Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups

Mohsen Ghasemi

Communicated by D. Simson

ABSTRACT. A Cayley graph $X=\operatorname{Cay}(G,S)$ is called *normal* for G if the right regular representation R(G) of G is normal in the full automorphism group $\operatorname{Aut}(X)$ of X. In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group G are normal when (|G|, 2) = (|G|, 3) = 1, and X is not isomorphic to either $\operatorname{Cay}(G,S)$, where $|G| = 5^n$, and $|\operatorname{Aut}(X)|=2^m.3.5^n$, where $m \in \{2,3\}$ and $n \geq 3$, or $\operatorname{Cay}(G,S)$ where $|G| = 5q^n$ (q is prime) and $|\operatorname{Aut}(X)| = 2^m.3.5.q^n$, where $q \geq 7, m \in \{2,3\}$ and $n \geq 1$.

1. Introduction

Throughout this paper, graphs are finite and simple. For a graph X, we denote by V(X), E(X) and Aut(X) the vertex set, the edge set and the automorphism group of X, respectively, and X is said to be *vertex-transitive* if Aut(X) is transitive on vertices.

A finite group G is called *minimal non-abelian* if G is not abelian, but every proper subgroup of G is abelian. For a finite group G and a subset S of G such that $1_G \notin S$, and S is symmetric, that is $S^{-1} = \{s^{-1} | s \in S\}$ is equal to S. The Cayley graph $X=\operatorname{Cay}(G,S)$ on G with respect to S is defined as the graph with vertex set G and edge set $\{[g, sg] | g \in G, s \in S\}$. Clearly the right regular representation R(G) of G acts regularly on

²⁰⁰⁰ Mathematics Subject Classification: 05C25, 20B25.

Key words and phrases: Cayley graph, normal Cayley graph, minimal nonabelian group.

vertices, that is, R(G) is transitive on vertices and only the identity element of R(G) fixes a vertex. Furthermore, the group $\operatorname{Aut}(G, S) = \{\alpha \in$ $\operatorname{Aut}(G) | S^{\alpha} = S\}$ is also a subgroup of $\operatorname{Aut}(X)$. Actually, $\operatorname{Aut}(G, S)$ is a subgroup of $\operatorname{Aut}(X)_1$, the stabilizer of the vertex 1 in $\operatorname{Aut}(X)$. For two groups M and $N, N \rtimes M$ denotes a semidirect product of N by M.

A Cayley graph $\operatorname{Cay}(G, S)$ is said to be *normal* on G if the right regular representation R(G) of G is normal in $\operatorname{Aut}(X)$. Let $N_{Aut(X)}(R(G))$ be the normalizer of R(G) in $\operatorname{Aut}(X)$. By Godsil [8], or Xu [14], $N_{Aut(X)}(R(G))=R(G) \rtimes \operatorname{Aut}(G, S)$. Thus, $\operatorname{Cay}(G, S)$ is normal on G if and only if $\operatorname{Aut}(X)=R(G) \rtimes \operatorname{Aut}(G, S)$. If $N_{Aut(X)}(R(G))$ is transitive on edges then $\operatorname{Cay}(G, S)$ is called a *normal edge-transitive* Cayley graph by Praeger [13]. Clearly, if $\operatorname{Cay}(G, S)$ is normal on G and edge-transitive then it is normal edge-transitive. Note that being a normal Cayley graph is not invariant under graph isomorphism, and so strictly depends upon which group the graph is a Cayley graph on. For example, the three-dimensional hypercube Q_3 ia a Cayley graph on either the group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ or the group $\mathbb{Z}_4 \times \mathbb{Z}_2$. The Cayley graph on the first group is normal, but the Cayley graph on the second group is not.

A Cayley graph X of a group G is called a graphical regular representation if $\operatorname{Aut}(X)=G$. It implies that $\operatorname{Aut}(X)_1 = 1$ and so $\operatorname{Aut}(G,S) = 1$. Therefore, a necessary condition for X to be a graphical regular representation of G is $\operatorname{Aut}(G,S) = 1$. In some circumstance, this necessary condition is also sufficient for X to be a graphical regular representation. However, it is of course not the case in general, that is, there exist groups G and Cayley graphs $\operatorname{Cay}(G,S)$ such that $\operatorname{Aut}(G,S) = 1$ but $\operatorname{Cay}(G,S)$ is not a graphical regular representation of G. Hence the following natural problem was proposed by Godsil [9].

Problem A. Determine classes of groups G and Cayley graphs Cay(G, S) for which Cay(G, S) is a graphical regular representation of G if and only if Aut(G, S) = 1.

The solution of Problem A is known only for some classes of groups. Godsil solved the problem in [8, Theorem 3.8] for *p*-groups with *p* prime which have no homomorphism onto $\mathbb{Z}_p \times \mathbb{Z}_p$, and Li [10], solved the problem A for arbitrary cubic Cayley graphs of 2-power order, also Li and Sim solved the problem A for metacyclic *p*-groups with prime *p* (see [11]). In the present paper, it is proved that for most finite minimal non-abelian groups *G*, a tetravalent Cayley graph $\operatorname{Cay}(G, S)$ is a graphical regular representation if and only if $\operatorname{Aut}(G, S) = 1$.

Fang et al. [5] proved that the vast majority of connected cubic

Cayley graphs on non-abelian simple groups are normal. It was shown in [1, 2, 6], that most connected Cayley graphs of small valency on abelian groups are normal, and that all connected tetravalent Cayley graphs on p-groups of nilpotency class 2 with p an odd prime are normal. Also the normality of tetravalent Cayley graphs on regular p-groups was done by Feng and Xu [7]. In the present paper, we shall prove that all connected tetravalent Cayley graphs on a minimal non-abelian group are normal when (|G|, 2) = (|G|, 3) = 1, and X is not isomorphic to either Cay(G, S), where $|G| = 5^n$, and $|\operatorname{Aut}(X)| = 2^m \cdot 3 \cdot 5^n$ where $m \in \{2, 3\}$ and $n \ge 3$, or Cay(G, S) where $|G| = 5q^n$ (q is prime) and $|\operatorname{Aut}(X)| = 2^m \cdot 3 \cdot 5 \cdot q^n$, where $q \ge 7$, $m \in \{2, 3\}$ and $n \ge 1$.

2. Preliminaries

In this section we give some results which will be used later. The following fact is basic for Cayley graphs.

Proposition 2.1. [3, Lemma 16.3] A graph X is a Cayley graph of a group G if and only if Aut(X) contains a regular subgroup isomorphic to G.

We have the following result for minimal non-abelian *p*-groups.

Proposition 2.2. [12] Let G be a finite minimal non-abelian group. Then one of the following holds:

(1) G is a minimal non-abelian p-group;

(2) G is a semi-direct product of an elementary abelian q-group Q of order q^{α} by a cyclic group $P = \langle b \rangle$ of order p^{β} , where p, q are distinct primes and the action of b on Q is an automorphism of Q of order p.

Let $X=\operatorname{Cay}(G,S)$ be a Cayley graph on a finite group G and H a normal subgroup of G. Let X_H be the quotient graph corresponding to the cosets of H in G, with two cosets adjacent in X_H , whenever there is an edge between those cosets in X.

Proposition 2.3 ([13]). The quotient graph X_H is a Cayley graph and

$$X_H = Cay(G/H, SH/H),$$

where $SH/H = \{sH | s \in S\}$.

The *socle* of a group G is the subgroup generated by the set of all minimal normal subgroups of G, and it is denoted by soc(G). By [4, Theorem 4.3], we have the following proposition:

Proposition 2.4. Let G be a nontrivial finite group. Then $soc(G) = T_1 \times ... \times T_k$, where T_i $(1 \le i \le k)$ are simple normal subgroups and $T_i \cong T_j$ $(1 \le i, j \le k)$.

3. Main result

The main purpose of this paper is to prove the following theorem.

Theorem 3.1. Let p be a prime and G a minimal non-abelian group which (|G|, 2) = (|G|, 3) = 1. Let X=Cay(G,S) be a connected tetravalent Cayley graph on G. Then we have $Aut(Cay(G,S)) = R(G) \rtimes Aut(G,S)$, except when X is not isomorphic to either Cay(G,S), where $|G| = 5^n$, and $|Aut(X)|=2^m.3.5^n$, where $m \in \{2,3\}$ and $n \ge 3$, or Cay(G,S) where $|G| = 5q^n$ (q is prime) and $|Aut(X)| = 2^m.3.5.q^n$, where $q \ge 7$, $m \in \{2,3\}$ and $n \ge 1$.

Let $Q_8 = \langle a, b | a^4 = 1, bab^{-1} = a^{-1}, a^2 = b^2 \rangle$, be a quaternion group, and $S = \{a, a^3, b, b^3\}$ a subset of Q_3 . Now $\sigma = (ab, a^3b) \in A_1$, but $\sigma \notin Aut(G, S)$ and hence $\operatorname{Cay}(Q_8, \{a, a^3, b, b^3\})$ is not normal. Also if $D_6 = \langle a, b | a^3 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$, and $S = \{a, a^2, b, ab\}$, then $\delta = (a, b)(a^2, ab) \in A_1$, but $\delta \notin Aut(G, S)$ and hence $\operatorname{Cay}(D_6, \{a, a^2, b, ab\})$ is not normal. It follows that Theorem 3.1 is not true generally when $(|G|, 2) \neq 1$, and $(|G|, 3) \neq 1$. As a consequence of Theorem 3.1, we have the following result.

Corollary 3.2. Let G be a minimal non-abelian group, and (|G|, 2) = (|G|, 3) = 1. Also let X is not isomorphic to either Cay(G, S), where $|G| = 5^n$, and $|Aut(X)|=2^m.3.5^n$, where $m \in \{2,3\}$ and $n \ge 3$, or Cay(G,S) where $|G| = 5q^n$ (q is prime) and $|Aut(X)| = 2^m.3.5.q^n$, where $q \ge 7$, $m \in \{2,3\}$ and $n \ge 1$. Then a connected Cayley graph X=Cay(G,S) of valency 4 is a graphical regular representation of G if and only if Aut(G,S) = 1.

Proof of Theorem 3.1. Recall that $\operatorname{Aut}(Cay(G, S)) = R(G) \rtimes Aut(G, S)$ if and only if $\operatorname{Cay}(G, S)$ is normal on G. Let G be a counterexample of least order, that is, G has the smallest order with the following properties: G is a minimal non-abelian group and there exists a subset $S = \{s_1, s_2, s_1^{-1}, s_2^{-1}\}$ of G such that $X = \operatorname{Cay}(G, S)$ is not a normal 4-valent connected Cayley graph. Let $A = \operatorname{Aut}(X)$ and let A_1 be the stabilizer of 1 in A. Since Xhas valency 4, the stabilizer A_1 of the vertex 1 in A is a $\{2,3\}$ -group. By Proposition 2.2, first assume that G is a p-group. By our assumption Gis not 2- or 3-group. By Proposition 2.4, $\operatorname{soc}(A) = T_1 \times \ldots \times T_k$, where $k \geq 1$ and $T_i \cong T_j$ $(1 \leq i, j \leq k)$. T is a $\{2, 3, p\}$ -group because A is $\{2, 3, p\}$ -group.

First let T be an abelian group. Then soc(A) is an elementary abelian q-group, where q = 2, 3, or p. If $H = \operatorname{soc}(A)$ is transitive on V(X), then $H = \operatorname{soc}(A)$ acts regularly on V(X). Thus $|\operatorname{soc}(A)| = |G|$, and hence $\operatorname{soc}(A) = G$, a contradiction. So $H = \operatorname{soc}(A)$ is not transitive on V(X). Now assume that $\Sigma = \{B_1, B_2, ..., B_t\}$ is the set of orbits of H on V(X). By the normality of H in A we have that t and $|B_i|$ $(1 \le i \le t)$ are powers of p. It follows that H is a p-group and $H \leq G$. Consider the quotient graph X_H defined by $V(X_H) = \Sigma$, and $(B_i, B_j) \in E(X_H)$ if and only if there exists $v_i \in B_i$, $v_i \in B_j$ such that $(v_i, v_j) \in E(X)$. Since the quotient group G/H acts regularly on Σ , therefore by Proposition 2.1 X_H must be connected Cayley graph of G/H. So by Proposition 2.3 $X_H \cong \operatorname{Cay}(G, S)$, where $\overline{G} = G/H$ and $\overline{S} = \{sH | s \in S\}$. Since $|V(X_H)|$ is odd, the valency $v(X_H)$ of X_H could not be 3 and hence $v(X_H) = 2$, or $v(X_H) = 4$. If $v(X_H) = 4$ and G/H be a non-abelian, then by the minimality of |G|, X_H is normal as a Cayley graph of G/H. Thus $G/H \leq \operatorname{Aut}(X_H)$. Let K be the kernel of A on Σ . Also let K_1 be the stabilizer of the vertex 1 in K. Then K_1 fixes the neighborhood N(1) of 1 in X pointwise. Since X is connected, K_1 fixes each vertex in X. Thus $K_1 = 1$, and hence K = H. Therefore $A/H \leq \operatorname{Aut}(X_H)$, and G/H is normal in A/H, which implies that $G \trianglelefteq \operatorname{Aut}(X)$, a contradiction. Now if $v(X_H) = 4$ and G/H is an abelian, then by [2], X_H is normal except when $X_H = \operatorname{Cay}(G/H, SH/H)$, where $G/H \cong \mathbb{Z}_5$. If X_H is normal, then $G/H \trianglelefteq \operatorname{Aut}(X_H)$ and so $G \trianglelefteq \operatorname{Aut}(X)$, a contradiction. Now suppose that $X_H = K_5$, and $\operatorname{Aut}(X_H) = S_5$. Therefore $|A/H| | 2^3.3.5$ and hence $|Aut(X)| = 2^m.3.5^n$, where $m \in \{2, 3\}$ and $n \ge 3$. If $3 \nmid |A|$, then clearly $\mathbb{R}(G) \leq A$, a contradiction. Thus $3 \mid |A|$. Now $X = \operatorname{Cay}(G, S)$ is not normal. Suppose to the contrary that X is normal. Hence $A_1 = \operatorname{Aut}(G, S)$, and so $3 \mid |\operatorname{Aut}(G, S)|$. Therefore there exists an element α of order 3 in Aut(G, S). Then |S| = 4 implies that α fixes an element in S, say s. Consequently, α fixes s^{-1} . Since $s, s^{-1} \in S$ and $s \neq s^{-1}$, we have that α fixes S pointwise and hence $\langle S \rangle = G$ implies $\alpha = 1$, a contradiction. Now assume that $v(X_H) = 2$. Then X_H is a cycle of length $p^m = |G/H|$, for some positive integer m. Also $\operatorname{Aut}(X_H) \cong D_{2p^m}$. We have $SH/H = \{Hs_1, Hs_2\}$. Clearly $Hs_1 \neq Hs_1^{-1}$ and $Hs_2 \neq Hs_2^{-1}$. Therefore $Hs_1 = Hs_2^{-1}$, and $s_1s_2 \in H$. If $H \cap S \neq \emptyset$, then G = H, a contradiction. So $H \cap S = \emptyset$, and hence $G = \langle H, s_1 \rangle$. Now since G/H is a cyclic group and $\{Hs_1\}$ is a minimal generating set, by [14, Proposition 3.1], we have $\operatorname{Aut}(X) = G/H$, a contradiction.

Now let T is not an abelian group. Assume that $H=\operatorname{soc}(A)\cap G$. By

considering the order of A, one has $H \neq 1$. Clearly H is not transitive on V(X). Now assume that $\Sigma = \{B_1, B_2, ..., B_s\}$ is the set of orbits of H on V(X). By the normality of H in G we have that s and $|B_i|$ $(1 \leq i \leq s)$ are powers of p. Considering the quotient graph X_H defined by $V(X_H) = \Sigma$, and $(B_i, B_j) \in E(X_H)$ if and only if there exists $v_i \in B_i$, $v_j \in B_j$ such that $(v_i, v_j) \in E(X)$. Since the quotient group G/H acts regularly on Σ , therefore X_H must be connected Cayley graph of G/H. So $X_H \cong \text{Cay}(\overline{G}, \overline{S})$, where $\overline{G} = G/H$ and $\overline{S} = \{sH|s \in S\}$. Now with the same arguments as before we get same result.

Finally assume that $G = Q \rtimes P$, where P and Q are Sylow p-subgroup and Sylow q-subgroup of G, respectively such that P is a cyclic group and $Q \cong \mathbb{Z}_q \times \mathbb{Z}_q \times ... \times \mathbb{Z}_q$. Now considering $\operatorname{soc}(A) = T_1 \times ... \times T_k$, where $k \geq 1$ and $T_i \cong T_j$ $(1 \leq i, j \leq k)$. If soc(A) is $\{2, 3\}$ -group, Then Soc(A) is abelian 2-group or abelian 3-group. Clearly Soc(A) is not transitive on V(X). Now assume that $\Sigma = \{B_1, B_2, ..., B_s\}$ is the set of orbits of soc(A) on V(X). By the normality of soc(A) in A, p, q or pq divides s and $|B_i|$ $(1 \le i \le s)$. This is a contradiction. Thus $H = \operatorname{soc}(A) \cap G \ne 1$ and H is not transitive on V(X). Now assume that $\Sigma = \{B_1, B_2, ..., B_s\}$ is the set of orbits of H on V(X). By the normality of H in G, p, q, or pq divides s and $|B_i|$ $(1 \le i \le s)$. Since the quotient group G/Hacts regularly on Σ , therefore X_H must be connected Cayley graph of G/H. So $X_H \cong \operatorname{Cay}(G, S)$, where G = G/H and $S = \{sH | s \in S\}$. Since $|V(X_H)|$ is odd, the valency $v(X_H)$ of X_H could not be 3 and hence $v(X_H) = 2$, or $v(X_H) = 4$. If $v(X_H) = 4$ and G/H be a non-abelian, then by the minimality of |G|, X_H is normal as a Cayley graph of G/H. Thus $G/H \trianglelefteq \operatorname{Aut}(X_H)$. Let K be the kernel of A on Σ . Also let K_1 be the stabilizer of the vertex 1 in K. Then K_1 fixes the neighborhood N(1) of 1 in X pointwise. Since X is connected, K_1 fixes each vertex in X. Thus $K_1 = 1$, and hence K = H. Therefore $A/H \leq \operatorname{Aut}(X_H)$, and G/H is normal in A/H, which implies that $G \trianglelefteq \operatorname{Aut}(X)$, a contradiction. Now if $v(X_H)=4$ and G/H is an abelian, then by [2], X_H is normal except when $X_H = \operatorname{Cay}(G/H, SH/H)$, where $G/H \cong \mathbb{Z}_5$. If X_H is normal, then $G/H \trianglelefteq \operatorname{Aut}(X_H)$ and so $G \trianglelefteq \operatorname{Aut}(X)$, a contradiction. Now suppose that $X_H = K_5$, and $\operatorname{Aut}(X_H) = S_5$. Therefore $|\operatorname{Aut}(X)| = 2^m \cdot 3 \cdot 5 \cdot q^n$, where $m \in \{2,3\}$ and $n \ge 1$. If $3 \nmid |A|$, then $|A| = 2^m \cdot 5 \cdot q^n$. Clearly $PQ/Q \trianglelefteq A/Q$ and so $PQ \leq A$. Thus $R(G) \leq A$, a contradiction. Thus $3 \mid |A|$. Now $X = \operatorname{Cay}(G, S)$ is not normal. Suppose to the contrary that X is normal. Hence $A_1 = \operatorname{Aut}(G, S)$, and so $3 \mid |\operatorname{Aut}(G, S)|$. Therefore there exists an element α of order 3 in Aut(G, S). Then |S| = 4 implies that α fixes an element in S, say s. Consequently, α fixes s^{-1} . Since $s, s^{-1} \in S$ and

 $s \neq s^{-1}$, we have that α fixes S pointwise and hence $\langle S \rangle = G$ implies $\alpha = 1$, a contradiction. Now assume that $v(X_H) = 2$. Then X_H is a cycle of length $p^m q^n = |G/H|$, for some positive integer m, n. Also $\operatorname{Aut}(X_H) \cong D_{2p^m q^n}$. We have $SH/H = \{Hs_1, Hs_2\}$. Clearly $Hs_1 \neq Hs_1^{-1}$ and $Hs_2 \neq Hs_2^{-1}$. Therefore $Hs_1 = Hs_2^{-1}$, and $s_1s_2 \in H$. If $H \cap S \neq \emptyset$, then G = H, a contradiction. So $H \cap S = \emptyset$, and hence $G = \langle H, s_1 \rangle$. Now since G/H is a cyclic group and $\{Hs_1\}$ is a minimal generating set, by [14, Proposition 3.1], we have $\operatorname{Aut}(X) = G/H$, a contradiction.

References

- Y. G. Baik, Y. Q. Feng, and H. S. Sim, The normality of Cayley graphs of finite Abelian groups with valency 5, Systems Sci. Math. Sci. 13 (2000) 425-431.
- [2] Y. G. Baik, Y. Q. Feng, H. S. Sim, and M. Y. Xu, On the normality of Cayley graphs of Abelian groups, *Algebra Colloq.* 5 (1998) 297-304.
- [3] N. Bigss, Algebraic Graph Theory, second ed., Cambridge University Press, Cambridge, 1993.
- [4] J. D. Dixon, and B. Mortimer, *Permutation Groups* (Springer, New York, 1996).
- [5] X. G. Fang, C. H. Li, J. Wang, and M. Y. Xu, On cubic Cayley graphs of finite simple groups, *Discrete Math.* 244 (2002) 67-75.
- [6] Y. Q. Feng, J. H. Kwak, and R. J. Wang, Automorphism groups of 4-valent connected Cayley graphs of p-groups, *Chinese Ann. Math.* **22** B (2001) 281-286.
- [7] Y. Q. Feng, and M. Y. Xu, Automorphism groups of tetravalent Cayley graphs on regular *p*-groups, *Discrete Math.* **305** (2005) 345-360
- [8] C. D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243-256.
- [9] C. D. Godsil, The automorphism group of some cubic Cayley graphs, *Europ. J. Combin.* 4 (1983), 25-32.
- [10] C. H. Li, The solution of a problem of Godsil on cubic Cayley graphs, J. Combin. Theory Ser. B 72 (1998), 140-142.
- [11] C. H. Li, and H. S. Sim, The graphical regular representations of metacyclic p-groups, Europ. J. Combin. 21 (2000), 917-925.
- [12] G. A. Miller, and H. C. Moreno, Non-abelian groups in which every subgroup is abelian, *Trans. Amer. Math. Soc.* 4 (1903), 398-404.
- [13] C. E. Preager, Finite normal edge-transitive Cayley graphs, Bull. Austral. Math. Soc. 60 (1999), 207-220.
- [14] M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998), 309-319.

CONTACT INFORMATION

M. Ghasemi Department of Mathematics, Urmia University, Urmia 57135, Iran *E-Mail:* m.ghasemi@urmia.ac.ir

Received by the editors: 13.10.2011 and in final form 27.11.2011.