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Abstract. In an arbitrary fuzzy group we construct the

upper central series and consider some its properties. In particular,

the characterization of nilpotent fuzzy group has been obtained.

Let G be a group with a multiplicative binary operation denoted by
juxtaposition and identity e. We recall that a fuzzy subset γ : G → [0, 1]
is said to be a fuzzy group on G ( see, for example, [1, S 1.2]), if it satisfies
the following conditions:

(FSG 1) γ(xy) ≥ γ(x) ∧ γ(y) for all x, y ∈ G,

(FSG 2) γ(x−1 ≥ γ(x)) for every x ∈ G.

Here and everywhere we adopt the usual convention on the operator
wedge ∧( and on the operator vee ∨ ). If W is a subset of [0, 1], then
denote by

∧

W the greatest lower bound of W and denote by
∨

W the
least upper bound of W . If W = {a, b}, then, as usual, instead of

∧

W
we will write a ∧ b, and instead of

∨

W we will write a ∨ b. We assume
that the least upper bound of the empty set is 0, and the greatest lower
bound of the empty set is 1.

However we remark that we deliberately replace the standard expres-
sion a fuzzy subgroup of G by a fuzzy group on G in order to avoid possible
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misunderstanding in the sequel and to emphasize that a fuzzy group is in
fact a function defined on a group G. For example, if γ, κ are the fuzzy
group on G and γ ⊆ κ, occurs, we will say that γ is a fuzzy subgroup of κ
and denote this by γ 2 κ.

Fuzzy group theory, as well as other fuzzy algebraic structures, was
introduced very soon after the beginning of fuzzy set theory. Many basic
results of the theory were collected in the book [1]. From our point of
view, these results are not always systematized, and the methodology
and the research tools seem to be at an initial stage. The obtain results
apply to the different fields, but almost everywhere they have an initial
character. The development of a complete theory of fuzzy groups has not
happened yet. The first natural task here appears to be the description
of all fuzzy subgroups of a given fuzzy group, defined on G. The second
main task is the investigation of the structure of a fuzzy group on G
based on its algebraic properties. One of the important concept not only
in group theory, but also in the whole algebra is the notion of nilpotency.
It was introduced for fuzzy groups too( see, [1, Chapters 3.2] and the
papers [2], [3], [4]). This definition was given with use of the lower central
series. However there are other definitions in abstract group theory. One
of them is also important, based on the consept of upper central series.
In fuzzy group theory the upper central series haven’t constructed. In
this paper we fill up this gap. More concretely, in the paper we give
construction of the upper central series for arbitrary fuzzy group defined
on a group G, and give general definition of nilpotent group, which is
similar to one in abstract group theory.

Let µ and ν be two fuzzy groups on G, we define the operation ⊚ on
them by

(µ⊚ ν)(x) =
∨

y,z∈G,yz=x

(µ(y) ∧ ν(z)).

Note that (µ⊚ν)(x) =
∨

y∈G(µ(y)∧ν(y
−1x)) =

∨

z∈G(µ(xz
−1)∧ν(z)).

Let γ, κ be the fuzzy group on G. It is said that γ and κ are permute,
if γ ⊚ κ = κ ⊚ γ. At this point, it is worth mentioning that in general
the product of two fuzzy subgroups is not a fuzzy subgroup. Actually, the
product γ ⊚ κ is a fuzzy subgroup if and only if the fuzzy subgroups γ, κ
are permute (see, for example, [1, 4.3]).

Recall the following definition. If X is a set, for every subset Y of X
and every a ∈ [0, 1] we define a fuzzy subset χ(Y, a) as follows:

χ(Y, a) =

{

a, x ∈ Y,

0, x /∈ Y.
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Clearly χ(H, a) is a fuzzy group on G for every subgroup H of G. If
Y = {y}, then instead of χ({y}, a) we will write shorter χ(y, a). A fuzzy
subset χ(y, a) is called a fuzzy point (or fuzzy singleton).

Proposition 1. Let G be a group. Then the following assertion holds:

(i) the operation ⊚ is associative;

(ii) the function χ(e, 1) is an identity element of an operation ⊚, more-

over, if γ is a fuzzy group on G and λ 4 γ, then λ ⊚ χ(e, γ(e)) =
χ(e, γ(e))⊚ λ = λ;

(iii) (χ(y, a)⊚ λ)(x) = a ∧ λ(y−1x) for all elements x, y ∈ G;

(iv) (λ⊚ χ(y, a))(x) = a ∧ λ(xy−1) for all elements x, y ∈ G;

(v) (χ(y, a)⊚χ(u, b))(yu) = a∧b and (χ(y, a)⊚χ(u, b))(x) = 0, if x 6= yu.

In other words, (χ(y, a) ⊚ χ(u, b)) = χ(yu, a ∧ b), in particular,

(χ(y, a)⊚ χ(u, a)) = χ(yu, a).

Proof. It suffices to apply the results of [1, 1.2] to prove (i) and (ii).

(iii) Let x be an arbitrary element of G. If z 6= y, then χ(y, a)(z) = 0,
so we have

(χ(y, a)⊚ λ)(x) =
∨

z∈G(χ(y, a)(z) ∧ λ(z−1x)) = χ(y, a)(y) ∧ λ(y−1x) =
a ∧ λ(y−1x).

In particular, if u ∈ X, b ∈ [0, 1], then (χ(y, a) ⊚ χ(u, b))(x) = a ∧
χ(u, b)(y−1x). Recall that χ(u, b)(y−1x) = b if y−1x = u or x = yu, and
χ(u, b)(y−1x) = 0 if y−1x 6= u or x 6= yu, thus

(χ(y, a)⊚ χ(u, b))(x) =

{

a ∧ b, ifx = yu,

0, ifx 6= yu.

Hence we obtained (v).

The proof of (iv) is similar.

Let G be a group, γ be a fuzzy group on G. Then the center z(γ) of γ is
an union of all fuzzy points χ(z, γ(z)) such that χ(z, γ(z))⊚ χ(y, γ(y)) =
χ(y, γ(y))⊚ χ(z, γ(z)) for every χ(y, γ(y)) ⊆ γ.

A fuzzy group γ is called abelian, if z(γ) = γ.

We observed that in the theory of fuzzy groups the term "abelian" is
used in different senses. We will use it in the traditional aspect.
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Lemma 1. Let G be a group, γ be a fuzzy group on G. Then the fuzzy

point χ(x, a) and χ(y, b) are permutes if and only if xy = yx.

Proof. Suppose that χ(x, a)⊚χ(y, b) = χ(y, b)⊚χ(x, a). By Proposition 1
we have

χ(x, a)⊚ χ(y, b) = χ(xy, a ∧ b) and χ(y, b)⊚ χ(x, a) = χ(yx, b ∧ a),

so we obtain xy = yx. Then

χ(x, a)⊚ χ(y, b) = χ(xy, a ∧ b) = χ(yx, b ∧ a) = χ(y, b)⊚ χ(x, a)

Corollary 1. Let G be a group, γ be a fuzzy group on G. Then z(γ) is

an union of all fuzzy points χ(z, γ(z)) such that z ∈ ζ(G). In particular,

Supp(z(γ)) = ζ(Supp(γ)).

Proof. Suppose that χ(z, γ(z)) ∈ z(γ). Then χ(z, γ(z)) ⊚ χ(y, γ(y)) =
χ(y, γ(y)) ⊚ χ(z, γ(z)) for every element y ∈ Supp(γ). By Lemma 1 it
follows that zy = yz for every element y ∈ Supp(γ). This means that
z ∈ ζ(Supp(γ)).

Conversely, assume that z ∈ ζ(Supp(γ)). Then zy = yz for each
element y ∈ Supp(γ). Using again Lemma 1 we obtain that

χ(z, γ(z))⊚ χ(y, γ(y)) = χ(y, γ(y))⊚ χ(z, γ(z)),

which follows that χ(z, γ(z)) ∈ z(γ).

Corollary 2. Let G be a group, γ be a fuzzy group on G. Then γ is

abelian if and only if Supp(γ) is abelian.

Let G be a group, x, y ∈ G, a, b ∈ [0, 1]. Then a product χ(x−1, a)⊚
χ(y−1, b)⊚ χ(x, a)⊚ χ(y, b) is called a commutator of χ(x, a) and χ(y, b)
and will denoted by [χ(x, a), χ(y, b)].

Lemma 2. Let G be a group, x, y ∈ G, a, b ∈ [0, 1]. Then

(i) (χ(x, a)⊚ γ ⊚ χ(x−1, a))(y) = a ∧ γ(x−1yx),

(ii) χ(x−1, a)⊚ χ(y−1, b)⊚ χ(x, a)⊚ χ(y, b) = χ([x, y], a ∧ b).

Proof. (i) Using Proposition 1 we obtain

(χ(x, a)⊚ (γ ⊚ χ(x−1, a)))(y) =
∨

u,v,z∈G,uvz=y χ(x, a)(u) ∧ (γ(v) ∧ χ(x−1, a)(z)) =

χ(x, a)(x)∧γ(x−1yx)∧χ(x−1, a)(x−1) = a∧γ(x−1yx)∧a = a∧γ(x−1yx).
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(ii) Using Proposition 1 we obtain

χ(x−1, a)⊚ χ(y−1, b) = χ(x−1y−1, a ∧ b) and
χ(x, a)⊚ χ(y, b) = χ(xy, a ∧ b),

so that

χ(x−1, a)⊚χ(y−1, b)⊚χ(x, a)⊚χ(y, b) = χ(x−1y−1, a∧b)⊚χ(xy, a∧b) =
χ(x−1y−1xy, (a ∧ b) ∧ (a ∧ b)) = χ([x, y], a ∧ b).

Corollary 3. Let G be a group, γ be a fuzzy group on G. Then the fuzzy

point χ(x, a) and χ(y, b) of γ are permutes if and only if

[χ(x, a), χ(y, b)] ⊆ χ(e, γ(e)).

Proof. Suppose that χ(x, a) ⊚ χ(y, b) = χ(y, b) ⊚ χ(x, a). By Lemma 2
we have [χ(x, a), χ(y, b)] = χ([x, y], a ∧ b). Using Lemma 1 we obtain that
[x, y] = e. Since χ(x, a) ⊆ γ. χ(y, b) ⊆ γ, a = χ(x, a)(x) ≤ γ(x) and
similarly b ≤ γ(y). Since γ is a fuzzy group, γ(x) ≤ γ(e), γ(y) ≤ γ(e). It
follows that a ∧ b ≤ γ(e). Thus

[χ(x, a), χ(y, b)](e) = [χ(x, a), χ(y, b)]([x, y]) = a ∧ b ≤ γ(e),
[χ(x, a), χ(y, b)](z) = 0 whenever z 6= e.

It follows that [χ(x, a), χ(y, b)] ⊆ χ(e, γ(e)).

Conversely, suppose that [χ(x, a), χ(y, b)] ⊆ χ(e, γ(e)). Using Lemma 2
we obtain that [x, y] = e, which follows that xy = yx. An application of
Lemma 1 proves that χ(x, a) and χ(y, b) are permutes.

Let G be a group, γ, η be the fuzzy groups of G. Then a fuzzy com-

mutator subgroup [γ, η] is a fuzzy group generated by all commutators
[χ(x, γ(x)), χ(y, η(y))] where x ∈ Supp(γ), y ∈ Supp(η).

Proposition 2. Let G be a group,γ, η be the fuzzy groups on G. Then

the following assertion hold:

(i) a fuzzy commutator subgroup [γ, η] is an union of all fuzzy points

χ([x1, y1] . . . [xn, yn], γ(x1) ∧ . . . ∧ γ(xn) ∧ η(y1) ∧ . . . ∧ η(yn)) such

that x1, . . . , xn ∈ Supp(γ), y1, . . . , yn ∈ Supp(η),

(ii) Supp([γ, η]) = [Supp(γ),Supp(η)].

Proof. (i) Every element of [γ, η] has a form
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[χ(x1, γ(x1)), χ(y1, η(y1))] . . . [χ(xn, γ(xn)), χ(yn, η(yn))].

Using Lemma 2 and Proposition 1 we obtain

[χ(x1, γ(x1)), χ(y1, η(y1))] . . . [χ(xn, γ(xn)), χ(yn, η(yn))] =
χ([x1, y1], γ(x1) ∧ η(y1)) . . . χ([xn, yn], γ(xn) ∧ η(yn)) =
χ([x1, y1] . . . [xn, yn], γ(x1) ∧ η(y1) ∧ . . . ∧ γ(xn) ∧ η(yn)).

(ii) follows immediately from (i).

Corollary 4. Let G be a group, γ be a fuzzy group on G. Then the center

z(γ) includes a fuzzy subgroup κ of γ if and only if [κ, γ] 4 χ(e, γ(e)).

Proof. Suppose that κ 4 z(γ) .Then the fuzzy points χ(x, κ(x)) and
χ(y, γ(y)) are permutes for every x ∈ Supp(κ) and y ∈ Supp(γ). Corol-
lary 3 shows that in this case [χ(x, κ(x)), χ(y, γ(y))] ⊆ χ(e, γ(e)). Since
[κ, γ] generated by the commutators [χ(x, κ(x)), χ(y, γ(y))], we obtain an
inclusion [κ, γ] 4 χ(e, γ(e)).

Conversely, suppose that [κ, γ] 4 χ(e, γ(e)). Then

[χ(x, κ(x)), χ(y, γ(y))] ⊆ χ(e, γ(e))

for every x ∈ Supp(κ) and y ∈ Supp(γ). Corollary 3 shows that in this
case fuzzy points χ(x, κ(x)) and χ(y, γ(y)) are permutes. Since it is valid
for each y ∈ Supp(γ), χ(x, κ(x)) ∈ z(γ). It follows that κ 4 z(γ).

Corollary 5. Let G be a group, γ be a fuzzy group on G. Then γ is

abelian if and only if [γ, γ] = χ(e, γ(e)).

Recall that if γ, κ are the fuzzy groups on G and κ 4 γ, then it is
said that κ is a normal fuzzy subgroup of γ, if κ(yxy−1) ≥ κ(x)∧ γ(y) for
every elements x, y ∈ G [1, 1.4]. We denote this fact by κ E γ. We need a
following criteria of normality.

Proposition 3. Let G be a group and γ, κ be the fuzzy groups on G.

Suppose that κ 4 γ. Then κ is a normal fuzzy subgroup of γ if and only if

χ(x, γ(x))⊚ κ⊚ χ(x−1, γ(x)) 4 κ

for every elements x ∈ G.

Proof. Suppose first that κ is a normal fuzzy subgroup of γ . Let y ∈ G
and consider a product χ(y, γ(y))⊚κ⊚χ(y−1, γ(y)). Let x be an arbitrary
element of G. From Lemma 2 we obtain

(χ(y, γ(y))⊚ κ⊚ χ(y−1, γ(y)))(x) = γ(y) ∧ κ(y−1xy).



98 On hypercentral fyzzy groups

Put u = y−1xy, then x = y(y−1xy)y−1 = yuy−1, so that

(χ(y, γ(y))⊚ κ⊚ χ(y−1, γ(y)))(yuy−1) = γ(y) ∧ κ(u).

Since κ(u) ∧ γ(y) ≤ κ(yuy−1), we obtain

(χ(y, γ(y))⊚ κ⊚ χ(y−1, γ(y)))(yuy−1) ≤ κ(yuy−1),

that is

(χ(y, γ(y))⊚ κ⊚ χ(y−1, γ(y)))(x) ≤ κ(x).

Since it is valid for every element x ∈ G,

χ(y, γ(y))⊚ κ⊚ χ(y−1, γ(y)) 4 κ.

Conversely, suppose that χ(y, γ(y))⊚ κ⊚ χ(y−1, γ(y)) 4 κ. for each
y ∈ G. Let x be an arbitrary element of G. Put z = yxy−1, then x = y−1zy.
We have

(χ(y, γ(y))⊚ κ⊚ χ(y−1, γ(y)))(z) ≤ κ(z).

Lemma 2 shows that (χ(y, γ(y))⊚κ⊚χ(y−1, γ(y)))(z) = γ(y)∧κ(y−1zy).
Then γ(y) ∧ κ(y−1zy) ≤ κ(z), that is γ(y) ∧ κ(x) ≤ κ(yxy−1).

Using a concept of fuzzy commutator subgroups, we can obtain a
following criteria of normality for fuzzy subgroups.

Proposition 4. Let G be a group. Let ν, κ be the fuzzy groups on G, and

suppose that ν 4 κ. Then ν is normal in κ if and only if [ν, κ] 4 ν.

Proof. Suppose that ν is a normal fuzzy subgroup of κ. Let x ∈ Supp(ν),
y ∈ Supp(κ), then by Proposition 3 we obtain an inclusion

χ(y−1, κ(y))⊚ χ(x, ν(x))⊚ χ(y, κ(y)) ⊆ ν.

Lemma 2 implies that

[χ(x, ν(x)), χ(y, κ(y))] =
χ(x−1, ν(x))⊚ χ(y−1, κ(y))⊚ χ(x, ν(x))⊚ χ(y, κ(y)) ⊆ ν

Since it is valid for each pair x, y, where x ∈ Supp(ν), y ∈ Supp(κ), then
[ν, κ] 4 ν.

Conversely, suppose that [ν, κ] 4 ν. Let x ∈ Supp(ν), y ∈ Supp(κ),
then

[χ(x, ν(x)), χ(y, κ(y))] =
χ(x−1, ν(x))⊚ χ(y−1, κ(y))⊚ χ(x, ν(x))⊚ χ(y, κ(y)) ⊆ ν.

Since ν is a fuzzy group, χ(x, ν(x))⊚ [χ(x, ν(x)), χ(y, κ(y))] ⊆ ν. But
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χ(x, ν(x))⊚ [χ(x, ν(x)), χ(y, κ(y))] =
χ(x, ν(x))⊚ (χ(x−1, ν(x))⊚ χ(y−1, κ(y))⊚ χ(x, ν(x))⊚ χ(y, κ(y))) =
(χ(x, ν(x))⊚ χ(x−1, ν(x)))⊚ (χ(y−1, κ(y))⊚ χ(x, ν(x))⊚ χ(y, κ(y))) =

χ(xx−1, ν(x) ∧ ν(x))⊚ (χ(y−1, κ(y))⊚ χ(x, ν(x))⊚ χ(y, κ(y))) =
χ(e, ν(x))⊚ (χ(y−1, κ(y))⊚ χ(x, ν(x))⊚ χ(y, κ(y))).

Proposition 1 shows that

χ(y−1, κ(y))⊚ χ(x, ν(x))⊚ χ(y, κ(y)) = χ(y−1xy, κ(y) ∧ ν(x) ∧ κ(y)) =
χ(y−1xy, κ(y) ∧ ν(x)).

Therefore

χ(e, ν(x))⊚ (χ(y−1, κ(y))⊚ χ(x, ν(x))⊚ χ(y, κ(y))) =
χ(e, ν(x))⊚ χ(y−1xy, κ(y) ∧ ν(x)) = χ(e(y−1xy), ν(x) ∧ κ(y) ∧ ν(x)) =

χ(y−1xy, κ(y) ∧ ν(x)).

In other words,

χ(y−1, κ(y))⊚ χ(x, ν(x))⊚ χ(y, κ(y)) = χ(e, ν(x))⊚ (χ(y−1, κ(y))⊚
χ(x, ν(x))⊚ χ(y, κ(y))) = χ(x, ν(x))⊚ [χ(x, ν(x)), χ(y, κ(y))] ⊆ ν.

It follows that ν is a normal fuzzy subgroup of κ.

Corollary 6. Let G be a group, γ be a fuzzy group on G. Then every

fuzzy subgroup of the center z(γ) is normal in γ.

Proof. Suppose that κ is a fuzzy subgroup of z(γ). Let x ∈ Supp(κ)
and y ∈ Supp(γ). Then Lemma 2 shows that [χ(x, κ(x)), χ(y, γ(y))] =
χ([x, y], κ(x)∧γ(y)). An inclusion κ 4 z(γ) together with Lemma 1 shows
that [x, y] = e. We remark that κ(x) ∧ γ(y) ≤ κ(x) ≤ κ(e). Thus we have

[χ(x, κ(x)), χ(y, γ(y))]([x, y]) = κ(x) ∧ γ(y) ≤ κ(x) ≤ κ(e) = κ([x, y]);
[χ(x, κ(x)), χ(y, γ(y))](z) = 0 ≤ κ(z) whenever z 6= [z, y].

In other words,

[χ(x, κ(x)), χ(y, γ(y))](u) ≤ κ(u) or [χ(x, κ(x)), χ(y, γ(y))] ⊆ κ.

Since it is valid for every x ∈ Supp(κ), y ∈ Supp(γ), [γ, κ] 4 κ. Proposi-
tion 4 proves that κ is normal in γ.

Now we will construct an upper central series of a fuzzy group γ. Put
z1(γ) = z(γ). Without loss of generality me may assume that Supp(γ) = G.
Then Corollary 1 shows that Supp(z(γ)) = ζ(G) = Z1. Consider a factor
– group G/Z1 and let φ : G → G/Z1 be a natural epimorphism. We can
extend φ to the mapping Φ from the set F(G) of all fuzzy groups on G
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to the set F(G/Z1) of all fuzzy groups on G/Z1 ( see, for example, [1,
1.1.11]). Define the function γf : G/Z1 → [0, 1] by the following rule:
γf(gZ1) =

∨

z∈ζ(G) γ(gz). In other words, γf = Φ(γ). Then γf is a fuzzy

group on G/Z1 ( see, for example, [1, Theorem 1.3.13 ]). Put z(γf) = λ
and define the function z2(γ) : G → [0, 1] in a following way. Consider a
preimage λg of λ, that is the function λg : G → [0, 1], defined by the rule
λg(x) = λ(xZ1), x ∈ G. Put now z2(γ) = λg ∩ γ.

Proposition 5. Let G be a group, γ be a fuzzy group on G. Then z2(γ)
is a normal fuzzy subgroup of γ. Moreover, Φ(z2(γ)) ⊆ z(γf).

Proof. Let x, y are the arbitrary elements of G, then λg(xy) = λ(xyZ1).
As we saw above, λ is a fuzzy group on G/Z1, therefore

λ(xyZ1) = λ(xZ1yZ1) ≥ λ(xZ1) ∧ λ(yZ1) = λg(x) ∧ λg(y),

so that λg(xy) ≥ λg(x) ∧ λg(y). Similarly λg(x
−1) = λ(x−1Z1) =

λ((xZ1)
−1) = λ(xZ1) = λg(x), which shows that λg is a fuzzy group on G.

Since the intersection of fuzzy groups is fuzzy group ( see, for example, [1,
Theorem 1.2.13 ]), z2(γ) is a fuzzy group on G. By its definition, z2(γ) 4 γ.

Let x, y again be the arbitrary elements of G, consider z2(γ)(yxy
−1).

We have z2(γ)(yxy
−1) = (λg ∩ γ)(yxy−1) = λg(yxy

−1) ∧ γ(yxy−1). Fur-
thermore,

λg(yxy
−1) = λ(yxy−1Z1) = λ(yZ1)λ(xZ1)λ(y

−1Z1) =
λ(yZ1)λ(xZ1)λ((yZ1)

−1).

By Corollary 6 λ is a normal fuzzy subgroup of γf. It follows that

λ(yZ1)λ(xZ1)λ((yZ1)
−1) ≥ λ(xZ1) ∧ γf(yZ1).

Since γf(yZ1) =
∨

z∈ζ(G) γ(yz), γ
f(yZ1) ≥ γ(y), so that

λg(yxy
−1) ≥ λg(x) ∧ γ(y).

In turn it follows that

z2(γ)(yxy
−1) = λg(yxy

−1) ∧ γ(yxy−1) ≥ λg(x) ∧ γ(y) ∧ γ(x) =
(λg(x) ∧ γ(x)) ∧ γ(y) = (λg ∩ γ)(x) ∧ γ(y) = z2(γ)(x) ∧ γ(y).

Hence z2(γ) is a normal fuzzy subgroup of γ.

Furthermore,

Φ(z2(γ)) = Φ(λg ∩ γ) ⊆ Φ(λg) ⊆ Φ(Φ−1(λ)).
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Using Theorem 1.2.12 of a book [1], we obtain Φ(Φ−1(λ) ⊆ λ, which shows
that Φ(z2(γ)) ⊆ λ.

Lemma 3. Let G be a group, γ be a fuzzy group on G. Let K be a normal

subgroup of G, φ : G → G/K a natural epimorphism and Φ a natural

extension of φ to the mapping from the set F(G) of all fuzzy groups on G
to the set F(G/K) of all fuzzy groups on G/K. If u ∈ G, a ∈ [0, 1], then

Φ(χ(u, a)) = χ(uK, a).

Proof. By definition of a mapping Φ we have

Φ(χ(u, a))(gK) =
∨

z∈K χ(u, a)(gz).

We recall that χ(u, a)(gz) = 0 if gz 6= u. If gz = u, then gK = uK and

Φ(χ(u, a))(gK) = χ(u, a)(u) = a.

On the other hand,

χ(uK, a)(gK) = 0 if gK 6= uK and χ(uK, a)(uK) = a.

This shows that Φ(χ(u, a)) = χ(uK, a).

Proposition 6. Let G be a group, γ be a fuzzy group on G. Then

Supp(z2(γ)) = ζ2(Supp(γ))

the second hypercenter of Supp(γ).

Proof. Without loss of generality we can suppose that Supp(γ) = G. Let
g ∈ G, u ∈ Supp(z2(γ)), and consider now a commutator

[χ(u, z2(γ)(u)), χ(g, γ(g))].

By Lemma 2 [χ(u, z2(γ)(u)), χ(g, γ(g))] = χ([u, g], z2(γ)(u) ∧ γ(g)). By
Lemma 3

Φ(χ([u, g], z2(γ)(u) ∧ γ(g))) = χ([u, g]Z1, z2(γ)(u) ∧ γ(g)).

Using again Lemma 2, we obtain

χ([u, g]Z1, z2(γ)(u) ∧ γ(g)) = [χ(uZ1, z2(γ)(u)), χ(gZ1, γ(g))].

Since γf(gZ1) =
∨

z∈ζ(G) γ(gz) and e ∈ Z1, then γf(gZ1) ≥ γ(g), so that

χ(gZ1, γ(g)) ⊆ χ(gZ1, γ
f(gZ1)). An inclusion Φ(z2(γ)) ⊆ λ shows that

[χ(uZ1, z2(γ)(u)), χ(gZ1, γ(g))] ⊆ [λ, γf]. The choice of λ together with
Corollary 4 shows that

[λ, γf] 4 χ(eZ1, γ
f(eZ1)).
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In particular, χ([u, g]Z1, z2(γ)(u)∧γ(g)) ⊆ χ(eZ1, γ
f(eZ1)), which follows

that Z1 = [u, g]Z1 = [uZ1, gZ1]. In turn, it follows that u ∈ ζ2(G), the
second hypercenter of G.

Conversely, let u ∈ ζ2(G). Then uZ1 ∈ ζ(G/Z1). Since G = Supp(γ),
γ(u) 6= 0. Corollary 1 shows that fuzzy point χ(uZ1, γ

f(uZ1)) lies in
the center λ of γf. It follows that λ(uZ1) = γf(uZ1). An equation
γf(uZ1) =

∨

z∈ζ(G) γ(uz) shows that γf(yZ1) ≥ γ(y). We have now

z2(γ)(u) = (λg ∩ γ)(u) = λg(u) ∧ γ(u) = λ(uZ1) ∧ γ(u) =
γf(uZ1) ∧ γ(u) = γ(u),

which shows that χ(u, γ(u)) ⊆ z2(γ). It follows that Supp(z2(γ)) =
ζ2(Supp(γ)).

Proposition 7. Let G be a group, γ be a fuzzy group on G. Then

[z2(γ), γ] 4 z(γ).

Proof. Let g ∈ G, u ∈ Supp(z2(γ)), and consider now a commutator

[χ(u, z2(γ)(u)), χ(g, γ(g))].

By Lemma 2 [χ(u, z2(γ)(u)), χ(g, γ(g))] = χ([u, g], z2(γ)(u)) ∧ γ(g)). As
in Proposition 6 we can prove an inclusion χ([u, g]Z1, z2(γ)(u) ∧ γ(g)) ⊆
χ(eZ1, γ

f(eZ1)). Lemma 3 shows that Φ(χ([u, g], z2(γ)(u) ∧ γ(g))) =
χ([u, g]Z1, z2(γ)(u) ∧ γ(g)). This equation shows that the preimage κ of
χ(eZ1, γ

f(eZ1)) includes [z2(γ), γ]. Hence a next our step must be the
consideration of a fuzzy group κ . We have γf(eZ1) =

∨

z∈ζ(G) γ(ez).
Since γ is a fuzzy group on G, γ(e) ≥ γ(z) for each z ∈ Z1. It follows
that

∨

z∈ζ(G) γ(ez) = γ(ee) = γ(e). So that γf(eZ1) = γ(e). Let g be an
arbitrary element of G, then κ contains a fuzzy point χ(g, κ(g)). It follows
that Φ(χ(g, κ(g))) ⊆ χ(eZ1, γ(e)). On the other hand, Lemma 3 shows
that Φ(χ(g, κ(g))) = χ(gZ1, κ(g)), and we obtain that χ(gZ1, κ(g)) ⊆
χ(eZ1, γ(e)). It follows that gZ1 = Z1, which means that g ∈ Z1. Corol-
lary 1 shows that χ(g, κ(g)) ⊆ z1(γ). Since κ = ∪g∈Gχ(g, κ(g)), we obtain
that κ ⊆ z1(γ). By above proved, this inclusion implies an inclusion
[z2(γ), γ] 4 z(γ).

Now we can continue to construct an upper central series of a fuzzy
group γ. Using for this transfinite induction. Without loss of generality
me may assume that Supp(γ) = G. We have already constructed the
terms z1(γ) = z(γ) and z2(γ). Suppose that we have already constructed
the terms zβ(γ) for all ordinals β < α. If α is a limit ordinal, then we put
zα(γ) = ∪β<αzβ(γ). Suppose now that α is a not limit ordinal, that is
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α− 1 = η exists. Let K = ζη(G), the ηth term of an upper central series
of G. Consider a factor–group G/K and let φ : G → G/K be a natural
epimorphism. We can extend φ to the mapping Φ from the set F(G) of all
fuzzy groups on G to the set F(G/K) of all fuzzy groups on G/K ( see,
for example, [1, 1.1.11 ]). Define the function γf : G/K → [0, 1] by the
following rule: γf(gK) =

∨

z∈K γ(gz). In other words, γf = Φ(γ). Then
γf is a fuzzy group on G/K ( see, for example, [1, Theorem 1.3.13 ]). Put
z(γf) = λ and define the function zα(γ) : G → [0, 1] in a following way.
Consider a preimage λg of λ, that is the function λg : G → [0, 1], defined
by the rule λg(x) = λ(xK) for every x ∈ G. Put now zα(γ) = λg ∩ γ.

Thus, for every ordinal α we constructed the αth term zα(γ) of an
upper central series of γ. The building of an upper central series of γ
come to an end on some ordinal σ. In other words, this means that if
L = ζσ(G) and γf(gL) =

∨

z∈L γ(gz), then the center of γf is χ(e, γf(e)).
Then zσ(γ) is called the upper hypercenter of γ and will denoted by z∞(γ).

A fuzzy group γ is called hypercentral, if γ = z∞(γ). Let

χ(e, γ(e)) = z0(γ) 4 z(γ) = z1(γ) 4 . . . 4 zα(γ) 4 zα+1(γ) 4 . . . 4 zσ(γ)

be the upper central series of γ. Using the same arguments that in the
proofs of Propositions 5, 6, 7, we can obtain that every term of the
upper central series is a normal fuzzy subgroup of γ. Supp(zα(γ)) =
ζα(Supp(γ)), [zα+1(γ), γ] 4 zα(γ) for each α < σ.

We can obtain a following characterization of hypercentral fuzzy group.

Theorem 1. Let G be a group, γ be a fuzzy group on G. Then γ is

hypercentral if and only if Supp(γ) is hypercentral.

Proof. Again without loss of generality we can assume that

G = Supp(γ).

Suppose that γ is hypercentral and let

χ(e, γ(e)) = z0(γ) 4 z1(γ) 4 . . . 4 zα(γ) 4 zα+1(γ) 4 . . . 4 zσ(γ) = γ

be the upper central series of γ. As we remarked above, Supp(zα(γ)) =
ζα(Supp(γ)) for each α < σ. In particular,

G = Supp(γ) = Supp(zσ(γ)) = ζσ(Supp(γ)) = ζσ(G),

i.e. G is hypercentral.
Conversely, assume that G is hypercentral. Then in every factor–group

of G its center is non–identity. In particular, Z1 = ζ(G) 6=< e >. By
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Corollary 1 Z1 = Supp(z(γ)), so that z1(γ) = z(γ) 6= χ(e, γ(e)). If
G is abelian, then γ = z(γ). In other words, γ is abelian, and all is
proved. Suppose that we have already constructed the terms zβ(γ) of
the upper central series for all ordinals β < α . If α is a limit ordinal,
then zα(γ) = ∪β<αzβ(γ). Suppose now that α is a not limit ordinal,
that is α − 1 = η exists. Let K = ζη(G). Consider a factor–group G/K
and let φ : G → G/K be a natural epimorphism. We can extend φ to
the mapping Φ from the set F(G) of all fuzzy groups on G to the set
F(G/K) of all fuzzy groups on G/K ( see, for example, [1, Theorem
1.1.11 ]). Define the function γf : G/K → [0, 1] by the following rule:
γf(gK) =

∨

z∈K γ(gz). In other words, γf = Φ(γ). Then γf is a fuzzy
group on G/K ( see, for example, [1, Theorem 1.3.13 ]). Since G/K is
a non–identity hypercentral group, then its center ζ(G/K) = D/K is
non–identity. Application of Corollary 1 shows that D/K = Supp(z(γf)),
so that z(γf) = λ 6= χ(e, γf(e)), and using the above arguments we can
construct the term zα(γ) of the upper central series. If G/K is abelian,
then γ = zα(γ). If not, we can continue the building of an upper central
series of γ.

The following concept is dual to a concept of an upper central series.
Let γ be a fuzzy group on a group G. We define the lower central series
of γ by the following rule: put g1(γ) = γ, g2(γ) = [γ, γ]. Assume that we
have already construct the terms gβ(γ) for all ordinals β < α. If α is a
limit ordinal, then we put gα(γ) = ∪β<αgβ(γ). Suppose now that α is
a not limit ordinal, that is α − 1 exists. Then put gα(γ) = [gα−1(γ), γ].
Thus, for every ordinal α we constructed the αth term gα(γ) of a lower
central series of γ. The building of an upper central series of γ come to an
end on some ordinal σ. In other words, this means that gσ(γ) = [gσ(γ), γ].
Then gσ(γ) is called the lower hypocenter of γ and will denoted by g∞(γ).

A fuzzy group γ is called hypocentral, if g∞(γ) 4 χ(e, γ(e)).
As and for abstract groups, we can define for fuzzy groups the general

term of central factor and central series.
Let γ be a fuzzy group on a group G and κ, ν be the normal fuzzy

subgroups of γ such that κ 4 ν. We say that κ, ν form a central link, if
[ν, γ] 4 κ.

As we saw above, the terms zα(γ), zα+1(γ) of the upper central series
and the terms gα+1(γ), gα(γ) of the lower central series form the central
links.

A finite series

χ(e, γ(e)) = κ0 4 κ1 4 . . . 4 κn−1 4 κn = γ
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of normal fuzzy subgroups of γ is called central, if the fuzzy subgroups
κj−1,κj form a central link for every j, 1 ≤ j ≤ n.

Theorem 2. Let G be a group, γ be a fuzzy group on G. If γ has a finite

central series

χ(e, γ(e)) = κ0 4 κ1 4 . . . 4 κn−1 4 κn = γ,

then κj 4 zj(γ), 1 ≤ j ≤ n, and gm(γ) 4 κn−m+1, 1 ≤ m ≤ n.

Proof. We have g1(γ) = γ = κn. Suppose that we have already proved
an inclusion gm(γ) 4 κn−m+1 for some m. Consider a link κn−m, κn−m+1.
Since this link is central, [κn−m+1, γ] 4 κn−m. Then gm+1(γ) = [gm(γ), γ] 4
[κn−m+1, γ] 4 κn−m.

Since [κ1, γ] 4 χ(e, γ(e)), Corollary 4 yields that κ1 4 z1(γ). Assume
that we have already proved an inclusion κj 4 zj(γ). Let θ = κj+1.
We have [θ, γ] = [κj+1, γ] 4 κj 4 zj(γ). Let x ∈ Supp(θ), y be an
arbitrary element of G, then [χ(x, θ(x)), χ(y, γ(y))] ⊆ zj(γ). Lemma 2
shows that [χ(x, θ(x)), χ(y, γ(y))] = χ([x, y], θ(x) ∧ γ(y)). In particular,
[x, y] ∈ Supp(zj(γ)) = ζj(Supp(γ)). Put K = ζj(Supp(γ)). Consider a
factor–group G/K and let φ : G → G/K be a natural epimorphism. We
can extend φ to the mapping Φ from the set F(G) of all fuzzy groups on
G to the set F(G/K) of all fuzzy groups on G/K ( see, for example, [1,
Theorem 1.1.11 ]). As above consider a function γf = Φ(γ). Then γf is a
fuzzy group on G/K ( see, for example, [1, Theorem 1.3.13 ]). Lemma 4
shows that Φ(χ([x, y], θ(x) ∧ γ(y))) = χ([x, y]K, θ(x) ∧ γ(y)). We noted
above that [x, y] ∈ K, that is χ([x, y]K, θ(x) ∧ γ(y)) ⊆ χ(e, γf(e)). On
the other hand, an application of Lemma 2 gives an equation

χ([x, y]K, θ(x) ∧ γ(y)) = χ([xK, yK], θ(x) ∧ γ(y)) =
[χ(xK, θ(x)), χ(yK, γ(y))],

so that [χ(xK, θ(x)), χ(yK, γ(y))] ⊆ χ(e, γf(e)). By Corollary 2

χ(xK, θ(x)) ⊆ z(γf) = λ.

Then the preimage χ(xK, θ(x)) of χ(xK, θ(x)) lies in λg ∩ γ = zj+1(γ),
where λg is a preimage of z(γf). Since an inclusion χ(x, θ(x)) ⊆ zj+1(γ)
is true for each x ∈ Supp(θ), κj+1 = θ = ∪x∈Supp(θ)χ(x, θ(x)) 4 zj+1(γ).

Let G be a group and γ a fuzzy group on G. Then γ is called nilpotent,
if gm(γ) 4 χ(e, γ(e)) for some positive integer m. If γ is nilpotent, then



106 On hypercentral fyzzy groups

we say that the nilpotency class of γ is c (and denote this by ncl(γ) = c
), if c is the least positive integer, having a property gc(γ) 4 χ(e, γ(e)).

Now we can give a characterization of nilpotent fuzzy group, which
used the concepts of upper central series and arbitrary central series.

Corollary 7. Let G be a group, γ be a fuzzy group on G. Then the

following assertions are equivalent:

(i) γ is nilpotent and ncl(γ) = c;

(ii) zc(γ) = γ;

(iii) γ has a finite central series, moreover, if

χ(e, γ(e)) = κ0 4 κ1 4 . . . 4 κn−1 4 κn = γ

is an arbitrary finite central series of γ, then c ≤ n.
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