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ABSTRACT. In this paper we study the semigroup J&€(I, [a])
(3O(1,[a])) of closed (open) connected partial homeomorphisms
of the unit interval I with a fixed point a € I. We describe left
and right ideals of J&(I, [0]) and the Green’s relations on J€(I, [0]).
We show that the semigroup J€(I,[0]) is bisimple and every non-
trivial congruence on J€(I,[0]) is a group congruence. Also we
prove that the semigroup J€(7,[0]) is isomorphic to the semigroup
J9O(I,]0]) and describe the structure of a semigroup J3(I,[0]) =
JE(I,[0])UTO(I, [0]). As a corollary we get structures of semigroups
J€(1,[a]) and TO(I,[a]) for an interior point a € I.

1. Introduction and preliminaries

Furthermore we shall follow the terminology of [2] and [6]. For a
semigroup S we denote the semigroup S with the adjoined unit by S! (see
2]).

A semigroup S is called inverse if for any element x € S there exists
a unique element z=! € S (called the inverse of x) such that zo~lx = x
I — 2=l If S is an inverse semigroup, then the function
inv: S — S which assigns to every element x of S its inverse element 2!

is called inversion.

and x lzz~
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If S is a semigroup, then we shall denote the subset of idempotents
in S by E(S). If S is an inverse semigroup, then F(S) is closed under
multiplication and we shall refer to E(S) a band (or the band of S). If
the band E(S) is a non-empty subset of S, then the semigroup operation
on S determines the following partial order < on E(S): e < f if and only
if ef = fe = e. This order is called the natural partial order on E(S). A
semilattice is a commutative semigroup of idempotents. A semilattice
is called linearly ordered or a chain if its natural order is a linear order.
Let E be a semilattice and e € E. We denote le = {f € E | f < e} and
te={feFE|e< f}

If S is a semigroup, then we shall denote by #Z, ., 7, % and J the
Green relations on S (see [2]):

aZb if and only if aS* = bS*;

a.b if and only if Sta = S'b;
a_#b if and only if S'aS' = S'bS";
D=L oR=XoYL,
H=LNAR.

A semigroup S is called simple if S does not contain proper two-sided
ideals and bisimple if S has only one Z-class.

A congruence € on a semigroup S is called non-trivial if € is distinct
from universal and identity congruence on S, and group if the quotient
semigroup S/€ is a group.

The bicyclic semigroup %'(p, q) is the semigroup with the identity 1
generated by elements p and ¢ subject only to the condition pg = 1. The
distinct elements of € (p, q) are exhibited in the following useful array:

1 p p P

¢ q a’ @’

@ ¢p ¢ @’

@ &p ¢y P’
The bicyclic semigroup is bisimple and every one of its congruences is
either trivial or a group congruence. Moreover, every non-annihilating
homomorphism h of the bicyclic semigroup is either an isomorphism or
the image of € (p, q) under h is a cyclic group (see |2, Corollary 1.32]).
The bicyclic semigroup plays an important role in algebraic theory of
semigroups and in the theory of topological semigroups. For example
the well-known Andersen’s result [1] states that a (0—)simple semigroup
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is completely (0—)simple if and only if it does not contain the bicyclic
semigroup.

Let .#x denote the set of all partial one-to-one transformations of an
non-empty set X together with the following semigroup operation:

z(af) = (za)p if x€dom(af)={y € doma|ya € domp},

for a, 8 € Fx. The semigroup Lx is called the symmetric inverse semi-
group over the set X (see |2, Section 1.9]). The symmetric inverse semigroup
was introduced by Wagner [10] and it plays a major role in the theory of
semigroups.

Let I be an interval [0,1] with the usual topology. A partial map
a: I — I is called:

e closed, if dom v and ran « are closed subsets in [;

e open, if dom « and ran « are open subsets in I

e convex, if dom v and ran « are convex non-singleton subsets in I;
e monotone, if x1 < x9 implies (1) < (x2)a, for all x1, 9 € dom ay;

e a local homeomorphism, if the restriction a|qomo: doma — ran«
is a homeomorphism.

We fix an arbitrary a € I. Hereafter we shall denote by:

e J&(I,[a]) the semigroup of all closed connected partial homeomor-
phisms « such that Int;(dom «) # & and (a)a = a;

e J9(I,]a]) the semigroup of all open connected partial homeomor-
phisms « such that (a)a = a;

e H(I) the group of all homeomorphisms of I;
° Y)/(I ) the group of all monotone homeomorphisms of I;
e [ the identity map from I onto I.

Remark 1. We observe that for every a € I the semigroups J&(I, [a]) and
JO(1, [a]) are inverse subsemigroups of the symmetric inverse semigroup
A1 over the set [.

In [3, 4] Gluskin studied the semigroup S of homeomorphic transfor-
mations of the unit interval. He described all ideals, homomorphisms and
automorphisms of the semigroup S and congruence-free subsemigroups of
S. This studies was continued in [7] by Shneperman. In [9] Shneperman
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described the structure of the semigroup of homeomorphisms of a sim-
ple arc. In the paper [8] he studied a semigroup G(X) of all continuous
transformations of a closed subset X of the real line.

In our paper we study the semigroup J€(1, [a]) (JO(I,[a])) of closed
(open) connected partial homeomorphisms of the unit interval I with a
fixed point a € I. We describe left and right ideals of J€(, [0]) and the
Green’s relations on J&(I,[0]). We show that the semigroup J&(I,[0])
is bisimple and every non-trivial congruence on J€(I,[0]) is a group
congruence. Also we prove that the semigroup J€(7,[0]) is isomorphic
to the semigroup JO(I, [0]) and describe the structure of a semigroup
J3(1,[0]) = 3€(1,[0]) UTO(I,[0]). As a corollary we get structures of
semigroups J€(1, [a]) and TJO(I, [a]) for an interior point a € I.

2.  On the semigroup J¢&(/,[0])
Proposition 1. The following conditions hold:

(1) every element of the semigroup IE(I,[0]) (IO(I,[1])) is a monotone
partial map;

(17) the semigroups IE(1,[0]) and JE(1,[1]) are isomorphic;
(7i1) max{dom a} exists for every o € IE(I,[0]);

(iv) sup{doma} exists for every o € IO(I,[0]);

(v) (0)aa =0 and (1) =1 for every o € ﬁ/(I).

Proof. Statements (i), (ii7), (iv) and (v) follow from elementary properties

of real-valued continuous functions.
(74) A homomorphism i: J€(I,[0]) — J&(I,[1]) we define by the
following way:

(w)i=p, where domf ={l—z |z € doma},
ran 3 = {1l —z | z € rana}, and
(a)f=1—(1—a)a for all a € dom S.

Simple verifications show that such defined map i is an isomorphism from
the semigroup J€(7,[0]) onto the semigroup JO(I, [1]). O

Proposition 2. The following statements hold:

(1) an element o of the semigroup IE(I,[0]) is an idempotent if and
only if (x)a = x for every x € dom «;
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(13) Ife,0 € E(J€(L,]0])), then e < ¢ if and only if dome C dom;

(tit) The semilattice E(JE(I,[0])) is isomorphic to the semilattice
((0,1], min) under the mapping (¢)h = max{dome};

() aZp in IE(I,[0]) if and only if dom o = dom f3;

(v) aZp in IE(L,[0]) if and only if ran = ran f3.

(vi) adB in IE(L,[0]) if and only if dom o = dom 8 and ran @ = ran 3.
)

(vii) for every distinct idempotents ,1 € IE(I,[0]) there exists an element
1

a of the semigroup IE(I,[0]) such that a- o™t =¢ and ™ - =¢;
(viii) a2p for all a, B € IE(1,[0]), and hence the semigroup IE(1,[0]) is
bistmple;

(iz) a B for all o, B € IE(1,]0]), and hence the semigroup IE(I,[0]) is
simple;

(x) a subset £ is a left ideal of IE(L,[0]) if and only if there exists
a € (0,1] such that either £ = {a € 3E(I,[0]) | rana C [0,a)} or
Z ={a € J3¢(1,[0]) |rana C [0,al]};

(i) a subset Z is a right ideal of IE(1,[0]) if and only if there ezists a
a € (0,1] such that either # = {a € 3€(1,[0]) | doma C [0,a)} or
X = {a €3C(,[0]) | doma C [0,al}.

Proof. Statements (i), (i3) and (iii) are trivial and they follow from the
definition of the semigroup J&(I, [0]).

(iv) Let be «a,8 € JE(I,[0]) such that aZf. Since aJC(I,[0]) =
BIE(1,]0]) and JE(I, [0]) is an inverse semigroup, Theorem 1.17 [2] implies
that

aJC(I,[0]) = aa *3C(1,[0]))  and  BIC(L,[0]) = BBTIIE(T, [0]),

and hence we have that aa~! = 337!, Therefore we get that doma =
dom .

Conversely, let be a, f € J€(1,[0]) such that dom a = dom 3. Then
aa~! = BB~ Since J€(I, [0]) is an inverse semigroup, Theorem 1.17 [2]
implies that

aJ€(1,[0]) = aa™3€(1,[0]) = B87IC(L, [0]) = BIE(L, [0]),

and hence oJ€(1,[0]) = BIE(I,[0]).
The proof of statement (v) is similar to (iv).
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Statement (vi) follows from (iv) and (v).

(vii) We fix arbitrary distinct idempotents € and ¢ in J€(I, [0]). If
d. = max{dome} and d, = max{dom}, then d. # 0, d, # 0, and ¢ and
¢ are identity maps of intervals [0, d.] and [0, d,], respectively. We define a
partial map «: I — I as follows:

doma =[0,d.], rana=[0,d,] and (z)a= & -z, for all z € dom a.
£

Then we have that o € J&(I,[0]), a-a ' =cand a™!-a =

(viii) Statement (vii) and Lemma 1.1 from [5] imply that J&(I, [0]) is
a bisimple semigroup.

Since 2 C _¢#, statement (viii) implies assertion (iz).

(z) The semigroup operation on J&(I,[0]) implies that the sets
{a € 3¢(1,[0]) |rana C [0,a)} and {a € TJE(I,[0]) | rana C [0,a]} are
left ideals in JE(I, [0]), for every a € (0,1].

Suppose that .Z is an arbitrary left ideal of the semigroup J€(I, [0]).
We fix any a € Z. Then statements (¢), (i7) and (v) imply that the left
ideal .Z contains all 8 € £ such that ran 8 C ran . We put

A= U ran o

ace¥

and let a = sup A. If there exists o € £ such that suprana = a then
statement (v) implies that £ = {a € J&(I,[0]) | rana C [0, a]}. In other
case we have that statement (v) implies that

L ={aeJ&(I,[0]) | rana C [0,a)}.
The proof of statement (zi) is similar to statement (z). O

Definitions of the group S')/(I) and the semigroup J€(I,[0]) imply the
following:

Proposition 3. The group of units of the semigroup IE(I,[0]) is isomor-
phic to (i.e., coincides with) the group 57(I).

Proposition 2.20 of |2] states that every two subgroup which lie in some
P-class are isomorphic, and hence Proposition 3 implies the following:

Corollary 1. FEvery mazimal subgroup of the semigroup J€(I,[0]) is
isomorphic to 55/([).

Later we need the following two lemmas:
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Lemma 1. Let R is an arbitrary congruence on a semilattice E and let
a and b be elements of the semilattice E such that aRb. If a < b then afRc
for all ¢ € E such that a < ¢ < b.

The proof of the lemma follows from the definition of a congruence on
a semilattice.

Lemma 2. For arbitrary distinct idempotents o and 3 of the semigroup
JE(1,[0]) there exists a subsemigroup € in IE(I,[0]) such that o, B € €
and € is isomorphic to the bicyclic semigroup € (p,q).

Proof. Without loss of generality we can assume that § < « in
E(3¢(1,]0])). We define partial maps 7,d: I — I as follows:

d
dom~y =[0,ds], rany=1[0,dg] and (x)y= d—’g-x, for all x € dom~,
and
da
domod = [0,dg], rand =[0,d,] and (z)0= 7% for all z € dom 4,
B

where d, = max{doma} and dg = max{dom }. Then we have that
a-y=v-a=7v, a-d=6-a=0, v-d=a and J-v=p0%#a.

Hence by Lemma 1.31 from [2] we get that a subsemigroup in J€(Z, [0])
which is generated by elements v and § is isomorphic to the bicyclic
semigroup %' (p, q). O

Theorem 1. Every non-trivial congruence on the semigroup J€(1,[0]) is
a group congruence.

Proof. Suppose that K is a non-trivial congruence on the semigroup
JE(1,[0]). Then there exist distinct elements a and 3 in J€(I, [0]) such
that aR5. We consider the following three cases:

(1) « and § are idempotents in J&(I, [0]);
(77) « and S are not J¢-equivalent in J&(I, [0]);
(791) « and B are J-equivalent in J&(I, [0]).

Suppose case (i) holds and without loss of generality we assume that
a < fin E(3€(1,]0])). We define a partial map p: I — I as follows:

1
domp =domp, ranp=1 and (:U)p:d—-:n, for all z € dom p,
B
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where dg = max{dom 8}. Then we have that p=! - 3-p = I and hence
by Proposition 1() the element ag = p~'-a-pis an idempotent of the
semigroup JE(I, [0]). Obviously, ag < I'in E(JE(I,[0])), ag # I and agfl.
Then by Lemma 2 there exist 7,0 € J&€(I,[0]) such that

[y =~1=#, [.6 =0-1=09, ~v-6=1 and 0y =ag #1,

and a subsemigroup ¢ (7,d) in J€(I, [0]) which is generated by elements
~ and 0 is isomorphic to the bicyclic semigroup € (p, q). Since by Corol-
lary 1.32 from [2| every non-trivial congruence on the bicyclic semigroup
% (p,q) is a group congruence on % (p,q) we get that all idempotents of
the semigroup ¢(7y,0) are K-equivalent. Also by Lemma 1.31 from [2]| we
get that every idempotent of the semigroup % (v, d) has a form

§)-(y-...-y),  where n=0,1,2,3,...,

n—times n—times

and hence we get that dom (6" - 4") = [0, d"], where d = max{dom ag}.
This implies that for every idempotent € € J&(I, [0]) there exists a positive
integer n such that §”-4" < €, and hence by Lemma 1 we get that all idem-
potents of the semigroup J&(I, [0]) are R-equivalent. Then Lemma 7.34
and Theorem 7.36 from [2] imply that the quotient semigroup J&(I, [0])/8&
is a group.

Suppose case (ii) holds: @ and 3 are not #-equivalent in J€(1, [0]).
Since JE(I,[0]) is an inverse semigroup we get that either aa~! # 37!
or a o # B71B. Suppose inequality aa™! # BB~! holds. Since afRf
and J€(1,[0]) is an inverse semigroup, Lemma III.1.1 from [6] implies
that (aoz_l) R (55_1), and hence by case (i) we get that £ is a group
congruence on the semigroup J&(I,[0]). In the case ala # 713 the
proof is similar.

Suppose case (7i7) holds: @ and /3 are J#-equivalent in J&(I, [0]). Then
Theorem 2.3 of [2| implies that without loss of generality we can assume
that a and 3 are elements of the group of units H(I) of the semigroup
J€(1,1]0]). Therefore we get that [ = a-a~! and v = B-a~! € H(I) are
J€-equivalent distinct elements in JE€(I, [0]). Since I # v we get that there
exists x, € I such that (x,)vy # x,. We suppose (x-)y > x,. We define a
partial map 6: I — I as follows:

domd = [0, (z4)7], rand = [0, z,] and (x)p = -,

for all x € domd. Then we have that 1-§ = § and hence we get that
(v - 9)R6. Since dom(7y - §) = dom~ # domd, Proposition 1(vi) implies
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that the elements - ¢ and § are not J#-equivalent. Therefore case (i7)

holds, and hence R is a group congruence on the semigroup J€(1, [0]).
In the case (z,)y < @ the proof that £ is a group congruence on the
semigroup J&(I, [0]) is similar. This completes the proof of our theorem.
L]

Proposition 4. The semigroups J€(1,[0]) and IO(I,[0]) are isomorphic.

Proof. We define a map i: J&€(I,[0]) — JO(I, [0]) by the following way:
for arbitrary o € J&(I, [0]) we put («)i is the restriction of a on the set
[0, aq] \ {aa}, where a, = max{dom a}, with dom((a)i) = doma \ {aq}
and ran((a)i) = rana \ {(aq)a}. Simple verifications show that such
defined map i: I&(I, [0]) — TO(I,[0]) is an isomorphism. O

3. On the semigroup J3(/,|[0])

We put J3(I, [0]) = I&(, [0]) L IO(L, [0]).

Later we shall denote elements of the semigroup J€(I, [0]) by @ and
put & = (@)i € IO(I,[0]), where i: IE(I, [0]) — TO(I,[0]) is the isomor-
phism which is defined in the proof of Proposition 4. Since the semigroups
J&(I,]0]) and JO(I,[0]) are inverse subsemigroups of the symmetric in-
verse semigroup -#; over the set I and by Proposition 1 all elements of the
semigroups J&(I, [0]) and JO(I, [0]) are monotone partial maps, the semi-
group operation in .47 implies that for & € J&(I, [0]) and Be JO(I, [0])
we have that

0, if ranp C dom@;

Eéz 5, if rana C dom f; and E’-a: 0 3
0, if dom@ C ran g,

5, if domB Crana

Proposition 5. 33(7, [0]) is an inverse semigroup.

Given two partially ordered sets (A, <4) and (B, <p), the lexicograph-
ical order <jex on the Cartesian product A x B is defined as follows:

(a,b) <jex (a’, V) ifand only if a<sd or (a=d and b<pl).

In this case we shall say that the partially ordered set (A X B, <jex) 18
the lexicographic product of partially ordered sets (A, <4) and (B,<p)
and it is denoted by A Xjex B. We observe that a lexicographic order of
two linearly ordered sets is a linearly ordered set.
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Hereafter for every @ € J€(1,[0]) and Be J9O(I,]0]) we denote dy =
max{doma}, r, = max{rana}, dg = sup{dom[oi} and rg = sup{ran é}
Obviously we have that d, = sup{dom &} and r, = sup{rana} for any

& € IO(L,[0]).

Proposition 6. The following conditions hold:

(4)

(iii)

(iv)

E(I3(L,[0)) = E(3C(L,[0])) U E(IO(L, [0])).

Ifa, &, B, 3 € E(33(1,[0)), then
(a) a < @;
b) @ < B if and only if do < dg (ro < 73);

é if and only if do < dg (T <rg); and

)
) @
c) & <B if and only if do < dg (ro <71p);
) @
) &

<
< B if and only if do < dg (ro < rp).

The semilattice E(IJI(I,[0])) is isomorphic to the lexicographic
product (0;1] Xier {0;1} of the semilattices ((0;1], min) and
({0;1}, min) under the mapping (@)i = (da; 1) and (&)i = (dy;0),
and hence E(J3(1,]0])) is a linearly ordered semilattice.

The elements o and [ of the semigroup II(1,[0]) are Z-equivalent
in J3(1,[0]) provides either o, B € JE(L,[0]) or a, f € TJO(L,[0])
and moreover, we have that

(a) @B in II(1,]0)) if and only if do = dg; and
(b) &% in 33(I,[0]) if and only if do = dps.

The elements « and (3 of the semigroup II(1,[0]) are L -equivalent
in 33(1,[0]) provides either a, 5 € JE(I,[0]) or a, B € TO(L,[0])
and moreover, we have that

(a) @B in II(I,[0]) if and only if ro = rg; and
(b) &ZB in 33(I,[0]) if and only if r = 3.

The elements o and 3 of the semigroup JI(I,[0]) are F -equivalent
in 33(1,[0]) provides either a, 5 € JE(I,[0]) or a, 5 € TO(L,[0])

and moreover, we have that
(a) @B in II(1,[0]) if and only if do = dg and ro = rg; and
(b) &3 in II(I,[0]) if and only if do = dg and ro = 1g.
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(vii) 33(I,[0]) is a simple semigroup.

(viii) The semigroup II(I,[0]) has only two distinct P-classes: that are
inverse subsemigroups JE(1,[0]) and JO(I,[0]).

Proof. Statements (i), (i7) and (i7i) follow from the definition of the
semigroup JJ(7, [0]) and Proposition 5.

Proofs of statements (iv), (v) and (vi) follow from Proposition 5
and Theorem 1.17 [2| and are similar to statements (iv), (v) and (vi) of
Proposition 2.

(vii) We shall show that J3(I,[0]) - a- IT(L,
a € J3(1,]0]). We fix arbitrary o, 8 € 33(I, [0])
v,6 € 33( ,[0]) such that v-«a -0 = f.

We consider the following four cases:

(1) a=a € J¢(I,[0]) and 8 = B € J&(I,[0]);

[0]) = 33(I,]0]) for every
and show that there exist

(2) a

m
(=

@

¢(1,[0]) and B = 3 € 3D(I, [0]);
O(1,[0]) and 8 = B € 3¢(1, [0));

(S

(B) a=ace€
(4) a =& € 39(1,[0) and B = 3 € 3O(1, [0)).
By A’ we denote a linear partial map from I into I with dom A% =
b
;al and ran A) = [0;0], and defined by the formula: (z = — -z, for
0 d AL = [0;b d defined by the fi 1 Ab f
a

z € dom Ab.
We put:

v = Agg and § =~ t- AZZ -5 in case (1);
= Agg and § =~ t- AZZ - in case (2);
v = Agﬁ and § = o~ ! 'Agﬁ - B, where 0 < a < d,, in case (3);

= Ag; and § = a1t - AZZ - in case (4).

Elementary verifications show that v-a - = 3, and this completes the
proof of assertion (vii).
Statement (viiz) follows from statements (iv) and (v). O

On the semigroup JJ(7, [0]) we determine a relation ~ip by the follow-
ing way. Let i: 3€(1,[0]) — JO(I,[0]) be a map which is defined in the
proof of Proposition 4. We put

a~p f ifandonlyif a=p or (o)io=p or (8)id=a,
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for o, p € 33(1,[0]). Simple verifications show that ~jp is an equivalence
relation on the semigroup JJ(7, [0]).

The following proposition immediately follows from Proposition 1(¢)
and the definition of the relation ~i on the semigroup J33(I, [0]):

Proposition 7. Let a and [ are elements of the semigroup I3(I,[0]).
Then « ~iy [ in II(1,[0]) if and only if the following conditions hold:

(1) do = dg;
(17) ro =1g;
(7i1) (z)a = (x)p for every x € [0,dqy);

(iv) (y)a= (y)B for every y € [0,dg).

Proposition 8. The relation ~ip is a congruence on the semigroup
33(I,[0]). Moreover, the quotient semigroup II(I,[0])/ ~ip is isomorphic
to the semigroup JE(1,[0]).

Proof. We fix arbitrary @, &, 8,7 € 33(1,[0]). It is complete to show that
the following conditions hold:

(i) (@-B) ~i (& B);
(i) (B-@) ~i (B-4);
(iii) (@-7) ~p (4
(i) (5-8) ~o (5-4).

Suppose case (i) holds. If dg < 74, then Proposition 1(i) implies that
(z) (@-B) = (z) (& B) for all z € [0, (dg)(@)~'), and hence by Proposi-
tion 7 we get that ( B) ~i (a . ﬂ) If dg > 74, then Proposition 1(7)
implies that (z) (a-3) = (z) (&-B) for all z € [0,d,), and hence by
Proposition 7 we get that (@ 3) ~ip (& 3).

In cases (it), (i7i) and (iv) the proofs are similar. Hence ~jp is a
congruence on the semigroup J3J3(I, [0]).

Let @, : J33(1,[0]) — J¢(I, [ |) a natural homomorphism which is
generated by the congruence ~ji. Since the restriction ®. m]g@ Ljo])
J&(1,]0]) — 3€(1,[0]) of the natural homomorphism @, : II(I,[0]) —

J&(I,[0]) is an identity map we conclude that the semigroup
(33(1,[0]))®~., is isomorphic to the semigroup J&(I, [0]). O

i0 PY),

(&
3

i0

Theorem 2. Let R be a non-trivial congruence on the semigroup
J3(1,[0]). Then the quotient semigroup IJI(I,[0])/R is either a group
or 33(1,[0])/R is isomorphic to the semigroup JQﬁ( [0]).
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Proof. Since the subsemigroup of idempotents of the semigroup JJ(7, [0])
is linearly ordered we have that similar arguments as in the proof of
Theorem 1 imply that there exist distinct idempotents € and ¢ in 3J(I, [0])
such that eRe and e < ¢. If the set (¢,0) = {v € E(JTI(I,[0])) | e < v <}
is non-empty, then Lemma 1 and Theorem 1 imply that the quotient
semigroup JJ(I,[0])/R is inverse and it contains only one idempotent,
and hence by Lemma II1.1.10 from [6] we get that JJ(Z,[0])/9R is a group.
Otherwise Proposition 7(ii) implies that ¢ = & and + = @ for some
idempotents & € JO(1,[0]) and @ € JE(1, [0]).

Since by Proposition 2(ix) the semigroup J&(I, [0]) is simple we get that
for every B € J&(I,[0]) there exist 7,6 € J&(I,[0]) such that 3 =% -@- 4.
Since J€(I, [0]) is an inverse semigroup and all elements of J&(1, [0]) are
monotone partial maps of the unit interval I we conclude that that
-1 —=

B:B.B_l.7.@.@*1.5.5*1.5.5.5 B,

and hence for elements

7523.3_1.7.5.5—1 and 5625—1.5.5.3 . B,
of the semigroup J€(/,[0]) the following conditions hold:

B:*B.a.gl% domB:domﬁﬂ, ranﬁﬁ:doma, rana:domgg

and ranf =ran 55.

Analogously, since all elements of the semigroups J€(I, [0]) and JO(I, [0])
are monotone partial maps of I we get that ,é = %B S 35 and hence
B%E This implies that the congruence SR on the semigroup J3J(7, [0])
coincides with the congruence ~jip on JJ(1, [0]). Then Proposition 8 implies

that the quotient semigroup JJ(Z, [0])/8 is isomorphic to the semigroup
Je(Iz,[0)). O

By S2 we denote the cyclic group of order 2.

Theorem 3. For arbitrary a,b € (0,1) the semigroups J&(I,[a]) and
JE(1,[b]) are isomorphic. Moreover, for every a € (0,1) the semigroup
J&(I, [a]) is isomorphic to the direct product

Sy x 3€(1,[0]) x I€(1,[0]).

Proof. We fix an arbitrary a € (0, 1). Obviously, the semigroup J€(I, [a])
is isomorphic to the direct product Sy x JQ/(I ,[a]), where 36/(1 ,[a]) is
a subsemigroup of J&(I, [a]) which consists of monotone partial maps of
the unit interval I.
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By 36/(1 LI I, [0]) we denote the semigroup of all monotone convex
closed partial local homeomorphisms « of the interval [—1, 1] such that
(0)a = 0 and 0 € Int_; jj(doma). We define a map i: ’J(’:/(I, [a]) —
3(’:/([ LI 7,[0]) by the following way. For an arbitrary a € ’J(’:/(I ,la]) we
determine a partial map § = («)i € JQ:/(I LI 7,[0]) as follows:

dm(a) —a d —
(i) domp = |4m(@) = dula) —a
a 1—-a
and djps(«) = max{dom a};

], where d,,(«) = min{dom «a}

rm(a) —a ry(a) —a

(i7) ran = [ :

a 1—-a
ry () = max{rana}; and

], where 7, (o) = min{ran a} and

(ax + a)a, ifx <0

(ii7) (x)B = { (1= a)z+a)a, ifo>0" for all z € dom f3.

Simple verifications show that such defined map i: 36/(1 ,la]) — 36/(1 U
I1,1]0]) is an isomorphism. This completes the first part of the proof of the
theorem.

Next we define a map j: 3¢ (I U I,[0]) — 3€(I, [0]) x IE(I, [0]) by
the following way. For an arbitrary a € JQ:/(I U 71,[0]) we determine a
pair of partial maps (/3,v) = (a)i € I&(I,[0]) x IJE(I,[0]) as follows:

(1) domp =doman]0,1] and ran f = rana N [0, 1];

(74) domy = {—z | v € domaN[0,1]} and rany = {—x | z € rana N

[0,1]}
(7i1) (z)B = (x)a for x € dom ; and
(i) (z)y = —(x)a for € dom~.

Simple verifications show that such defined map j: 36/(1 ur,0]) —
J&(I,[0]) x J&(I,]0]) is an isomorphism. This completes the proof of the
theorem. n

Theorem 3 implies the following:

Corollary 2. For arbitrary a,b € (0,1) the semigroups 3I(I,[a]) and
J3(I,[b]) are isomorphic. Moreover, for every a € (0,1) the semigroup
33(I, [a]) is isomorphic to the direct product

Sa x J33(1,10]) x 33(I,0]).
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