On the one-side equivalence of matrices with given canonical diagonal form

Volodymyr Shchedryk

Communicated by M. Ya. Komarnytskyj

Abstract

The simpler form of a matrix with canonical diagonal form $\operatorname{diag}(1, \ldots, 1, \varphi, \ldots, \varphi)$ obtained by the one-side transformation is determined.

Let R be an adequate ring [1] i.e. a commutative domain in which every finitely generated ideal is principal, and which further satisfies the following condition: for any $a, c \in R$ with $a \neq 0$, one can write $a=r s$ with $(r, c)=1$ and $\left(s^{\prime}, c\right) \neq 1$ for any non unit divisor s^{\prime} of s. Let A be an $n \times n$ matrix over R. It is known [1] that there exist invertible matrices P, Q, such that

$$
\begin{equation*}
P A Q=\operatorname{diag}\left(\varphi_{1}, \ldots, \varphi_{n}\right)=\Phi \tag{1}
\end{equation*}
$$

The matrix Φ is called the canonical diagonal form of the matrix A, $\varphi_{i} \mid \varphi_{i+1}, i=1, \ldots, n-1$. In solving of some matrix problems especially factorization of matrices [2,3], in description of all the Abelian subgroups [4], there emerges the necessity of finding all the non-associated matrices with canonical diagonal form given beforehand. Usual Hermite normal form does not approach to our purposes because it evaluates in the rough way and gives a possibility to describe non-associated matrices with set-up determinant only. That is why there emerges the necessity of building such form of matrix with respect to one sided transformation, giving a glance to which is enough to make a decision as for its canonical diagonal form. The equality (1) gives us a possibility to write matrix A in the following way $A=P^{-1} \Phi Q^{-1}$. Making changes in its right part we will have a new form

[^0]$P^{-1} \Phi$. But this type of matrices is not a normal form of the matrix A as for the right side changes because the matrix P determined ambiguously. By [2] the set $\mathbf{P}_{\mathbf{A}}$ of all invertible matrices which satisfies equation (1) has the form $\mathbf{P}_{\mathbf{A}}=G_{\Phi} P$, where
$$
G_{\Phi}=\left\{H \in G L_{n}(R) \mid H \Phi=\Phi H_{1}, H_{1} \in G L_{n}(R)\right\}
$$

This set is a multiplicative group and if $\operatorname{det} \Phi \neq 0$ consists of all invertible matrices of the form

$$
H=\left\|\begin{array}{ccccc}
h_{11} & h_{12} & \ldots & h_{1 . n-1} & h_{1 n} \\
\frac{\varphi_{2}}{\varphi_{1}} h_{21} & h_{22} & \ldots & h_{2 . n-1} & h_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\frac{\varphi_{n}}{\varphi_{1}} h_{n 1} & \frac{\varphi_{n}}{\varphi_{2}} h_{n 2} & \ldots & \frac{\varphi_{n}}{\varphi_{n-1}} h_{n . n-1} & h_{n n}
\end{array}\right\| .
$$

Thus, $\mathbf{P}_{\mathbf{A}}$ is a left conjugacy class $G L_{n}(R)$ with respect to the group G_{Φ}. Therefore, in order that the matrix $P^{-1} \Phi$ be a normal form of the matrix A, with respect to the transformation from the right, it is necessary either to choose a representative in the class $G_{\Phi} P$ or, what is the same, indicate the normal form of the invertible matrices with respect to the action of the group G_{Φ}. The present paper is devoted to the investigation of this question.

Let $\Phi=E_{t} \oplus \varphi E_{n-t}, \Phi_{*}=\varphi E_{t} \oplus E_{n-t}, \varphi \neq 0,1 \leq t<n$, where E_{t} is the identity $t \times t$ matrix. In this case, the group G_{Φ} consists of all invertible matrices of the form

$$
\left\|\begin{array}{cc}
H_{11} & H_{12} \\
\varphi H_{21} & H_{22}
\end{array}\right\|
$$

where H_{11} is a $t \times t$ matrix. A matrix is called primitive if the greatest common divisor of minor of maximal order is equal to 1 . The matrix A is called left associate to the matrix B if $A=U B$, where $U \in G L_{n}(R)$. This fact will be denoted $A \stackrel{l}{\sim} B$.

Lemma 1. Let

$$
B=\left\|\begin{array}{l}
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right\|
$$

be a primitive $n \times(n-k+1)$ matrix, $t<k<n$. The matrices B_{1}, B_{3} is $t \times(n-k+1),(n-k+1) \times(n-k+1)$ matrices, respectively. Let

$$
\Phi_{*} B \stackrel{l}{\sim}\left\|\begin{array}{c}
0 \tag{2}\\
0 \\
B_{3}
\end{array}\right\|
$$

Then there exists a matrix $H \in G_{\Phi}$ such that

$$
H B=\left\|\begin{array}{c}
B_{1} \\
0 \\
B_{3}
\end{array}\right\|
$$

Proof. Consider the matrix equation

$$
X B_{3}=\left\|\begin{array}{c}
\varphi B_{1} \tag{3}\\
B_{2}
\end{array}\right\| .
$$

The matrix

$$
\Phi_{*} B=\left\|\begin{array}{c}
\varphi B_{1} \\
B_{2} \\
B_{3}
\end{array}\right\|
$$

is extended matrix of equation (3). From (2) it follows that the invariant factors of the matrices $\Phi_{*} B, B_{3}$ are equal. By Theorem 2 from [3, p. 218] equation (3) has the solution $X=U=\left\|\begin{array}{c}U_{1} \\ U_{2}\end{array}\right\|$, where U_{1} is a $t \times(n-k+1)$ matrix and U_{2} is a $(k-t-1) \times(n-k+1)$ matrix. Then

$$
\begin{aligned}
&\left\|\begin{array}{ccc}
E_{t} & 0 & -U_{1} \\
0 & E_{k-t-1} & -U_{2} \\
0 & 0 & E_{n-k+1}
\end{array}\right\|\left\|\begin{array}{c}
\varphi B_{1} \\
B_{2} \\
B_{3}
\end{array}\right\|= \\
&=\left\|\begin{array}{ccc}
E_{k-1} & -U \\
0 & E_{n-k+1}
\end{array}\right\|\left\|\begin{array}{c}
\varphi B_{1} \\
B_{2} \\
B_{3}
\end{array}\right\|=\left\|\begin{array}{c}
0 \\
0 \\
B_{3}
\end{array}\right\| .
\end{aligned}
$$

This implies that

$$
\underbrace{\left\|\begin{array}{ccc}
E_{t} & 0 & 0 \\
0 & E_{k-t-1} & -U_{2} \\
0 & 0 & E_{n-k+1}
\end{array}\right\|}_{H}\left\|\begin{array}{c}
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right\|=\left\|\begin{array}{c}
B_{1} \\
0 \\
B_{3}
\end{array}\right\|
$$

Observing that $H \in G_{\Phi}$, we conclude the proof of the lemma.
Lemma 2. Let A be an $n \times m$ matrix and $H \in G_{\Phi}$. Then

$$
\Phi_{*} H A \stackrel{l}{\sim} \Phi_{*} A
$$

Proof. Since

$$
H=\left\|\begin{array}{cc}
H_{11} & H_{12} \\
\varphi H_{21} & H_{22}
\end{array}\right\|
$$

where H_{11} is a $t \times t$ matrix we have

$$
\Phi_{*} H=\left\|\begin{array}{cc}
\varphi H_{11} & \varphi H_{12} \\
\varphi H_{21} & H_{22}
\end{array}\right\|=\left\|\begin{array}{cc}
H_{11} & \varphi H_{12} \\
H_{21} & H_{22}
\end{array}\right\| \Phi_{*}=H_{1} \Phi_{*} .
$$

The matrix Φ_{*} is nonsingular, so that $\operatorname{det} H=\operatorname{det} H_{1}$ i.e. the matrix H_{1} is invertible. Consequently,

$$
\Phi_{*} H A=H_{1} \Phi_{*} A \stackrel{l}{\sim} \Phi_{*} A
$$

Lemma 3. Let

$$
\begin{gathered}
B_{k}=\left\|\begin{array}{c|ccccc}
b_{11} & b_{12} & b_{13} & \ldots & b_{1 . n-k} & b_{1 . n-k+1} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
b_{t 1} & b_{t 2} & b_{t 3} & \ldots & b_{t . n-k} & b_{t . n-k+1} \\
\hline b_{t+1.1} & 0 & 0 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
b_{k 1} & 0 & 0 & \ldots & 0 & 0 \\
\hline b_{k+1.1} & \beta_{k+1} & 0 & & 0 & 0 \\
b_{k+2.1} & b_{k+2.2} & \beta_{k+2} & & 0 & 0 \\
\vdots & \vdots & & \ddots & & \\
b_{n-1.1} & b_{n-1.2} & b_{n-1.3} & & \beta_{n-1} & 0 \\
b_{n 1} & b_{n 2} & b_{n 3} & \ldots & b_{n . n-k} & \beta_{n}
\end{array}\right\|= \\
\\
=\left\|\begin{array}{lll}
B_{11} & B_{12} \\
B_{21} & 0 \\
B_{31} & B_{32}
\end{array}\right\|
\end{gathered}
$$

be a primitive $n \times(n-k+1)$ matrix, $t<k<n$, and

$$
\Phi_{*} B_{k} \stackrel{l}{\sim}\left\|\begin{array}{cc}
0 & 0 \tag{4}\\
D_{21} & 0 \\
B_{31} & B_{32}
\end{array}\right\|,
$$

where

$$
D_{21}=\left\|\begin{array}{llll}
0 & \ldots & 0 & \beta_{k}
\end{array}\right\|^{T}
$$

Then there exists a matrix $H \in G_{\Phi}$ such that

$$
H B_{k}=\left\|\begin{array}{cc}
B_{11}^{\prime} & B_{12}^{\prime} \tag{5}\\
D_{21} & 0 \\
B_{31} & B_{32}
\end{array}\right\|
$$

Proof. Consider the equation

$$
\begin{equation*}
X B_{32}=\varphi B_{12} \tag{6}
\end{equation*}
$$

The equality

$$
\Phi_{*} B_{k}=\left\|\begin{array}{cc}
\varphi B_{11} & \varphi B_{12} \\
B_{21} & 0 \\
B_{31} & B_{32}
\end{array}\right\|
$$

is valid. From (4) we conclude that

$$
\left\|\begin{array}{c|}
\varphi B_{12} \\
0 \\
B_{32}
\end{array}\right\| \stackrel{l}{\sim}\left\|\begin{array}{c}
0 \\
0 \\
B_{32}
\end{array}\right\| .
$$

This implies that the invariant factors of the matrices $B_{32},\left\|\begin{array}{c}\varphi B_{12} \\ B_{32}\end{array}\right\|$ are equal. By Theorem 2 from [3, p. 218], equation (6) has the solution $X=U_{13}$. Thus, the equality

$$
\left\|\begin{array}{ccc}
E_{t} & 0 & -U_{13} \\
0 & E_{k-t} & 0 \\
0 & 0 & E_{n-k}
\end{array}\right\|\left\|\begin{array}{cc}
\varphi B_{11} & \varphi B_{12} \\
B_{21} & 0 \\
B_{31} & B_{32}
\end{array}\right\|=\left\|\begin{array}{cc}
B_{11}^{\prime} & 0 \\
B_{21} & 0 \\
B_{31} & B_{32}
\end{array}\right\|
$$

holds, where

$$
B_{11}^{\prime}=\left\|\begin{array}{lll}
b_{11}^{\prime} & \ldots & b_{t 1}^{\prime}
\end{array}\right\|^{T}
$$

By Lemma 2,

$$
\left\|\begin{array}{cc}
B_{11}^{\prime} & B_{12}^{\prime} \\
B_{21} & 0 \\
B_{31} & B_{32}
\end{array}\right\| \stackrel{l}{\sim}\left\|\begin{array}{cc}
0 & 0 \\
D_{21} & 0 \\
B_{31} & B_{32}
\end{array}\right\|,
$$

so that

$$
\left(b_{11}^{\prime}, \ldots, b_{t 1}^{\prime}, b_{t+1.1}, \ldots, b_{k 1}\right)=\beta_{k}
$$

According to property 6 from [5], there exist v_{1}, \ldots, v_{k} such that

$$
v_{1} b_{11}^{\prime}+\cdots+v_{t} b_{t 1}^{\prime}+v_{t+1} b_{t+1.1}+\cdots+v_{k} b_{k 1}=\beta_{k}
$$

and

$$
\left(v_{k}, \varphi\right)=1
$$

Let us complement the primitive row $\left\|v_{1} \ldots v_{k}\right\|$ to an invertible matrix V_{k} in which this row is the last. Consider the invertible matrix

$$
\left\|\begin{array}{cc}
V_{k} & 0 \\
0 & E_{n-k}
\end{array}\right\|\left\|\begin{array}{ccc}
E_{t} & 0 & -U_{13} \\
0 & E_{k-t} & 0 \\
0 & 0 & E_{n-k}
\end{array}\right\|=\left\|\begin{array}{cc}
V_{k} & U \\
0 & E_{n-k}
\end{array}\right\|=V
$$

Taking into account that $\left\|\begin{array}{lllllll}v_{1} & \ldots & v_{k} & u_{k+1} & \ldots & u_{n} \|\end{array}\right\|$ is the k-th row of this matrix, we obtain

$$
\left\|\begin{array}{llllll}
v_{1} & \ldots & v_{k} & u_{k+1} & \ldots & u_{n}
\end{array}\right\| \Phi_{*} B_{k}=\left\|\begin{array}{llll}
\beta_{k} & 0 & \ldots & 0
\end{array}\right\|,
$$

i.e.,

$$
\varphi_{t} \quad v_{t+1} \quad \ldots \quad v_{k} \quad u_{k+1} \quad \ldots . u_{n} \| B_{k}=
$$

Since

$$
\left(v_{1}, \ldots, v_{k}\right)=1,\left(v_{k}, \varphi\right)=1
$$

we have

$$
\left(\varphi v_{1}, \ldots, \varphi v_{t}, v_{t+1}, \ldots, v_{k}\right)=1
$$

It means that the matrix

$$
F_{k}=\left\|\begin{array}{ccccccccc}
\varphi v_{1} & \ldots & \varphi v_{t} & v_{t+1} & \ldots & v_{k} & u_{k+1} & \ldots & u_{n} \\
0 & \ldots & 0 & 0 & \ldots & 0 & 1 & & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & & \ddots & \\
0 & \ldots & 0 & 0 & \ldots & 0 & 0 & & 1
\end{array}\right\|
$$

is primitive. By property 2 from [5], the matrix F_{k} can be complemented to an invertible matrix $H_{k}=\left\|\begin{array}{c}* \\ F_{k}\end{array}\right\|$ which belongs to G_{Φ}. Then

$$
H_{k} B_{k}=\left\|\begin{array}{cccc}
b_{11}^{\prime} & b_{12}^{\prime} & \ldots & b_{1 . n-k+1}^{\prime} \\
\ldots & \ldots & \ldots & \cdots \\
b_{t 1}^{\prime} & b_{t 2}^{\prime} & \ldots & b_{t . n-k+1}^{\prime} \\
\hline b_{t+1.1}^{\prime} & b_{t+1.2}^{\prime} & \ldots & b_{t+1 . n-k+1}^{\prime} \\
\cdots & \ldots & \ldots & \ldots \\
b_{k-1.1}^{\prime} & b_{k-1.2}^{\prime} & \ldots & b_{k-1 . n-k+1}^{\prime} \\
\beta_{k} & 0 & & 0 \\
b_{k+1.1} & \beta_{k+1} & & 0 \\
& & \ddots & \\
b_{n 1} & b_{n 2} & & \beta_{n}
\end{array}\right\|=\left\|\begin{array}{c}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right\|
$$

By Lemma 2

$$
\Phi_{*} H_{k} B_{k} \stackrel{l}{\sim}\left\|\begin{array}{cc}
0 & 0 \\
D_{21} & 0 \\
B_{31} & B_{32}
\end{array}\right\|=\left\|\begin{array}{c}
0 \\
0 \\
A_{3}
\end{array}\right\| .
$$

According to Lemma 1 , the group G_{Φ} contain a matrix H_{k}^{\prime} such that

$$
H_{k}^{\prime} H_{k}\left\|\begin{array}{c}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right\|=\left\|\begin{array}{c}
A_{1} \\
0 \\
A_{3}
\end{array}\right\|
$$

which has form (5). The proof is complete.
Let us denote by $K(f)$ the set of representatives of the conjugate classes of $R / R f, f \in R$.

Theorem 1. Let $B=\left\|b_{i j}\right\|_{1}^{n}=\left\|\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right\|$ be an ivertible matrix, where B_{11} is a $t \times t$ matrix and

$$
\Phi_{*} B \stackrel{l}{\sim}\left\|\begin{array}{cccc}
\beta_{1} & 0 & & 0 \tag{7}\\
* & \beta_{2} & & 0 \\
& & \ddots & \\
* & * & & \beta_{n}
\end{array}\right\|
$$

is the left Hermite normal form of the matrix $\Phi_{*} B$. Then the group G_{Φ} contains a matrix H such that

$$
H B=\left\|\begin{array}{ll}
C_{11} & C_{12} \tag{8}\\
C_{21} & C_{22}
\end{array}\right\|
$$

where

$$
C_{22}=\left\|\begin{array}{cccc}
\beta_{t+1} & 0 & & 0 \\
c_{t+2 . t+1} & \beta_{t+2} & & 0 \\
\vdots & & \ddots & \\
c_{n . t+1} & c_{n . t+2} & & \beta_{n}
\end{array}\right\|,
$$

$c_{i j} \in K\left(\beta_{j}\right), i=t+2, t+3, \ldots, n, j=t+1, t+2, \ldots, n-1$. The elements $c_{i j}$ are uniquely determined and do not depend on the choice of the matrix H.

Proof. Using (6) we obtain

$$
\Phi_{*}\left\|b_{1 n} \quad b_{2 n} \quad \ldots \quad b_{n n}\right\|^{T} \sim\left\|\begin{array}{llll}
0 & \ldots & 0 & \beta_{n}
\end{array}\right\|^{T} .
$$

By Theorem 2 from [6], there exists a matrix $H_{n} \in G_{\Phi}$ such that

$$
H_{n}\left\|\begin{array}{llll}
b_{1 n} & b_{2 n} & \ldots & b_{n n}
\end{array}\right\|^{T}=\left\|\begin{array}{llll}
b_{1 n}^{\prime} & \ldots & b_{n-1 . n}^{\prime} & \beta_{n}
\end{array}\right\|^{T}
$$

According to Lemma 2

$$
\begin{aligned}
& \Phi_{*}\left\|b_{1 n}^{\prime} \quad \ldots \quad b_{n-1 . n}^{\prime} \quad \beta_{n}\right\|^{T}= \\
& =\left\|\varphi b_{1 n}^{\prime} \quad \ldots \quad \varphi b_{t n}^{\prime} \quad b_{t+1 . n}^{\prime} \quad \cdots \quad b_{n-1 . n}^{\prime} \quad \beta_{n}\right\|^{T} \sim \\
& \sim\left\|\begin{array}{llll}
\| & \ldots & 0 & \beta_{n}
\end{array}\right\|^{T} .
\end{aligned}
$$

Therefore $b_{i n}^{\prime}=\beta_{n} d_{i}, i=t+1, t+2, \ldots, n-1$. Then

$$
\left(\begin{array}{cccccc}
E_{n-t} \oplus & \left.\left\|\begin{array}{ccccc}
1 & 0 & & 0 & -d_{t+1} \\
0 & 1 & & 0 & -d_{t+2} \\
& & \ddots & & \vdots \\
0 & 0 & & 1 & -d_{n-1} \\
0 & 0 & & 0 & 1
\end{array}\right\|\right) H_{n} B=B_{n} . . .20 .
\end{array}\right.
$$

Using Lemmas 2 and 3 in consequently to the last two columns of the matrix B_{n}, to the last three columns of the derived matrix and so fors we get $H_{t+1} \in G_{\Phi}$ such that

$$
H_{t+1} B=\left\|\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right\|
$$

where

$$
D_{22}=\left\|\begin{array}{cccc}
\beta_{t+1} & 0 & & 0 \\
d_{t+2 . t+1} & \beta_{t+2} & & 0 \\
\vdots & & \ddots & \\
d_{n . t+1} & d_{n . t+2} & & \beta_{n}
\end{array}\right\| .
$$

There exists a lower unitriangular matrix U such that

$$
U D_{22}=\left\|\begin{array}{cccc}
\beta_{t+1} & 0 & & 0 \\
c_{t+2 . t+1} & \beta_{t+2} & & 0 \\
\vdots & & \ddots & \\
c_{n . t+1} & c_{n . t+2} & & \beta_{n}
\end{array}\right\|
$$

is the left Hermite normal form of the matrix D_{22}, i.e., $c_{i j} \in K\left(\beta_{j}\right), i=$ $t+2, t+3, \ldots, n, j=t+1, t+2, \ldots, n-1$. The the matrix $\left(E_{t} \oplus U\right) H_{t+1} B$ has the form (8) and $\left(E_{t} \oplus U\right) H_{t+1} B \in G_{\Phi}$.

We will show the uniqueness of the elements $c_{i j}$. Let $H_{1} \in G_{\Phi}$ and

$$
H_{1} B=\left\|\begin{array}{cc}
C_{11}^{\prime} & C_{12}^{\prime} \\
C_{21}^{\prime} & C_{22}^{\prime}
\end{array}\right\|
$$

where

$$
C_{22}^{\prime}=\left\|\begin{array}{cccc}
\beta_{t+1} & 0 & & 0 \\
c_{t+2 . t+1}^{\prime} & \beta_{t+2} & & 0 \\
\vdots & & \ddots & \\
c_{n . t+1}^{\prime} & c_{n . t+2}^{\prime} & & \beta_{n}
\end{array}\right\|
$$

$c_{i j}^{\prime} \in K\left(\beta_{j}\right), i=t+2, t+3, \ldots, n, j=t+1, t+2, \ldots, n-1$. Concerning the proof of Lemma 3 we conclude that there exists an upper unitriangular
matrix U such that

$$
U \Phi_{*}\left\|\begin{array}{l}
C_{12} \tag{9}\\
C_{22}
\end{array}\right\|=\left\|\begin{array}{c}
0 \\
C_{22}
\end{array}\right\|
$$

Since

$$
H\left\|\begin{array}{l}
B_{12} \\
B_{22}
\end{array}\right\|=\left\|\begin{array}{l}
C_{12} \\
C_{22}
\end{array}\right\|
$$

and

$$
H_{1}\left\|\begin{array}{l}
B_{12} \\
B_{22}
\end{array}\right\|=\left\|\begin{array}{c}
C_{12}^{\prime} \\
C_{22}^{\prime}
\end{array}\right\|,
$$

we obtain

$$
\left\|\begin{array}{l}
C_{12}^{\prime} \\
C_{22}^{\prime}
\end{array}\right\|=H_{2}\left\|\begin{array}{l}
C_{12} \\
C_{22}
\end{array}\right\|, H_{2}=H_{1} H^{-1} \in G_{\Phi}
$$

Rewrite (9) us

$$
U \Phi_{*} H_{2}^{-1} H_{2}\left\|\begin{array}{l}
C_{12} \\
C_{22}
\end{array}\right\|=\left\|\begin{array}{c}
0 \\
C_{22}
\end{array}\right\| .
$$

By Lemma 2

$$
\Phi_{*} H_{2}^{-1}=H_{3} \Phi_{*}, H_{3} \in G L_{n}(R)
$$

Thus,

$$
U H_{3} \Phi_{*}\left\|\begin{array}{c}
C_{12}^{\prime} \\
C_{22}^{\prime}
\end{array}\right\|=\left\|\begin{array}{c}
0 \\
C_{22}
\end{array}\right\|
$$

Let

$$
\left(U H_{3}\right)^{-1}=\left\|\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right\|,
$$

where V_{11} is a $t \times t$ matrix. Then

$$
\left\|\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right\|\left\|\begin{array}{c}
0 \\
C_{22}
\end{array}\right\|=\left\|\begin{array}{c}
\varphi C_{12}^{\prime} \\
C_{22}^{\prime}
\end{array}\right\|,
$$

i.e., $V_{22} C_{22}=C_{22}^{\prime}$. Since $\left|C_{22}\right|=\left|C_{22}^{\prime}\right|$, the matrix V_{22} is invertible. Hence, the matrices C_{22}, C_{22}^{\prime} are left assosiated. Therefore their left Hermite normal forms are equal. Remark that the matrices C_{22}, C_{22}^{\prime} are precisely the left Hermite form. This finished the proof.

Theorem 2. Let $A=P^{-1} \Phi Q^{-1}$, where $\Phi=E_{t} \oplus \varphi E_{n-t}$. Then there exists an invertible matrix U such that

$$
A U=V^{-1} \Phi
$$

where V is the matrix of the form (8).

Proof. By Theorem 1, there exists $H \in G_{\Phi}$ such that the matrix $H P=V$ has the form (8). Then

$$
A=P^{-1} \Phi Q^{-1}=(H P)^{-1}(H \Phi) Q^{-1}=V^{-1} \Phi H_{1} Q^{-1}
$$

Since the matrix H_{1} is invertible, $U=Q H_{1}^{-1}$ is desired matrix.

References

[1] Helmer O. The elementary divisor theorem for certain rings without chain condition, Bull. Amer. Math. Soc., 1943, Vol.49, pp. 225-236.
[2] Shchedryk V.P. Structure and properties of matrix divisors over commutative elementary divisor domain Math. studii, 1998, Vol.10(2), pp. 115-120.
[3] Kazimirskij P.S. Decomposition of matrix polynomials into factors Kyiv, Naukova dumka, 1981. - 224 p.
[4] Bhowmik G., Ramare O. Algebra of matrix arithmetic Journal of Algebra, 1998, Vol.210, pp.194-215.
[5] Shchedryk V.P. Some determinant properties of primitive matrices over Bezout Bdomain Algebra and Discrete Mathematics, 2005, №2, pp. 46-57.

Contact information

Volodymyr Shchedryk

Pidstryhach Institute for Applied Problems of mechanics and Mathematics NAS of Ukraine, 3b Naukova Str., L'viv, 79060 E-Mail: shchedrykv@ukr.net

Received by the editors: 16.09.2011
and in final form 21.12.2011.

[^0]: 2000 Mathematics Subject Classification: 15A21.
 Key words and phrases: adequate ring, canonical diagonal form, Hermite normal form, one-side equivalence of matrices, invariants, primitive matrices.

