavings.

Lemma 4.5. w ≈ v is an equivalence relation on the set of fully reduced
words.
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If w = (x1, x2, ..., xn) is fully reduced, then fa(w) = fa(x1, x2, ..., xn)
has 5 possible cases (rather the 3 in a pregroup). Thus then following
lemma requires 25 cases (not 9).

Lemma 4.6. fab = fafb.

Theorem 4.7. G(P ) = {permuations fa} and P is embedded in G(P )
by

a 7→ fa.

5. Baer’s question for T2-prees. Open questions for T2-
prees

The following theorem generalizes Bair’s question for the axiom [T2].

Theorem 5.1 (Gaglione, L, Spellman, 2010). The following are equivalent
in a pree P where a, b, c, d, e are elements in P .

1) [T2] If ab, bc, cd, de are defined, then a(bc), b(cd), or c(de) is de-
fined.

2) [B1] If bc, cd, a(bc), (cd)e are defined, then ab, (bc)d, or de is de-
fined.

3) [B2] If ab, (ab)c, de, c(de) are defined, then bc, cd, or (ab)c(de) is
defined.

We Prove Theorem 5.1 in Section 9.

5.1. Transitive order in a pree

The following transitive order relation on a pree P is due to Stallings:

Definition 5.2. Let L(x) = {a ∈ P : ax is defined}. Put x ≤ y if
L(y) ⊆ L(x) and x < y if L(y) ⊆ L(x) and L(y) 6= L(x). Also, we let
x ∼ y if L(x) = L(y).

Example 5.3. Let P = K ∪A L as in Fig.1-3. Let x ∈ K\A, y ∈ K\A,
and a ∈ A. Then L(x) = K, L(y) = K, L(a) = P . Thus, a < x and
a < y. Also, x ∼ y.

Theorem 5.4 (Rimlinger, Hoare). The following conditions on a pree P
are equivalent.

(i) [P5] = [T1]: If ab, bc, cd are defined, then a(bc) or (bc)d is defined.
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(ii) If x−1aand a−1y are defined but x−1y is not defined, then a < x
and a < y.

(iii) If x−1y is defined, then x ≤ y or y ≤ x.

Problem (1): Find analogous conditions which are equivalent to
[T2].

Theorem 5.5. (Hoare, Chiswell) The universal group G(P ) of a pregroup
P admits an integer-valued length function in the sense of Lyndon.

Problem (2): Prove that an integer-valued length function (in the
sense of Lyndon) exists for the universal group G(P ) for a T2-pree P .

6. Kushner’s axiom K, generalizing [T2]

The proof by Kushner (in his doctoral thesis) that a T2-pree is
embeddable was very long and involved (for example, the proof of fab =
fafb required 25 cases instead of 9 cases). Thus the following localization
axiom was added in order to shorten the proof:

[K] If ab, bc, cd and (ab)(cd) are defined, then abc or bcd is defined.

Theorem 6.1 (Kushner-L). Let P be a KT2-pree. Then P is embeddable
in G(P ).

After the paper appeared, Hoare independently obtained Kushner’s
original result with a considerably shorter and less involved proof (by
reducing the proof of fab = fafb to only 9 cases):

Theorem 6.2 (Hoare). Let P be a T2-pree. Then P is embeddable in
G(P ).

Consider the following axioms for n ≥ 1.

[Tn] If X = [a1, a2, ..., an+3] is defined, then some triple in X is
defined.

That is, if a1a2, a2a3, ..., an+2an+3 are defined, then (a1a2)a3,
(a2a3)a4,. . . , or (an+1an+2)an+3 is defined.

Remark 6.3. We emphasize that [Tn] holds for a tree pree P in Example
1.7 when the diameter of the tree does not exceed n.

Theorem 6.4 (Kushner-L, 1993). Let P be a KT3-pree. Then P is
embeddable in G(P ).
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We note that Theorem 6.4 requires Axiom [K]. The proof of the above
theorem again requires:

Lemma 6.5. (Main Lemma) Let P be a KT3-pree. If w = (x1, x2, ..., xn)
is reduced but not fully reduced, then some xi in w splits.

Problem (3): Prove that if P is a T3-pree, then P is embeddable in
G(P ).

7. Further generalization

We extend the above Theorem 6.4 to all tree products of groups with
finite diameters.

Theorem 7.1. (L) Let P be a KTn-pree. Then P is embeddable in G(P ).

The above theorem requires a generalizing of the notion of a splitting.
Specifically:

Definition 7.2. Let w = (x1, x2, ..., xn) = (x1, a2b2, a3b3, a4b4, ...,

an−1bn−1, xn) where x1a2, b2a3, b3a4, ..., bn−1xn are defined. Then we say
w is reducible to

v = (x1a2, b2a3, b3a4, ..., bn−1xn)

and the factorization a2b2, a3b3, a4b4, ..., an−1bn−1 is called a general split-
ting of w.

Remark 7.3. We note that in the above general splitting, |v| < |w|.

Example 7.4. Figure 7-1 illustrates a general splitting. Specifically,
w = [x, ab, cd, y] need not be reduced where x ∈ K1, y ∈ K5, a ∈ A, b ∈
B, c ∈ C, d ∈ D. Also, ab need not split and cd need not split. However,
xa, bc and dy are defined. Accordingly, w = [x, ab, cd, y] reduces, by a
general splitting, to v = [xa, bc, dy].

x→ K1 ———— K2 ———— K3 ———— K4 ———— K5← y

A B C D
↑ ↑ ↑ ↑
a b c d

Fig. 7-1

The following Lemma is essential in the proof of Theorem 7.1.
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Lemma 7.5. Suppose w is reduced but not fully reduced in a KTn-pree.
Then w contains a general splitting.

We would like to find a theorem which generalizes Bair’s question for
Axiom [Tn]. Theorem5.1 answers Baire’s question for axiom [T2]. We
do have an answer to Baer’s question for Axiom [T6] which we prove in
Section 10. Specifically:

Theorem 7.6. The following axioms, [T6], [C6-1], and [C6-2], are
equivalent in a pree P :

[T6] Suppose X = [a
1
, a2, a3, a4, a5, a6, a7, a8, a9] is defined, that is,

each aiai+1 is defined. Then a triple in X is defined.

[C6-1] Suppose all the following are defined:

(1) b2b3, b3b4, b1(b2b3), (b3b4)b5,

(2) b6b7, b7b8, b5(b6b7), (b7b8)b9.

Then one of the following is defined:

b1b2, (b2b3)b4, b4b5, (b3b4)b5(b6b7), b5b6, (b6b7)b8, or b8b9.

[C6-2] Suppose all the following are defined:

(1) b1b2, (b1b2)b3, b4b5, b3(b4b5),

(2) b5b6, (b5b6)b7, b8b9, b7(b8b9).

Then one of the following is defined:

b2b3, (b1b2)b3(b4b5), b3b4, (b4b5)b6, b6b7, (b5b6)b7(b8b9), or b7b8.

Remark 7.7. Note that (2) in both cases [C6-1] and [C6-2] can be
obtained from (1) by adding 4 to each subscript.

Remark 7.8. The proof of Theorem 7.6 for [T6] is very similar to
the proof of Theorem 5.1 for [T2] by mainly adding 4 to various sub-
scripts. Likely one can prove an analogous theorem for [Tm] where
m ≡ 2( mod 4).

Problem (4): Find a theorem which generalizes Bair’s question for
axioms [T3], [T4] and/or [T5].
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8. Further, further generalizations

Consider Baer’s (1953) axioms:
[Sn, n ≥ 4] Suppose a−1

1 a2 = b1, a−1
2 a3 = b2,. . . ,a−1

n−1an = bn−1,
a−1

n a1 = bn are defined in a pree P . Then at least one of the products
bibi+1 is also defined. (The product may be bnb1.) In other words, for
some i, a−1

i
ai+2(mod n) is defined.

Definition 8.1. An S-pree is a pree P which satisfies all axioms Sn for
n ≥ 4.

Axiom Sn is illustrated in Fig. 8-1.

Fig. 8-1

Theorem 8.2. (Baer) Let P be an S-pree. Then P is embeddable in
G(P ).

Consider two other axioms:

[L] Suppose ab, bc, cd are defined, but [ab, cd] and [a, bc, d] are reduced.

If (ab)z and z−1(cd) are defined, then bz and z−1c are defined.

[M] Equivalent fully reduced words have the same length.

Axiom [M], which we call Baer’s axiom, is analogous to his axiom:
“Similar irreducible vectors have the same length”

Theorem 8.3. (L, 1996) Let P be a KLM-pree. Then P is embeddable
in G(P ).
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The theorem requires the following proposition which is due to Hoare:

Proposition 8.4 (Hoare). In a KLM-pree, X is fully reduced if and only
if X is nonsplittable.

Remark 8.5. A KLM-pree includes all tree products of groups, even
those without finite diameter.

Theorem 8.6 (Gilman (preprint), Hoare 1998). Let P be a KL-pree =
S4S5-pree. Then P is embeddable in G(P ).

Hoare proved the theorem by showing that axiom [M] follows from
[K] and [L].

Gilman proved the theorem using small-cancellation. In particular,
Gilman’s preprint [“Generalized small cancelation presentations”] indi-
cates an intimate relationship between pregroups and small cancellation
theory.

9. Proof of Theorem 5.1

First we restate Theorem 5.1 using different letters for axioms [T2],
[B1], and [B2].

Theorem 9.1. The following are equivalent in a pree P :

[T2] If X = [a
1
, a2, a3, a4, a5] is defined, then a triple in X is defined.

[B1] If b2 b3, b3b4, b1(b
2
b3), (b

3
b4)b

5
are defined, then one of the

following is defined:

b1b2, (b
2
b3)b

4
or b4b5 .

[B2] If b1b2, (b
1
b2)b

3
, b4b5, b3(b

4
b5) are defined, then one of the

following is defined:

b2b3, b3b4, or (b1b2)b3(b4b5).

Lemma 9.2. [T2] and [B1] are equivalent.

(1) Assume [T2] holds. Suppose the hypothesis of [B1] holds, that is,
suppose b2 b3, b3b4, b1(b

2
b3), (b

3
b4)b

5
are defined. Let

a1 = b1, a2 = b2b3, a3 = b−1
3 , a4 = b3b4, a5 = b5.
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Then the hypothesis of [T2] holds, that is, [a
1
, a2, a3, a4, a5] is defined.

By [T2], one of the following is defined:

a1a2a3 = b1b2, a2a3a4 = (b2b3)b4, or a3a4a5 = b4b5.

This is the conclusion of [B1]. Thus [T2] implies [B1].
(2) Assume [B1] holds. Suppose the hypothesis of [T2] holds, that is,

suppose [a
1
, a2, a3, a4, a5] is defined. Let

b1 = a1, b2 = a2a3, b3 = a−1
3 , b4 = a3a4, b5 = a5.

Then the hypothesis of [B1] holds, that is, b2 b3, b3b4, b1(b
2
b3), (b

3
b4)b

5

are defined. By [B1], one of the following is defined:

b1b2 = a1a2a3, (b2b3)b4 = a2a3a4, or b4b5 = a3a4a5.

This is the conclusion of [T2]. Thus [B1] implies [T2].
By (1) and (2), [T2] and [B1] are equivalent in a pree P .

Lemma 9.3. [T2] and [B2] are equivalent.

(1) Assume [T2] holds. Suppose the hypothesis of [B2] holds, that is,
suppose b1b2, (b

1
b2)b

3
, b4b5, b3(b

4
b5) are defined. Let

a1 = b−1
1 , a2 = b1b2, a3 = b3, a4 = b4b5, a5 = b−1

5 .

Then the hypothesis of [T2] holds, that is, [a
1
, a2, a3, a4, a5] is defined.

By [T2], one of the following is defined:

a1a2a3 = b2b3, a2a3a4 = (b1b2)b3(b4b5), or a3a4a5 = b3b4.

This is the conclusion of [B2]. Thus [T2] implies [B2].
(2) Assume [B2] holds. Suppose the hypothesis of [T2] holds, that is,

suppose [a
1
, a2, a3, a4, a5] is defined. Let

b1 = a−1
1 , b2 = a1a2, b3 = a3, b4 = a4a5, b5 = a−1

5 .

Then the hypothesis of [B2] holds, that is, b1b2, (b
1
b2)b

3
, b4b5, b3(b

4
b5)

are defined. By [B2], one of the following is defined:

b2b3, = a1a2a3, b3b4 = a3a4a5, or (b1b2)b3(b4b5) = a2a3a4.

This is the conclusion of [T2]. Thus [B2] implies [T2].
By (1) and (2), [T2] and [B2] are equivalent in a pree P .
Lemma 9.2 and Lemma 9.3 prove Theorem 5.1.



A. M. Gaglione, S. Lipschutz, D. Spellman 233

10. Proof of Theorem 7.6.

First we restate Theorem 7.6.

Theorem 10.1. The following are equivalent in a pree P , where a1, a2,
a3, a4, a5, a6, a7, a8, a9 are elements in P .

[T6] Suppose X = [a1, a2, a3, a4, a5, a6, a7, a8, a9]is defined, that is,
each aiai+1 is defined. Then a triple in X is defined.

[C6-1] Suppose all the following are defined:

(1) b2b3, b3b4, b1(b2b3), (b3b4)b5,

(2) b6b7, b7b8, b5(b6b7), (b7b8)b9.

Then one of the following is defined:

b1b2, (b2b3)b4, b4b5, (b3b4)b5(b6b7), b5b6, (b6b7)b8, or b8b9.

[C6-2] Suppose all the following are defined:

(1) b1b2, (b1b2)b3, b4b5, b3(b4b5),

(2) b5b6, (b5b6)b7, b8b9, b7(b8b9).

Then one of the following is defined:

b2b3, (b1b2)b3(b4b5), b3b4, (b4b5)b6, b6b7, (b5b6b7(b8b9), or b7b8.

Remark 10.2. Note that (2) in [C6-1] and (2) in [C6-2] can each be
obtained from (1) by adding 4 to each subscript.

Lemma 10.3. In a pree P , axiom [T6] is equivalent to [C6-1].

(1) Proof that [T6] implies [C6-1].
Assume [T6] holds. Suppose the hypothesis of [C6-1] holds, that is,

the following are defined:

(1) b2b3, b3b4, b1(b2b3), (b3b4)b5,

(2) b6b7, b7b8, b5(b6b7), (b7b8)b9.

Let

a1 = b1, a2 = b2b3, a3 = b−1
3 , a4 = b3b4,

a5 = b5, a6 = b6b7, a7 = b−1
7 , a8 = b7b8, a9 = b9.
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Then each aiai+1 is defined, that is, the hypothesis of [T6] holds. By
[T6], one of the following is defined:

a1a2a3 = b1b2, a2a3a4 = (b2b3)b4, a3a4a5 = b4b5,

a4a5a6 = (b3b4)b5(b6b7), a5a6a7 = b5b6, a6a7a8 = (b6b7)b8,

or a7a8a9 = b8b9.

This is the conclusion of [C6-1]. Thus [T6] implies [C6-1].
(2) Proof that [C6-1] implies [T6].
Assume [C6-1] holds. Suppose the hypothesis of [T6] holds, that is,

suppose a1a2, a2a3, · · · , a8a9 are defined. Let

b1 = a1, b2 = a2a3, b3 = a−1
3 , b4 = a3a4,

b5 = a5, b6 = a6a7, b7 = a−1
7 , b8 = a7a8, b9 = a9.

Then the hypothesis of [C6-1] holds, that is, the following are defined:

b2b3, b3b4, b1(b2b3), (b3b4)b5, b6b7,

b7b8, b5(b6b7), (b7b8)b9.

By [C6-1], one of the following is defined:

b1b2 = a1a2a3, (b2b3)b4 = a2a3a4, b4b5 = a3a4a5,

(b3b4)b5(b6b7) = a4a5a6, b5b6 = a5a6a7, (b6b7)b8 = a6a7a8,

or b8b9 = a7a8a9.

This is the conclusion of [T6]. Thus [C6-1] implies [T6].
By (1) and (2), Lemma 10.3 is proved.

Lemma 10.4. In a pree P , axiom [T6] is equivalent to [C6-2].

1) Proof that [T6] implies [C6-2]
Assume [T6] holds. Suppose the hypothesis of [C6-2] holds, that is,

that the following are defined:

b1b2, (b1b2)b3, b4b5, b3(b4b5), b5b6, (b5b6)b7, b8b9, b7(b8b9).

Let:

a1 = b−1
1 , a2 = b1b2, a3 = b3, a4 = b4b5, a5 = b−1

5 ,

a6 = b5b6, a7 = b7, a8 = b8b9, a9 = b−1
9 .
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Then each aiai+1 is defined, that is, the hypothesis of [T6] holds. By
[T6], one of the following is defined:

a1a2a3 = b2b3, a2a3a4 = (b1b2)b3(b4b5), a3a4a5 = b3b4, a4a5a6 = (b4b5)b6,

a5a6a7 = b6b7, a6a7a8 = (b5b6)b7(b8b9), or a7a8a9 = b7b8.

This is the conclusion of [C6-2]. Thus [T6] implies [C6-2].
(2) Proof that [C6-2] implies [T6].
Assume [C6-2] holds. Suppose the hypothesis of [T6] holds, that is,

suppose a1a2, a2a3, · · · , a8a9 are defined. Let:

b1 = a−1
1 , b2 = a1a2, b3 = a3, b4 = a4a5, b5 = a−1

5 ,

b6 = a5a6, b7 = a7, b8 = a8a9, b9 = a−1
9 .

Then the hypothesis of [C6-2] holds, that is, the following are defined:

b1b2, (b1b2)b3, b4b5, b3(b4b5), b5b6, (b5b6)b7, b8b9, b7(b8b9).

By [C6-2], one of the following is defined:

b2b3 = a1a2a3, (b1b2)b3(b4b5) = a2a3a4, b3b4 = a3a4a5, (b4b5)b6 = a4a5a6,

b6b7 = a5a6a7, (b5b6)b7(b8b9) = a6a7a8, or b7b8 = a7a8a9.

This is the conclusion of [T6]. Thus [C6-2] implies [T6].
By (1) and (2), Lemma 10.4 is proved.
Lemma 10.3 and Lemma 10.4, prove Theorem 7.6.
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