Algebra and Discrete Mathematics Volume 13 (2012). Number 2. pp. 220 – 236 © Journal "Algebra and Discrete Mathematics"

Survey of generalized pregroups and a question of Reinhold Baer

Anthony M. Gaglione, Seymour Lipschutz and Dennis Spellman

Communicated by I. Ya. Subbotin

ABSTRACT. There has been recent interest in Stallings' Pregroups. (See [2] and [12].) This paper gives a survey of generalized pregroups. We also answer a question of Reinhold Baer [1] on pregroups and answer a generalization of this question for generalized pregroups.

1. Preliminary results

There has been recent interest in Stallings' Pregroups. For example:

- [12] Pregroups and the Big Powers Condition: Kvaschuk, Miasnikov, Serbin, Algebra and Logic, Vol. 48, No. 3, 2009
- [2] Geodesic Rewriting Systems and Pregroups, Diekert, Duncan, Miasnikov, 2009, Preprint

First we give some preliminary results.

Let P be a nonempty set with a partial operation, called an "add" by Baer [1] (1950). Formally, a partial operation on P is a mapping m: $D \to P$ where $D \subseteq P \times P$. If (p,q) belongs to D, we denote m(p,q) by pq and say that pq is defined or exists. (Baer denoted m(p,q) by p+q.)

An add P will be called a BS-pree or simply a *pree* (term invented by Rimlinger [15]) if it satisfies the following three axioms of Stallings:

²⁰⁰⁰ MSC: Primary 20E06.

 $^{{\}bf Key}\ {\bf words}\ {\bf and}\ {\bf phrases:}\ {\bf Pregroups},\ {\bf Kushner}\ {\bf Axiom}\ {\bf K}.\ {\bf small}\ {\bf cancellation}.$

- **[P1]** (Identity) There exists $1 \in P$ such that for all a, we have 1a and a1 are defined and 1a = a1 = a.
- **[P2]** (Inverses) For each $a \in P$, there exists $a^{-1} \in P$ such that aa^{-1} and $a^{-1}a$ are defined, and $aa^{-1} = a^{-1}a = 1$
- $[\mathbf{P4}] = [\mathbf{A}]$ (Weak Associative Law) If ab and bc are defined, then (ab)c is defined if and only if a(bc) is defined, in which case (ab)c = a(bc). (We then say the triple abc is defined.)

Remark 1.1. Stallings also gave the axiom:

[P3] If *ab* is defined, then $b^{-1}a^{-1}$ is defined and $(ab)^{-1} = b^{-1}a^{-1}$.

However, one can show that [P3] follows from [P1], [P2], and [P4].

It is not difficult to show that: (i) inverses are unique in a pree, (ii) if ab is defined, then $(ab)b^{-1} = a$ and $a^{-1}(ab) = b$.

A sequence $X = [a_1, a_2, ..., a_n]$ of *n* elements of *P* is called a *word with* length |X| = n. The word $X = [a_1, a_2, ..., a_n]$ is said to be *defined* if each pair

$$a_1a_2, a_2a_3, \dots, a_{n-1}a_n$$

is defined. A *triple* in X is a subsequence $a_i a_{i+1} a_{i+2}$.

A prouct ab = c in a pree may be viewed as a triangle as shown in Fig. 1-1. Bob Gilman [4] noted that the associative law is equivalent to the statement that if three triangles in a pree P fit around a common vertex then the perimeter is also a valid triangle in P. Figure 1-2 illustrates the associative law; that is, the side X is equal to a(bc) and also (ab)c.

Fig. 1-1 Product ab = c

Fig.1-2 Associative law

Definition 1.2. The universal group G(P) of a pree P is the group with presentation G(P) = gp(P; operation m)

That is, P is the set of generators for G(P) and the defining relations of G(P) are of the form z = xy where m(x, y) = z.

Definition 1.3. A pree P is said to be *group-embeddable* or simply *embeddable* if P can be embedded in its universal group G(P).

Theorem 1.4. The question of whether or not a finite pree P embeds in its universal group G(P) is undecidable.

Bob Gilman [4] noted that this theorem is a special case of a result of Trevor Evans [Embeddable and the word problem] which says that if the embedding problem is solvable for a class of finite partial algebras, then the word problem is solvable for the corresponding class of algebras.

Next follows classical examples of embeddable prees.

Example 1.5. Let K and L be groups with isomorphic subgroups A, pictured in Fig. 1-3. Then the amalgam $P = K \cup_A L$ is a pree which is embeddable in $G(P) = K *_A L$, the free product of K and L with A amalgamated. A typical element w in G(P) is of the form w = a in A or $w = x_1y_1 \cdots x_ny_n$ where x_i and y_i come from different factors in G(P) outside of A.

$$K - \frac{A}{\text{Fig 1-3}} L \qquad K - \frac{A}{\text{Fig 1-4}} H - \frac{B}{\text{Fig 1-4}} L$$

Example 1.6. Let K, H, L be groups. Suppose K and H have isomorphic groups A, and suppose H and L have isomorphic groups B, pictured in Fig. 1-4. Then the amalgam $P = K \cup_A H \cup_B L$ is a pree which is embeddable in $G(P) = K *_A H *_B L$ the free product of K, H, L with subgroups A and B amalgamated.

Example 1.7. Let $T = (K_i; A_{rs})$ be a *tree* graph of groups with vertex groups K_i , and with edge groups A_{rs} . Here A_{rs} is a subgroup of vertex groups K_r and K_s . Let $P = \bigcup_i (K_i; A_{rs})$, the amalgam of the groups in T. Then P is a pree which is embeddable in $G(P) = *(K_i; A_{rs})$, the *tree product* of the vertex groups K_i with the subgroups A_{rs} amalgamated.

Example 1.8. Let $G = (K_i; A_{rs})$ be a graph of groups with vertex groups K_i and with edge groups A_{rs} . Again A_{rs} is a subgroup of vertex groups K_r and K_s . Let $P = \bigcup_i (K_i; A_{rs})$. Then P is a pree but P may not be embeddable in $G(P) = *(K_i; A_{rs})$, the free product of groups K_i with the subgroups A_{rs} amalgamated. In fact, there are cases where $G(P) = \{e\}$.

2. Stallings' pregroup

Overall Problem: Find additional axioms so that a pree P is embeddable.

Notation: If X is a set of axioms, then an X-pree will be a pree which also satisfies the axioms in X.

Stallings [16] (1971) invented the name "pregroup" for a pree P and the following axiom:

[P5] = [T1] If ab, bc, and cd are defined, then abc or bcd is defined.

[The reason for the 1 in **[T1**] is explained in Remark 6.3.]

Theorem 2.1. (Stallings): A pregroup P is embedded in G(P).

[Note: A pregroup P is a T1-pree.]

We quickly outline Stallings' proof of the theorem. A word $w = (x_1, x_2, ..., x_n)$ is *reduced* if no $x_i x_{i+1}$ is defined. Suppose w is reduced and suppose $x_i a$ and $a^{-1} x_{i+1}$ are defined. Then one can show that

$$w * a = (x_1, x_2, ..., x_i a, a^{-1} x_{i+1}, ..., x_n)$$

is also reduced. Stallings called w * a an *interleaving* of w by a.

Define $w \approx v$ if v can be obtained from w by a sequence of interleavings.

Lemma 2.2. $w \approx v$ is an equivalence relation on the set of reduced words.

Lemma 2.3. For any $a \in P$, we define f_a on reduced words by:

$$f_a(x_1, x_2, ..., x_n) = \begin{cases} (a, x_1, x_2, ..., x_n) & \text{if } ax_1 \text{ is not } defined, \\ (ax_1, x_2, ..., x_n) & \text{if } ax_1 \text{ is } defined, \\ & \text{but } ax_1 x_2 \text{ is not } defined, \\ (ax_1 x_2, x_3 ..., x_n) & \text{if } ax_1 x_2 \text{ is } defined. \end{cases}$$

Lemma 2.4. f_a is a permutation on the equivalence classes of reduced words.

Lemma 2.5. (*Main Lemma*): If ab is defined then $f_{ab} = f_a f_b$.

The proof of the main lemma consists of the nine possibilities of f_{ab} . **Theorem 2.6.** $G(P) = \{permutions f_a\}$ and P is embedded in G(P)by

$$a \mapsto f_a$$
.

Remark 2.7. The pree $P = K \cup_A L$ in Example 1.5 is an example of a pregroup.

3. Baer's question

Reinhold Baer ["Free sums of groups and their generalizations", 1950, [1]] also considered the embedding of prees. In particular, the following appears in his paper:

Postulate XI: (Consists of three parts)

- (a) If ab, bc, cd exist, then a(bc) or (bc)d exist.
- (b) If bc, cd and a(bc) exist, then ab or (bc)d exist.
- (c) If ab, bc and (bc)d exist, then a(bc) or cd exist.

Baer then states:

"In certain instances it is possible to deduce properties (b), (c) from (a); but whether or not this is true in general, the author does not know."

The following theorem (L. and Shi, [14]) answers Baer's question:

Theorem 3.1. The following conditions on a pree P are equivalent.

- (i) $[\mathbf{P5}] = [\mathbf{T1}]$: If ab, bc, cd are defined, then a(bc) or (bc)d is defined.
- (ii) [A1]: If ab, (ab)c, ((ab)c)d are defined then bc or cd is defined.
- (iii) $[\mathbf{A2}]$: If cd, b(cd), a(b(cd)) are defined, then ab or bc is defined.
- (iv) [A3]: If bc, cd, a(bc) are defined, then ab or (bc)d is defined.
- (v) $[\mathbf{A4}]$: If ab, bc, (bc)d are defined, then a(bc) or cd is defined.

Note: [P5] = [T1] is Baer's (a), [A3] is Baer's (b) and [A4] is Baer's (c).

Corollary 3.2. Let P be a pree which satisfies one of the axioms in Theorem 3.1. Then P is embeddable in its universal group G(P).

4. Kushner's generalization of a pregroup. T2-prees

Note again that $G = K *_A L$ in Example 1.5 is a pregroup since $[\mathbf{P5}] = [\mathbf{T1}]$ does hold in G. However, $G = K *_A H *_B L$ in Example 1.6 is not a pregroup since $[\mathbf{P5}] = [\mathbf{T1}]$ does not hold in G. For example, let $x \in K \setminus A, y \in L \setminus B, a \in A, b \in B$, as pictured in Fig. 4-1. Then $xa \in K, ab \in H$ and $by \in L$ are defined, but xab and aby need not be defined.

On the other hand, $G = K *_A H *_B L$ does satisfy the axiom:

[T2] If ab,bc, cd, de are defined, then abc, bcd, or cde is defined. That is, if X = [a, b, c, d, e] is defined, then a triple in X is defined.

Theorem 4.1 (Kushner). Let P be a **T2**-pree. Then P is embeddable in G(P).

We outline the proof of Kushner's theorem.

Recall that in a pregroup, a reduced word is still reduced under an interleaving. This is not true for a **T2**-pree. For example, let $x \in K \setminus A, y \in L \setminus B, a \in A, b \in B$, as pictured in Fig.4-1. The word w = [x, ab, y] is reduced in $G = K *_A H *_B L$. But

$$w * a = [xa, a^{-1}(ab), y] = [xa, b, y]$$

is not reduced since by is defined. Thus a reduced word in a **T2**-pree may not be reduced by an interleaving.

The following definitions are new.

Definition 4.2. The word $w = (x_1, x_2, ..., x_n)$ is *fully reduced* if w is reduced and w is reduced under any sequence of interleavings.

Definition 4.3. Suppose $w = (x_1, x_2, ..., x_n)$ is reduced and suppose $x_i = ab$ where $x_{i-1}a$ and bx_{i+1} are defined. Then x_i is said to *split* in w, and w is *reducible* to $v = (x_1, ..., x_{i-1}a, bx_{i+1}, ..., x_n)$.

Note first that if w is reducible to v then |v| < |w|. Note also that in the above reduced word w = [x, ab, y], the element ab splits in w, and w is reducible to v = [xa, by].

Lemma 4.4. (Main Lemma) If $w = (x_1, x_2, ..., x_n)$ is reduced in a **T2**pree P, but not fully reduced, then some x_i in w splits.

That is, w is fully reduced if and only if w is *nonsplitable*.

Define $w \approx v$ if v can be obtained from w by a sequence of interleavings.

Lemma 4.5. $w \approx v$ is an equivalence relation on the set of fully reduced words.

If $w = (x_1, x_2, ..., x_n)$ is fully reduced, then $f_a(w) = f_a(x_1, x_2, ..., x_n)$ has 5 possible cases (rather the 3 in a pregroup). Thus then following lemma requires 25 cases (not 9).

Lemma 4.6. $f_{ab} = f_a f_b$.

Theorem 4.7. $G(P) = \{permutations \ f_a\}$ and P is embedded in G(P) by

 $a \mapsto f_a$.

5. Baer's question for T2-prees. Open questions for T2prees

The following theorem generalizes Bair's question for the axiom [T2].

Theorem 5.1 (Gaglione, L, Spellman, 2010). The following are equivalent in a pree P where a, b, c, d, e are elements in P.

- [T2] If ab, bc, cd, de are defined, then a(bc), b(cd), or c(de) is defined.
- [B1] If bc, cd, a(bc), (cd)e are defined, then ab, (bc)d, or de is defined.
- [B2] If ab, (ab)c, de, c(de) are defined, then bc, cd, or (ab)c(de) is defined.

We Prove Theorem 5.1 in Section 9.

5.1. Transitive order in a pree

The following transitive order relation on a pree P is due to Stallings:

Definition 5.2. Let $L(x) = \{a \in P : ax \text{ is defined}\}$. Put $x \leq y$ if $L(y) \subseteq L(x)$ and x < y if $L(y) \subseteq L(x)$ and $L(y) \neq L(x)$. Also, we let $x \sim y$ if L(x) = L(y).

Example 5.3. Let $P = K \cup_A L$ as in Fig.1-3. Let $x \in K \setminus A$, $y \in K \setminus A$, and $a \in A$. Then L(x) = K, L(y) = K, L(a) = P. Thus, a < x and a < y. Also, $x \sim y$.

Theorem 5.4 (Rimlinger, Hoare). *The following conditions on a pree P are equivalent.*

(i) $[\mathbf{P5}] = [\mathbf{T1}]$: If ab, bc, cd are defined, then a(bc) or (bc)d is defined.

- (ii) If $x^{-1}a$ and $a^{-1}y$ are defined but $x^{-1}y$ is not defined, then a < x and a < y.
- (iii) If $x^{-1}y$ is defined, then $x \leq y$ or $y \leq x$.

Problem (1): Find analogous conditions which are equivalent to **[T2]**.

Theorem 5.5. (Hoare, Chiswell) The universal group G(P) of a pregroup P admits an integer-valued length function in the sense of Lyndon.

Problem (2): Prove that an integer-valued length function (in the sense of Lyndon) exists for the universal group G(P) for a **T2**-pree P.

6. Kushner's axiom K, generalizing [T2]

The proof by Kushner (in his doctoral thesis) that a **T2**-pree is embeddable was very long and involved (for example, the proof of $f_{ab} = f_a f_b$ required 25 cases instead of 9 cases). Thus the following localization axiom was added in order to shorten the proof:

 $[\mathbf{K}]$ If ab, bc, cd and (ab)(cd) are defined, then abc or bcd is defined.

Theorem 6.1 (Kushner-L). Let P be a **KT2**-pree. Then P is embeddable in G(P).

After the paper appeared, Hoare independently obtained Kushner's original result with a considerably shorter and less involved proof (by reducing the proof of $f_{ab} = f_a f_b$ to only 9 cases):

Theorem 6.2 (Hoare). Let P be a **T2**-pree. Then P is embeddable in G(P).

Consider the following axioms for $n \ge 1$.

[Tn] If $X = [a_1, a_2, ..., a_{n+3}]$ is defined, then some triple in X is defined.

That is, if $a_1a_2, a_2a_3, ..., a_{n+2}a_{n+3}$ are defined, then $(a_1a_2)a_3, (a_2a_3)a_4, ...,$ or $(a_{n+1}a_{n+2})a_{n+3}$ is defined.

Remark 6.3. We emphasize that [Tn] holds for a tree pree P in Example 1.7 when the diameter of the tree does not exceed n.

Theorem 6.4 (Kushner-L, 1993). Let P be a **KT3**-pree. Then P is embeddable in G(P).

We note that Theorem 6.4 requires Axiom $[\mathbf{K}]$. The proof of the above theorem again requires:

Lemma 6.5. (Main Lemma) Let P be a **KT3**-pree. If $w = (x_1, x_2, ..., x_n)$ is reduced but not fully reduced, then some x_i in w splits.

Problem (3): Prove that if P is a **T3**-pree, then P is embeddable in G(P).

7. Further generalization

We extend the above Theorem 6.4 to all tree products of groups with finite diameters.

Theorem 7.1. (L) Let P be a **KTn**-pree. Then P is embeddable in G(P).

The above theorem requires a generalizing of the notion of a splitting. Specifically:

Definition 7.2. Let $w = (x_1, x_2, ..., x_n) = (x_1, a_2b_2, a_3b_3, a_4b_4, ..., a_{n-1}b_{n-1}, x_n)$ where $x_1a_2, b_2a_3, b_3a_4, ..., b_{n-1}x_n$ are defined. Then we say w is *reducible* to

$$v = (x_1a_2, b_2a_3, b_3a_4, \dots, b_{n-1}x_n)$$

and the factorization $a_2b_2, a_3b_3, a_4b_4, \dots, a_{n-1}b_{n-1}$ is called a *general splitting* of w.

Remark 7.3. We note that in the above general splitting, |v| < |w|.

Example 7.4. Figure 7-1 illustrates a general splitting. Specifically, w = [x, ab, cd, y] need not be reduced where $x \in K_1$, $y \in K_5$, $a \in A$, $b \in B$, $c \in C$, $d \in D$. Also, ab need not split and cd need not split. However, xa, bc and dy are defined. Accordingly, w = [x, ab, cd, y] reduces, by a general splitting, to v = [xa, bc, dy].

The following Lemma is essential in the proof of Theorem 7.1.

Lemma 7.5. Suppose w is reduced but not fully reduced in a **KTn**-pree. Then w contains a general splitting.

We would like to find a theorem which generalizes Bair's question for Axiom [**Tn**]. Theorem5.1 answers Baire's question for axiom [**T2**]. We do have an answer to Baer's question for Axiom [**T6**] which we prove in Section 10. Specifically:

Theorem 7.6. The following axioms, [T6], [C6-1], and [C6-2], are equivalent in a pree P:

- **[T6]** Suppose $X = [a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9]$ is defined, that is, each $a_i a_{i+1}$ is defined. Then a triple in X is defined.
- **[C6-1]** Suppose all the following are defined:

(1) b_2b_3 , b_3b_4 , $b_1(b_2b_3)$, $(b_3b_4)b_5$, (2) b_6b_7 , b_7b_8 , $b_5(b_6b_7)$, $(b_7b_8)b_9$.

Then one of the following is defined:

 b_1b_2 , $(b_2b_3)b_4$, b_4b_5 , $(b_3b_4)b_5(b_6b_7)$, b_5b_6 , $(b_6b_7)b_8$, or b_8b_9 .

[C6-2] Suppose all the following are defined:

(1) b_1b_2 , $(b_1b_2)b_3$, b_4b_5 , $b_3(b_4b_5)$, (2) b_5b_6 , $(b_5b_6)b_7$, b_8b_9 , $b_7(b_8b_9)$.

Then one of the following is defined:

 b_2b_3 , $(b_1b_2)b_3(b_4b_5)$, b_3b_4 , $(b_4b_5)b_6$, b_6b_7 , $(b_5b_6)b_7(b_8b_9)$, or b_7b_8 .

Remark 7.7. Note that (2) in both cases [C6-1] and [C6-2] can be obtained from (1) by adding 4 to each subscript.

Remark 7.8. The proof of Theorem 7.6 for $[\mathbf{T6}]$ is very similar to the proof of Theorem 5.1 for $[\mathbf{T2}]$ by mainly adding 4 to various subscripts. Likely one can prove an analogous theorem for $[\mathbf{Tm}]$ where $m \equiv 2(\mod 4)$.

Problem (4): Find a theorem which generalizes Bair's question for axioms **[T3]**, **[T4]** and/or **[T5]**.

8. Further, further generalizations

Consider Baer's (1953) axioms:

 $[\mathbf{S_n}, n \ge 4]$ Suppose $a_1^{-1}a_2 = b_1, a_2^{-1}a_3 = b_2, \dots, a_{n-1}^{-1}a_n = b_{n-1}, a_n^{-1}a_1 = b_n$ are defined in a pree P. Then at least one of the products b_ib_{i+1} is also defined. (The product may be b_nb_1 .) In other words, for some $i, a_i^{-1}a_{i+2} \pmod{n}$ is defined.

Definition 8.1. An **S**-pree is a pree P which satisfies all axioms \mathbf{S}_n for $n \geq 4$.

Axiom $\mathbf{S}_{\mathbf{n}}$ is illustrated in Fig. 8-1.

Fig. 8-1

Theorem 8.2. (Baer) Let P be an S-pree. Then P is embeddable in G(P).

Consider two other axioms:

- [L] Suppose ab, bc, cd are defined, but [ab, cd] and [a, bc, d] are reduced. If (ab)z and $z^{-1}(cd)$ are defined, then bz and $z^{-1}c$ are defined.
- [M] Equivalent fully reduced words have the same length.

Axiom [M], which we call Baer's axiom, is analogous to his axiom: "Similar irreducible vectors have the same length"

Theorem 8.3. (L, 1996) Let P be a **KLM**-pree. Then P is embeddable in G(P).

The theorem requires the following proposition which is due to Hoare:

Proposition 8.4 (Hoare). In a KLM-pree, X is fully reduced if and only if X is nonsplittable.

Remark 8.5. A **KLM**-pree includes all tree products of groups, even those without finite diameter.

Theorem 8.6 (Gilman (preprint), Hoare 1998). Let P be a KL-pree = S_4S_5 -pree. Then P is embeddable in G(P).

Hoare proved the theorem by showing that axiom [**M**] follows from [**K**] and [**L**].

Gilman proved the theorem using small-cancellation. In particular, Gilman's preprint ["Generalized small cancelation presentations"] indicates an intimate relationship between pregroups and small cancellation theory.

9. Proof of Theorem 5.1

First we restate Theorem 5.1 using different letters for axioms [T2], [B1], and [B2].

Theorem 9.1. The following are equivalent in a pree P:

- **[T2]** If $X = [a_1, a_2, a_3, a_4, a_5]$ is defined, then a triple in X is defined.
- **[B1]** If $b_2 b_3$, $b_3 b_4$, $b_1(b_2 b_3)$, $(b_3 b_4)b_5$ are defined, then one of the following is defined:

 b_1b_2 , $(b_2b_3)b_4$ or b_4b_5 .

[B2] If b_1b_2 , $(b_1b_2)b_3$, b_4b_5 , $b_3(b_4b_5)$ are defined, then one of the following is defined:

$$b_2b_3$$
, b_3b_4 , or $(b_1b_2)b_3(b_4b_5)$.

Lemma 9.2. [T2] and [B1] are equivalent.

(1) Assume **[T2]** holds. Suppose the hypothesis of **[B1]** holds, that is, suppose $b_2 b_3$, $b_3 b_4$, $b_1(b_2 b_3)$, $(b_3 b_4)b_5$ are defined. Let

$$a_1 = b_1, \ a_2 = b_2 b_3, \ a_3 = b_3^{-1}, \ a_4 = b_3 b_4, \ a_5 = b_5.$$

Then the hypothesis of **[T2]** holds, that is, $[a_1, a_2, a_3, a_4, a_5]$ is defined. By **[T2]**, one of the following is defined:

$$a_1a_2a_3 = b_1b_2$$
, $a_2a_3a_4 = (b_2b_3)b_4$, or $a_3a_4a_5 = b_4b_5$.

This is the conclusion of [B1]. Thus [T2] implies [B1].

(2) Assume [**B1**] holds. Suppose the hypothesis of [**T2**] holds, that is, suppose $[a_1, a_2, a_3, a_4, a_5]$ is defined. Let

$$b_1 = a_1, \ b_2 = a_2 a_3, \ b_3 = a_3^{-1}, \ b_4 = a_3 a_4, b_5 = a_5.$$

Then the hypothesis of **[B1]** holds, that is, $b_2 b_3$, $b_3 b_4$, $b_1(b_2 b_3)$, $(b_3 b_4)b_5$ are defined. By **[B1]**, one of the following is defined:

$$b_1b_2 = a_1a_2a_3$$
, $(b_2b_3)b_4 = a_2a_3a_4$, or $b_4b_5 = a_3a_4a_5$.

This is the conclusion of [T2]. Thus [B1] implies [T2].

By (1) and (2), $[\mathbf{T2}]$ and $[\mathbf{B1}]$ are equivalent in a pree P.

Lemma 9.3. [T2] and [B2] are equivalent.

(1) Assume **[T2]** holds. Suppose the hypothesis of **[B2]** holds, that is, suppose b_1b_2 , $(b_1b_2)b_3$, b_4b_5 , $b_3(b_4b_5)$ are defined. Let

$$a_1 = b_1^{-1}, \ a_2 = b_1 b_2, \ a_3 = b_3, \ a_4 = b_4 b_5, \ a_5 = b_5^{-1}.$$

Then the hypothesis of **[T2]** holds, that is, $[a_1, a_2, a_3, a_4, a_5]$ is defined. By **[T2]**, one of the following is defined:

$$a_1a_2a_3 = b_2b_3$$
, $a_2a_3a_4 = (b_1b_2)b_3(b_4b_5)$, or $a_3a_4a_5 = b_3b_4$.

This is the conclusion of [B2]. Thus [T2] implies [B2].

(2) Assume [**B2**] holds. Suppose the hypothesis of [T2] holds, that is, suppose $[a_1, a_2, a_3, a_4, a_5]$ is defined. Let

$$b_1 = a_1^{-1}, \ b_2 = a_1 a_2, \ b_3 = a_3, \ b_4 = a_4 a_5, \ b_5 = a_5^{-1}.$$

Then the hypothesis of **[B2]** holds, that is, b_1b_2 , $(b_1b_2)b_3$, b_4b_5 , $b_3(b_4b_5)$ are defined. By **[B2]**, one of the following is defined:

$$b_2b_3 = a_1a_2a_3, \ b_3b_4 = a_3a_4a_5, \ \text{or} \ (b_1b_2)b_3(b_4b_5) = a_2a_3a_4.$$

This is the conclusion of [T2]. Thus [B2] implies [T2].

By (1) and (2), $[\mathbf{T2}]$ and $[\mathbf{B2}]$ are equivalent in a pree P.

Lemma 9.2 and Lemma 9.3 prove Theorem 5.1.

10. Proof of Theorem 7.6.

First we restate Theorem 7.6.

Theorem 10.1. The following are equivalent in a pree P, where a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 are elements in P.

[T6] Suppose $X = [a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9]$ is defined, that is, each $a_i a_{i+1}$ is defined. Then a triple in X is defined.

[C6-1] Suppose all the following are defined:

(1) b_2b_3 , b_3b_4 , $b_1(b_2b_3)$, $(b_3b_4)b_5$, (2) b_6b_7 , b_7b_8 , $b_5(b_6b_7)$, $(b_7b_8)b_9$.

Then one of the following is defined:

 b_1b_2 , $(b_2b_3)b_4$, b_4b_5 , $(b_3b_4)b_5(b_6b_7)$, b_5b_6 , $(b_6b_7)b_8$, or b_8b_9 .

[C6-2] Suppose all the following are defined:

(1) b_1b_2 , $(b_1b_2)b_3$, b_4b_5 , $b_3(b_4b_5)$, (2) b_5b_6 , $(b_5b_6)b_7$, b_8b_9 , $b_7(b_8b_9)$.

Then one of the following is defined:

 b_2b_3 , $(b_1b_2)b_3(b_4b_5)$, b_3b_4 , $(b_4b_5)b_6$, b_6b_7 , $(b_5b_6b_7(b_8b_9))$, or b_7b_8 .

Remark 10.2. Note that (2) in [C6-1] and (2) in [C6-2] can each be obtained from (1) by adding 4 to each subscript.

Lemma 10.3. In a pree P, axiom [T6] is equivalent to [C6-1].

(1) Proof that **[T6]** implies **[C6-1]**.

Assume [T6] holds. Suppose the hypothesis of [C6-1] holds, that is, the following are defined:

(1)
$$b_2b_3$$
, b_3b_4 , $b_1(b_2b_3)$, $(b_3b_4)b_5$,
(2) b_6b_7 , b_7b_8 , $b_5(b_6b_7)$, $(b_7b_8)b_9$.

Let

$$a_1 = b_1, \qquad a_2 = b_2 b_3, \qquad a_3 = b_3^{-1}, \qquad a_4 = b_3 b_4,$$

 $a_5 = b_5, \qquad a_6 = b_6 b_7, \qquad a_7 = b_7^{-1}, \qquad a_8 = b_7 b_8, \qquad a_9 = b_9$

Then each $a_i a_{i+1}$ is defined, that is, the hypothesis of [T6] holds. By [T6], one of the following is defined:

 $a_1a_2a_3 = b_1b_2, \qquad a_2a_3a_4 = (b_2b_3)b_4, \quad a_3a_4a_5 = b_4b_5, \\ a_4a_5a_6 = (b_3b_4)b_5(b_6b_7), \quad a_5a_6a_7 = b_5b_6, \qquad a_6a_7a_8 = (b_6b_7)b_8, \\ \text{or } a_7a_8a_9 = b_8b_9.$

This is the conclusion of [C6-1]. Thus [T6] implies [C6-1].

(2) Proof that [C6-1] implies [T6].

Assume **[C6-1]** holds. Suppose the hypothesis of [T6] holds, that is, suppose $a_1a_2, a_2a_3, \dots, a_8a_9$ are defined. Let

$$b_1 = a_1, b_2 = a_2 a_3, b_3 = a_3^{-1}, b_4 = a_3 a_4,$$

 $b_5 = a_5, b_6 = a_6 a_7, b_7 = a_7^{-1}, b_8 = a_7 a_8, b_9 = a_9.$

Then the hypothesis of [C6-1] holds, that is, the following are defined:

$$b_2b_3, b_3b_4, b_1(b_2b_3), (b_3b_4)b_5, b_6b_7, b_7b_8, b_5(b_6b_7), (b_7b_8)b_9.$$

By [C6-1], one of the following is defined:

 $b_1b_2 = a_1a_2a_3, \quad (b_2b_3)b_4 = a_2a_3a_4, \qquad b_4b_5 = a_3a_4a_5,$ $(b_3b_4)b_5(b_6b_7) = a_4a_5a_6, \qquad b_5b_6 = a_5a_6a_7, \quad (b_6b_7)b_8 = a_6a_7a_8,$ $or b_8b_9 = a_7a_8a_9.$

This is the conclusion of [T6]. Thus [C6-1] implies [T6].

By (1) and (2), Lemma 10.3 is proved.

Lemma 10.4. In a pree P, axiom [T6] is equivalent to [C6-2].

1) Proof that **[T6]** implies **[C6-2]**

Assume [T6] holds. Suppose the hypothesis of [C6-2] holds, that is, that the following are defined:

$$b_1b_2$$
, $(b_1b_2)b_3$, b_4b_5 , $b_3(b_4b_5)$, b_5b_6 , $(b_5b_6)b_7$, b_8b_9 , $b_7(b_8b_9)$

Let:

$$a_1 = b_1^{-1}, a_2 = b_1 b_2, a_3 = b_3, a_4 = b_4 b_5, a_5 = b_5^{-1}, a_6 = b_5 b_6, a_7 = b_7, a_8 = b_8 b_9, a_9 = b_9^{-1}.$$

Then each $a_i a_{i+1}$ is defined, that is, the hypothesis of [T6] holds. By [T6], one of the following is defined:

 $a_1a_2a_3 = b_2b_3, \ a_2a_3a_4 = (b_1b_2)b_3(b_4b_5), \ a_3a_4a_5 = b_3b_4, \ a_4a_5a_6 = (b_4b_5)b_6, \\ a_5a_6a_7 = b_6b_7, \ a_6a_7a_8 = (b_5b_6)b_7(b_8b_9), \text{ or } a_7a_8a_9 = b_7b_8.$

This is the conclusion of [C6-2]. Thus [T6] implies [C6-2].

(2) Proof that **[C6-2]** implies **[T6]**.

Assume [C6-2] holds. Suppose the hypothesis of [T6] holds, that is, suppose $a_1a_2, a_2a_3, \dots, a_8a_9$ are defined. Let:

$$b_1 = a_1^{-1}, b_2 = a_1 a_2, b_3 = a_3, b_4 = a_4 a_5, b_5 = a_5^{-1}, b_6 = a_5 a_6, b_7 = a_7, b_8 = a_8 a_9, b_9 = a_9^{-1}.$$

Then the hypothesis of [C6-2] holds, that is, the following are defined:

 b_1b_2 , $(b_1b_2)b_3$, b_4b_5 , $b_3(b_4b_5)$, b_5b_6 , $(b_5b_6)b_7$, b_8b_9 , $b_7(b_8b_9)$.

By [C6-2], one of the following is defined:

 $b_2b_3 = a_1a_2a_3, (b_1b_2)b_3(b_4b_5) = a_2a_3a_4, b_3b_4 = a_3a_4a_5, (b_4b_5)b_6 = a_4a_5a_6, b_6b_7 = a_5a_6a_7, (b_5b_6)b_7(b_8b_9) = a_6a_7a_8, \text{ or } b_7b_8 = a_7a_8a_9.$

This is the conclusion of [T6]. Thus [C6-2] implies [T6].

By (1) and (2), Lemma 10.4 is proved.

Lemma 10.3 and Lemma 10.4, prove Theorem 7.6.

References

- R. Baer, Free sums of groups and their generalizations II, III, Amer. J. Math. 72 (1950), 625-670.
- [2] Diekert, Duncan, Miasnikov, Geodesic Rewriting Systems and Pregroups, (2009), Preprint
- [3] Evans, Trevor, Embeddable and the word problem, Preprint
- [4] R. H. Gilman, Generalized small cancellation presentations, 1998, preprint.
- [5] A. Gaglione, S. Lipschutz, D. Spellman, Note on a Question of Reinhold Baer on Pregroups II, (2011), Preprint
- [6] A. H. M. Hoare, Pregroups and length functions, Math. Proc. Camb. Phil. Soc. (1988), 104, 21-30.
- [7] _____, On generalizing Stallings' pregroup, J. of Algebra 145 (1992), 113-119
- [8] _____, On generalizing Stallings' pregroup II, (1998), preprint.
- [9] H. Kushner, On prestars and their universal groups, Ph. D. Thesis, Temple University, 1987.

- [10] H. Kushner and S. Lipschutz, A generalization of Stallings' pregroup, J. of Algebra 119 (1988), 170-184.
- [11] _____, On embeddable prees, J. of Algebra 160 (1993), 1-15.
- [12] Kvaschuk, Miasnikov, Serbin, Pregroups and the Big Powers Condition, Algebra and Logic 48, No. 3, (2009),
- [13] S. Lipschutz, Generalizing the Baer-Stallings pregroup, Contemporary Math. 169 (1994), 415-430.
- [14] S. Lipschutz and W. Shi, Note on a question of Reinhold Baer on pregroups, Publ. Inst. Math. (Beograd) (N.S.) B (2000), 53-58.
- [15] F.S. Rimlinger, Pregroups and Bass-Serre Theory, Mem. Amer. Math. Soc. no 361 (American Mathematical Society, 1987).
- [16] J. Stallings, Group Theory and Three-Dimensional Manifolds, Yale Monograph 4, (Yale University Press, 1971).

CONTACT INFORMATION

A. M. Gaglione	Department of Mathematics
	U.S. Naval Academy
	Annapolis, MD 21402, U.S.A.
	E-Mail: amg@usna.edu
	$\mathit{URL:}\ \mathtt{http://www.usna.edu}$
S. Lipschutz	Department of Mathematics
	Temple Universiy
	Philadelphia, PA 19122, U.S.A.
	E-Mail: seymour@temple.edu
D. Spellman	Department of Statisitcs
	Temple Universiy
	Philadelphia, PA 19122, U.S.A.

Received by the editors: 07.02.2012 and in final form 03.04.2012.