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One branch curve singularities

with at most 2-parameter families of ideals

Yuriy A. Drozd, Ruslan V. Skuratovskii

Abstract. A criterion is given in order that the ideals of
a one branch curve singularity form at most 2-parameter families.
Namely, we present a list of plane curve singularities from the
Arnold’s classification which are the smallest among all one branch
singularities having at most 2-parameter families of ideals.

Introduction

Ideals of commutative rings have been studied at least since the works
of Dedekind on the ideals of algebraic numbers. The Dedekind domains,
i.e. integrally closed noetherian domains of Krull dimension 1, are just
domains such that all their ideals are invertible. If a domain A is not
integrally closed, the theory of ideals becomes rather complicated. As it
was noticed by Bass [2] and, independently, by Borevich and Faddeev [4],
if A is of Krull dimension 1 and its integral closure R has 2 generators as
A-module, every ideal is invertible over its multiplication ring (and vice
versa). Moreover, in this case all finitely generated torsion free A-modules
are direct sums of ideals. Jacobinski [13] and, independently, Drozd and
Roiter [9] gave criteria for a commutative ring of Krull dimension 1 to
have finitely many nonisomorphic torsion free modules. It so happens
that it is also the case when it has finitely many ideal classes. As Greuel
and Knörrer showed, in the local case these are just the rings dominating
the simple plane curve singularities A-D-E of Arnold [1]. Schappert [14],
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Drozd and Greuel [8] proved that a local ring of plane curve singularity
only has 1-parameter families of ideals if and only if this singularity
dominates a strictly unimodal plane curve singularity (in [1] they are
called unimodal and bimodal). This time it is no more the case that torsion
free modules behave in the same manner. Among strictly unimodal plane
curve singularities only those of type Tpq are tame, i.e. only have 1-
parameter families of indecomposable torsion free modules [7]. All others
are wild, so have n-parameter families of nonisomorphic indecomposable
torsion free modules for arbitrary n.

In this paper we find a criterion for a one branch curve singularity
to have at most 2-parameter families of ideals. It so happens that such
singularities can also be characterized using the Arnold lists from [1, Sec-
tion 15.1]. Namely, they are just those dominating one of the singularities

of type E30, E32, W24, W ♯
2,∗, W30, N20, N24 or N28 (see Theorem 1). To

prove this result we use the “sandwich” technique, just as in the papers
cited above. Certainly, the “one branch” condition is rather restrictive
and one would like to get rid of it, but even in this case the calculations
are cumbersome, so we had to restrict our ambition.

1. Main Theorem

We fix an algebraically closed field k.

Definition 1. A one branch curve singularity is a complete local noethe-
rian k-algebra S of Krull dimension 1 without zero divisors and such that
S/m = k, where m is the maximal ideal of S. It is called plane if m is
generated by 2 elements.

Such an algebra is indeed isomorphic to the completion of a local ring
of a (singular) point p of an algebraic curve X over k; this curve can be
chosen plane if so is the singularity. Moreover, the curve X is irreducible
in the formal neighbourhood of the point p, or, the same, p belongs to a
unique branch (place, formal component) of X in the sense of [12] or [16].

It is known that the normalization of a one branch curve singularity S is
isomorphic to the algebra R = k[[t]] of formal power series and R is finitely
generated as S-module. So we always suppose that trR ⊂ S ⊂ R for some
r. For every element x ∈ R let v(x) be its valuation, i.e. x = tv(x)u, where
u is invertible in R. If S is plane and m = (x, y), one can always suppose
that v(x) < v(y) and v(x) ∤ v(y). Then we call the pair v = (v1, v2) the
valuation vector of S. Obviously, it does not depend on the choice of such
generators. Note that every plane curve singularity is Gorenstein [3].
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We recall the definition of the parameter number of ideals par(S) =
par(1, S) from [6, 8]. Remark first that every ideal of S is isomorphic to
an S-submodule M ⊆ R containing S [5]. Let B(d) be the closed subset
of the Grassmannian Gr(d, R/S) consisting of those spaces which are
S-submodules. Every point b ∈ B(d) gives rise to an S-submodule M(b)
of R which contains S. We set

O(b) =
{

b′ ∈ B(d) | M(b′) ≃ M(b)
}

,

B(d, k) = { b ∈ B(d) | dim O(b) = k }

and

par(S) = max
d,k

{ dim B(d, k) − k } .

Note that both O(b) and B(d, k) are locally closed subsets in B(d). Intu-
itively, par(S) is the biggest possible number of independent parameters
that define isomorphism classes of S-ideals.

Definition 2. Let S be a one branch plane curve singularity, v be its
valuation vector. We say that S is

• of type E6k if v = (3, 3k + 1),

• of type E6k+2 if v = (3, 3k + 2),

• of type W6k if v = (4, 2k + 1),

• of type W ♯
k,∗ if v = (4, 4k + 2),

• of type N4k if v = (5, k + 1).

Remark. In [8] it is shown that, if char k = 0, our definitions of singular-
ities of types E and W are equivalent to those given in [1, § 15] in terms
of the normal forms of equations. We do not precise the equations for
singularities of type N , since they are complicated and we do not use
them.

They say that a singularity S′ dominates the singularity S, or is an
over-ring of S, if S ⊆ S′ ⊆ R.

Theorem 1. Let S be a one branch curve singularity. The following

conditions are equivalent:

1) par(S) ≤ 2.
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2) Either char k 6= 2 and S dominates one of the following singularities:

E30, E32, W24, W ♯
2,∗, W30, N20, N24, N28,

or char k = 2 and S dominates one of the following singularities:

E30, E32, W18, W ♯
1,∗, N20, N24.

Proof. We suppose that char k 6= 2. If char k = 2, the calculations are
quite similar (even easier, since less cases must be considered). As usually,
we denote by 〈 a1, a2, . . . , am 〉 the vector space (over k) generated by
a1, a2, . . . , am.

Let m = dim R/mR. It is known that also dim I/mI ≤ m for all ideals
I of S [5]. If m > 5, then the same observations as in [8, § 2.2] show that
par(S) ≥ 3. If m = 2, S is a Bass ring [5], so has finitely many ideals up
to isomorphism. For m = 3 the result follows from [10, Theorem 4.1]. For
m = 4 it was proven in [15]. Hence, we only have to consider the case
m = 5. Then S contains an element x with v(x) = 5, so we deal with
singularities of type N . In section 2 we will calculate the ideals of the
rings of types N4k (k ≤ 7) and show that there are at most 2-parameter
families in these cases. Therefore, we must show now that par(1, S) ≥ 3
if m = 5 and S does not contain any element y with 6 ≤ v(y) ≤ 8. If it is
the case, S ⊆ S0, where S0 = k + kx + t9R. The maximal ideal of S0 is
m0 = kx + t9R. One easily checks that the S-ideals

I(α, β, γ) = 〈 1, t + αt3 + βt4 + γt8 〉 + m0, where α, β, γ ∈ k,

are pairwise non-isomorphic. It implies that par(1, S0) ≥ 3, hence,
par(1, S) ≥ 3 for every S ⊆ S0.

We recall the sandwich procedure used for calculation of ideals [5, 8].
Let S be a curve singularity, m = rad S and S′ = Endm. We consider S′ as
an over-ring of S and set S̄ = S′/m. If I is an S-ideal, then I ′ = S′I is an S′-
ideal and I ′ ⊇ I ⊃ mI = mI ′. So I is defined by the subspace V = I/mI of
the S̄-module W = I ′/mI ′. This subspace is not arbitrary, but generating

in the sense that S̄V = W . Let E = End I ′, E0 = { a ∈ E | aI ′ ⊆ mI ′ }
and Ē = E/E0. Then W is a Ē-module As it was mentioned above, we
can and always will suppose that R ⊇ I ⊇ S, thus R ⊇ I ′ ⊇ S′. Then
E ⊆ I ′, so Ē ⊆ W , and two generating subspaces V, V ′ ⊆ W define
isomorphic ideals if and only if V ′ = aV for an element a ∈ Ē. Moreover,
since we only consider subspaces containing the class of 1 (which we also
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denote by 1), such element a belongs to V ′. Let W̄ = I ′/m′I ′, where
m

′ = rad S′. Then the subspace V ⊆ W is generating if and only if its
image in W̄ is the whole W̄ . Therefore, if dim W̄ = m = dim R/mR, then
m

′I ′ = mI ′, hence the unique generating subspace of W is W itself, so the
unique S-ideal I with S′I = I ′ is I ′. In the further calculations we will
not consider such S′-ideals at all. The case V = W will also be omitted,
since then I = I ′.

2. Description of ideals of singularities of type N

Since the calculations are quite analogous in all cases, we consider the
“deepest” singularity of type N28, when the valuation vector is (5, 8). So,
let S ⊂ R = k[[t]] be generated (as a complete local k-algebra) by the
elements x, y, where v(x) = 5, v(y) = 8. We may suppose that t = y2/x3.
We also set z = y/x. Then S ⊃ t28R. Moreover, since S is Gorenstein,
every S-ideal is either principal or an S0-ideal, where

S0 = Endm = S + 〈 t27 〉 = 〈 1, x, y, x2, xy, x3, y2, x2y, x4, xy2 〉 + t23R

(see [3] or [5]). Consider the chain of rings S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ S4,
where

S1 = Endm0 = 〈 1, x, y, x2, xy, x3, y2 〉 + t18R,

S2 = Endm1 = 〈 1, x, y, x2, tx2 〉 + t13R,

S3 = Endm2 = 〈 1, z, x 〉 + t8R,

S4 = Endm3 = 〈 1, z 〉 + t5R,

and mi = rad Si. The S3-ideals are known [13, 9, 10]; they are (except
R, S4 and S3 itself):

R2 = 〈 1 〉 + t2R,

R3 = 〈 1 〉 + t3R,

R∗

3 = 〈 1, t 〉 + t3R,

S∗

4 = 〈 1, t2, t3 〉 + t5R.

The ideals R∗

3 and S∗

4 are indeed dual to R3 and S4 respectively, though
we will not use this property. Note that it follows from [5] that every
S3-ideal is isomorphic either to an over-ring of S3 or to the ideal dual to
such an over-ring.
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Proposition 1. Here is a complete list of representatives of the ideal

classes of the ring S2, which are not S3-ideals, sorted by the induced

S3-ideals I ′ = S3I. We set Ĩ = m2I ′.

• I ′ = S3; Ĩ = m2:

1) S2,

2) F1(α, β) = 〈 1, z + αz3 + βz4 〉 + m2,

3) F2(α) = 〈 1, z2 + αz3 〉 + m2,

4) F3(α) = 〈 1, z3 + αz4 〉 + m2,

5) I1 = 〈 1, z4 〉 + m2,

6) F4(α, β) = 〈 1, z + αz4, z2 + βz4 〉 + m2,

7) F5(α) = 〈 1, z, z3 + αz4 〉 + m2,

8) F6(α) = 〈 1, z + αz3, z4 〉 + m2,

9) F7(α) = 〈 1, z2, z3 + αz4 〉 + m2,

10) F8(α) = 〈 1, z2 + αz3, z4 〉 + m2,

11) I2 = 〈 1, z3, z4 〉 + m2,

12) I3 = 〈 1, z.z2, z3 〉 + m2,

13) I4 = 〈 1, z, z2, z4 〉 + m2,

14) I5 = 〈 1, z, z3, z4 〉 + m2,

15) I6 = 〈 1, z2, z3, z4 〉 + m2.

• I ′ = S4; Ĩ = 〈 x, y 〉 + t10R:

1) F9(α, β) = 〈 1, z + αtz2 + βz3 〉 + Ĩ, where α 6= 0,

2) F10(α, β) = 〈 1, z2 + αtz2 + βz3 〉 + Ĩ, where α 6= 0,

3) F11(α) = 〈 1, tz2 + αz3 〉 + Ĩ,

4) F12(α, β) = 〈 1, z + αtz2, z2 + βtz2 〉 + Ĩ,

where α 6= 0 or β 6= 0,

5) F13(α, β) = 〈 1, z + αz3, tz2 + βz3 〉 + Ĩ,

6) F14(α) = 〈 1, z + αtz2, z3 〉 + Ĩ, where α 6= 0,

7) F15(α, β) = 〈 1, z2 + αz3, tz2 + βz3 〉 + Ĩ,

8) F16(α) = 〈 1, z2 + αtz2, z3 〉 + Ĩ, where α 6= 0,

9) I7 = 〈 1, tz2, z3 〉 + Ĩ,

10) F17(α) = 〈 1, z, z2, tz2 + αz3 〉 + Ĩ,

11) F18(α, β) = 〈 1, z + αtz2, z2 + βtz2, z3 〉 + Ĩ,

where α 6= 0 or β 6= 0,

12) I8 = 〈 1, z, tz2, z3 〉 + Ĩ,
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13) I9 = 〈 1, z2, tz2, z3 〉 + Ĩ.

• I ′ = S∗

4 ; Ĩ = 〈 x, tz2, y 〉 + t10R:

1) F19(α, β) = 〈 1, t2 + αz + βz2 〉 + Ĩ,

2) F20(α, β) = 〈 1, t2 + αz2, z + βz3 〉 + Ĩ,

3) F21(α, β) = 〈 1, t2 + αz, z2 + βz3 〉 + Ĩ,

4) F22(α, β) = 〈 1, t2 + αz + βz2, z3 〉 + Ĩ,

5) F23(α) = 〈 1, t2, z + αz3, z2 〉 + Ĩ,

6) F24(α) = 〈 1, t2 + αz, z2, z3 〉 + Ĩ,

7) F25(α) = 〈 1, t2 + αz2, z, z3 〉 + Ĩ.

• I ′ = R3; Ĩ = 〈 x 〉 + t8R:

1) F26(α, β) = 〈 1, z + αtz + βtz2 〉 + Ĩ, where α 6= 0,

2) F27(α, β) = 〈 1, tz + αz2 + βtz2 〉 + Ĩ,

3) F28(α, β) = 〈 1, z, tz + αz2 + βtz2 〉 + Ĩ,

4) F29(α, β) = 〈 1, z + αtz, z2 + βtz2 〉 + Ĩ, where α 6= 0,

5) F30(α) = 〈 1, z + αtz, tz2 〉 + Ĩ, where α 6= 0,

6) F31(α, β) = 〈 1, tz + αtz2, z2 + βtz2 〉 + Ĩ,

7) F32(α) = 〈 1, tz + αz2, tz2 〉 + Ĩ,

8) F33(α) = 〈 1, z, tz, z2 + αtz2 〉 + Ĩ, where α 6= 0,

9) I10 = 〈 1, z, tz, tz2 〉 + Ĩ,

10) F34(α) = 〈 1, z + αtz, z2, tz2 〉 + Ĩ, where α 6= 0,

11) I11 = 〈 1, z, z2, tz2 + αz3 〉 + Ĩ.

• I ′ = R∗

3; Ĩ = 〈 x, z2 〉 + t8R:

1) F35(α, β) = 〈 1, t + αz + βtz 〉 + Ĩ, where α 6= 0,

2) F36(α, β) = 〈 1, t, z + αtz + βtz2 〉 + Ĩ,

3) F37(α, β) = 〈 1, t + αz, tz + βtz2 〉 + Ĩ,

4) F38(α, β) = 〈 1, t + αz + βtz, tz2 〉 + Ĩ,

5) F39(α) = 〈 1, t, z + αtz2, tz 〉 + Ĩ,

6) F40(α) = 〈 1, t, z + αtz, tz2 〉 + Ĩ,

7) F41(α) = 〈 1, t + αz, tz, tz2 〉 + Ĩ.

• I ′ = R2; Ĩ = 〈 x 〉 + t7R:

1) F42(α, β) = 〈 1, t2 + αz2, z + βtz 〉 + Ĩ, where β 6= 0,
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2) F43(α, β) = 〈 1, t2 + αz, tz 〉 + Ĩ,

3) I12(α, β) = 〈 1, t2, z, tz 〉 + Ĩ,

4) F44(α, β) = 〈 1, t2, z + αtz, z2 〉 + Ĩ, where α 6= 0,

5) F45(α) = 〈 1, t2 + αz, tz, z2 〉 + Ĩ.

• I ′ = R; Ĩ = t5R:

1) F46(α, β) = 〈 1, t + αt4, t2 + βt4 〉 + Ĩ,

2) I13 = 〈 1, t, t2, t3 〉 + Ĩ,

3) I14 = 〈 1, t, t2, t4 〉 + Ĩ.

In all these formulae α and β denote some elements from the field k.

Moreover, all quotient spaces W = I ′/m2I ′ are of dimension 5, so all

S-ideals I such that S2I = I ′ are actually S2-ideals. Therefore, we need

not consider them in the further calculations.

Proof. We only consider the case when I ′ = S4, since all other cases
are quite similar (mostly easier). Then W = 〈 1, z, z2, tz2, z3 〉, where we
denote the class of an element by the same symbol as the element itself,
and W̄ = 〈 1, tz2 〉. Therefore, the dimension of a generating subspace V
is at least 2. We also suppose that 1 is an element of a basis of V .

If dim V = 2, there are the following possibilities:

1) V = 〈 1, v 〉, where v = z + γz2 + αtz2 + ηz3 and α 6= 0, since
V must project onto W̄ . Set β = η − γ2 and a = 1 − tu, where
u = z +αtz2 +βz3. Then aV = 〈 1, u 〉 and the preimage of aV in S4

is F9(α, β) from the list. On the other hand, the image of F9(α, β) in
W is V (α, β) = 〈 1, z+αtz2+βz3 〉. If V (α′, β′) = aV (α, β), then a ∈
V (α′, β′), so we may suppose that a = 1 − λ(z + α′tz2 + β′z3). Then
the condition a(z + αtz2 + βz3) ∈ V (α′, β′) implies that α′ = α and
β′ = β. Therefore, the ideals F9(α, β) are pairwise nonisomorphic.
Further on we omit such verifications of nonisomorphy, since they
are easy and straightforward.

2) V = 〈 1, z2 + αtz2 + βz3 〉 gives rise to F10(α, β). Again one easily
checks that all these ideals are nonisomorphic.

3) V = 〈 1, tz2 + αz3 〉 gives rise to F11(α).

If dim V = 3, there are the following possibilities:

4) V = 〈 1, u, v 〉, where u = z + αtz2 + γz3, v = z2 + βtz2 + ηz3 with
α 6= 0 or β 6= 0. Let a = 1 − ηu′ − γv′, where u′ = z + αtz2, v′ =
z2 + βtz2; then aV = 〈 1, u′, v′ 〉, so gives rise to F12(α, β).
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5) V = 〈 1, u, v 〉, where u = z+γz2+ηz3, v = tz2+βz3. Set α = η−γ2

and u′ = z + αz3. Then (1 − γu′)V = 〈 1, u′, v 〉, so it gives rise to
F13(α, β).

6) In the same way V = 〈 1, z + βz2 + αtz2, z3 〉 is reduced to 〈 1, z +
αtz2, z3 〉 and gives rise to F14(α).

7) V = 〈 1, z2 + αz3, tz2 + βz3 〉 gives rise to F15(α, β).

8) V = 〈 z2 + αtz2, z3 〉 gives rise to F16(α).

9) V = 〈 z2, tz2, z3 〉 gives rise to I7.

Finally, if dim V = 4, there are the following possibilities:

10) V = 〈 1, u, v, w 〉, where u = z + βz3, v = z2 + γz3, w = tz2 + αz3.
Then (1−γz−βz2)V = 〈 1, z, z2, tz2 +αz3 〉 and gives rise to F17(α).

11) V = 〈 1, z + αtz2, z2 + βtz2, z3 〉 gives rise to F18(α, β).

12) V = 〈 1, z +αz2, tz2, z3 〉. Then (1−αz)V = 〈 1, z, tz2, z3 〉 and gives
rise to I8.

13) V = 〈 1, z2, tz2, z3 〉 gives rise to I9.

Now we have to find, for every S2-ideal I from this list, all S1-ideals
I1 such that S2I1 = I, then to find, for every I1, all S0-ideals I0 such
that S1I0 = I1 or S1I0 = I. Since the calculations are quite similar for
all ideals I and very much alike the calculations from the preceding proof
(even easier), we only present several “typical” cases.

Case 1. (This case is the most complicated.)

I = S2, m1S2 = m0S2 = m1.

It gives new S1-ideals:

1) S1,

2) I1
1 (α, β) = 〈 1, u(α, β) 〉 + m1, where u(α, β) = z2x(1 + αz + βz2),

3) I1
2 (α) = 〈 1, z3x + αz4x 〉 + m1,

4) I1
3 = 〈 1, z4x 〉 + m1,

5) I1
4 (α, β) = 〈 1, z2x + αz4x, z3x + βz4x 〉 + m1,

6) I1
5 (α) = 〈 1, z2x + αz3x, z4x 〉 + m1,

7) I1
6 = 〈 1, z3x, z4x 〉 + m1.
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S1/m0 = 〈 1, t19, t22 〉. It gives new S0-ideals:
S0, 〈 1, t19 + αt22 〉, 〈 1, t22 〉.
m0I1

1 (α, β) = m1I1
1 (α, β) if β 6= α2. If β = α2, then

I1
1 (α, α2)/m0I1

1 (α, α2) = 〈 1, u, t19 〉, which gives new S0-ideals
〈 1, u(α, α2) + γt19, z2xy + αz3xy 〉 + m0.

Case 2. I = F1(α, β); m1I = m0I = 〈 αyz2 + βyz3, yz + αyz3 〉 + m1.

a. α 6= 0. Then the only new possibilities are
I1 = 〈 1, z + αz3 + βz4 〉 + m1I,
I0 = 〈 1, z + αz3 + βz4 〉 + m0I1, where
m0I1 = 〈 αyz2 + βyz3, yz + αyz3 + βyz4 〉 + m0.

b. α = 0, β 6= 0. Then the only new possibilities are
I1 = 〈 1, z + βz4 〉 + m1I.
Since m0I1 = m1I1, no new I0 occur.

c. α = β = 0. Then the only new possibilities are
I1 = V + m1I, where V is one of the following subspaces:
〈 1, z + γyz3 〉, or 〈 1, z + γyz3, yz2 + γ′yz3 〉, or 〈 1, z, yz3 〉.
In all cases m0I1 = m1I1, so no new I0 occur.

Case 3. I = I1; m1I = m0I = 〈 x, y, x2, xy 〉 + t15R.
The only new possibility is I1 = 〈 1, αtx2 + z4 〉 + m1I .
Since m0I1 = m1I1, so no new I0 occur.

Case 4. I = F11(α); m1I = m0I = 〈 x, y, x2 〉 + t13R.
The only new possibility is I1 = 〈 1, tz2 + αz3 + βtx2 〉 + m1I.
Since m0I1 = m1I1, so no new I0 occur.

Case 5. I = F20(α, β). If β 6= 0, then m0I = m1I = m2I, so no new S1-
and S0-ideals occur. If β = 0, then m0I = m1I = 〈 t2x, zy, z4 〉 + m1 and
we get new S1-ideals

I1(α) = 〈 1, t2 + αz2, z 〉 + m0I.
Again, m0I1(α) = m1I1(α), so no new S0-ideals occur.
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