Algebra and Discrete Mathematics Volume 12 (2011). Number 2. pp. 38 – 52 © Journal "Algebra and Discrete Mathematics"

On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point

Ivan Chuchman

Communicated by M. Ya. Komarnytskyj

ABSTRACT. In this paper we study the semigroup $\mathfrak{IC}(I, [a])$ $(\mathfrak{ID}(I, [a]))$ of closed (open) connected partial homeomorphisms of the unit interval I with a fixed point $a \in I$. We describe left and right ideals of $\mathfrak{IC}(I, [0])$ and the Green's relations on $\mathfrak{IC}(I, [0])$. We show that the semigroup $\mathfrak{IC}(I, [0])$ is bisimple and every nontrivial congruence on $\mathfrak{IC}(I, [0])$ is a group congruence. Also we prove that the semigroup $\mathfrak{IC}(I, [0])$ is isomorphic to the semigroup $\mathfrak{ID}(I, [0])$ and describe the structure of a semigroup $\mathfrak{II}(I, [0]) =$ $\mathfrak{IC}(I, [0]) \sqcup \mathfrak{ID}(I, [0])$. As a corollary we get structures of semigroups $\mathfrak{IC}(I, [a])$ and $\mathfrak{ID}(I, [a])$ for an interior point $a \in I$.

1. Introduction and preliminaries

Furthermore we shall follow the terminology of [2] and [6]. For a semigroup S we denote the semigroup S with the adjoined unit by S^1 (see [2]).

A semigroup S is called *inverse* if for any element $x \in S$ there exists a unique element $x^{-1} \in S$ (called the *inverse* of x) such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. If S is an inverse semigroup, then the function inv: $S \to S$ which assigns to every element x of S its inverse element x^{-1} is called *inversion*.

²⁰¹⁰ Mathematics Subject Classification: 20M20,54H15, 20M18.

Key words and phrases: Semigroup of bijective partial transformations, symmetric inverse semigroup, semigroup of homeomorphisms, group congruence, bisimple semigroup.

If S is a semigroup, then we shall denote the subset of idempotents in S by E(S). If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) a band (or the band of S). If the band E(S) is a non-empty subset of S, then the semigroup operation on S determines the following partial order \leq on E(S): $e \leq f$ if and only if ef = fe = e. This order is called the *natural partial order* on E(S). A *semilattice* is a commutative semigroup of idempotents. A semilattice E is called *linearly ordered* or a *chain* if its natural order is a linear order. Let E be a semilattice and $e \in E$. We denote $\downarrow e = \{f \in E \mid f \leq e\}$ and $\uparrow e = \{f \in E \mid e \leq f\}$.

If S is a semigroup, then we shall denote by $\mathscr{R}, \mathscr{L}, \mathscr{J}, \mathscr{D}$ and \mathscr{H} the Green relations on S (see [2]):

 $a\mathscr{R}b \text{ if and only if } aS^1 = bS^1;$ $a\mathscr{L}b \text{ if and only if } S^1a = S^1b;$ $a\mathscr{J}b \text{ if and only if } S^1aS^1 = S^1bS^1;$ $\mathscr{D} = \mathscr{L} \circ \mathscr{R} = \mathscr{R} \circ \mathscr{L};$ $\mathscr{H} = \mathscr{L} \cap \mathscr{R}.$

A semigroup S is called *simple* if S does not contain proper two-sided ideals and *bisimple* if S has only one \mathscr{D} -class.

A congruence \mathfrak{C} on a semigroup S is called *non-trivial* if \mathfrak{C} is distinct from universal and identity congruence on S, and *group* if the quotient semigroup S/\mathfrak{C} is a group.

The bicyclic semigroup $\mathscr{C}(p,q)$ is the semigroup with the identity 1 generated by elements p and q subject only to the condition pq = 1. The distinct elements of $\mathscr{C}(p,q)$ are exhibited in the following useful array:

The bicyclic semigroup is bisimple and every one of its congruences is either trivial or a group congruence. Moreover, every non-annihilating homomorphism h of the bicyclic semigroup is either an isomorphism or the image of $\mathscr{C}(p,q)$ under h is a cyclic group (see [2, Corollary 1.32]). The bicyclic semigroup plays an important role in algebraic theory of semigroups and in the theory of topological semigroups. For example the well-known Andersen's result [1] states that a (0–)simple semigroup is completely (0–)simple if and only if it does not contain the bicyclic semigroup.

Let \mathscr{I}_X denote the set of all partial one-to-one transformations of an non-empty set X together with the following semigroup operation:

$$x(\alpha\beta) = (x\alpha)\beta$$
 if $x \in \operatorname{dom}(\alpha\beta) = \{y \in \operatorname{dom} \alpha \mid y\alpha \in \operatorname{dom} \beta\},\$

for $\alpha, \beta \in \mathscr{I}_X$. The semigroup \mathscr{I}_X is called the symmetric inverse semigroup over the set X (see [2, Section 1.9]). The symmetric inverse semigroup was introduced by Wagner [10] and it plays a major role in the theory of semigroups.

Let I be an interval [0, 1] with the usual topology. A partial map $\alpha \colon I \rightharpoonup I$ is called:

- *closed*, if dom α and ran α are closed subsets in *I*;
- open, if dom α and ran α are open subsets in I;
- convex, if dom α and ran α are convex non-singleton subsets in I;
- monotone, if $x_1 \leq x_2$ implies $(x_1)\alpha \leq (x_2)\alpha$, for all $x_1, x_2 \in \operatorname{dom} \alpha$;
- a *local homeomorphism*, if the restriction $\alpha|_{\operatorname{dom}\alpha}$: dom $\alpha \to \operatorname{ran} \alpha$ is a homeomorphism.

We fix an arbitrary $a \in I$. Hereafter we shall denote by:

- $\mathfrak{IC}(I, [a])$ the semigroup of all closed connected partial homeomorphisms α such that $\operatorname{Int}_I(\operatorname{dom} \alpha) \neq \emptyset$ and $(a)\alpha = a$;
- $\Im \mathfrak{O}(I, [a])$ the semigroup of all open connected partial homeomorphisms α such that $(a)\alpha = a$;
- $\mathfrak{H}(I)$ the group of all homeomorphisms of I;
- $\mathfrak{H}^{(I)}$ the group of all monotone homeomorphisms of I;
- \mathbb{I} the identity map from I onto I.

Remark 1. We observe that for every $a \in I$ the semigroups $\mathfrak{IC}(I, [a])$ and $\mathfrak{IO}(I, [a])$ are inverse subsemigroups of the symmetric inverse semigroup \mathscr{I}_I over the set I.

In [3, 4] Gluskin studied the semigroup S of homeomorphic transformations of the unit interval. He described all ideals, homomorphisms and automorphisms of the semigroup S and congruence-free subsemigroups of S. This studies was continued in [7] by Shneperman. In [9] Shneperman described the structure of the semigroup of homeomorphisms of a simple arc. In the paper [8] he studied a semigroup G(X) of all continuous transformations of a closed subset X of the real line.

In our paper we study the semigroup $\mathfrak{IC}(I, [a])$ $(\mathfrak{ID}(I, [a]))$ of closed (open) connected partial homeomorphisms of the unit interval I with a fixed point $a \in I$. We describe left and right ideals of $\mathfrak{IC}(I, [0])$ and the Green's relations on $\mathfrak{IC}(I, [0])$. We show that the semigroup $\mathfrak{IC}(I, [0])$ is bisimple and every non-trivial congruence on $\mathfrak{IC}(I, [0])$ is a group congruence. Also we prove that the semigroup $\mathfrak{IC}(I, [0])$ is isomorphic to the semigroup $\mathfrak{ID}(I, [0])$ and describe the structure of a semigroup $\mathfrak{II}(I, [0]) = \mathfrak{IC}(I, [0]) \sqcup \mathfrak{ID}(I, [0])$. As a corollary we get structures of semigroups $\mathfrak{IC}(I, [a])$ and $\mathfrak{ID}(I, [a])$ for an interior point $a \in I$.

2. On the semigroup $\Im \mathfrak{C}(I, [0])$

Proposition 1. The following conditions hold:

- (i) every element of the semigroup $\mathfrak{IC}(I, [0])$ ($\mathfrak{IO}(I, [1])$) is a monotone partial map;
- (ii) the semigroups $\mathfrak{IC}(I, [0])$ and $\mathfrak{IC}(I, [1])$ are isomorphic;
- (iii) $\max\{\operatorname{dom} \alpha\}$ exists for every $\alpha \in \mathfrak{IC}(I, [0])$;
- (iv) $\sup\{\operatorname{dom} \alpha\}$ exists for every $\alpha \in \mathfrak{IO}(I, [0])$;
- (v) $(0)\alpha = 0$ and $(1)\alpha = 1$ for every $\alpha \in \mathfrak{H}^{\nearrow}(I)$.

Proof. Statements (i), (iii), (iv) and (v) follow from elementary properties of real-valued continuous functions.

(*ii*) A homomorphism $i: \mathfrak{IC}(I, [0]) \to \mathfrak{IC}(I, [1])$ we define by the following way:

$$(\alpha)\mathfrak{i} = \beta, \quad \text{where } \operatorname{dom} \beta = \{1 - x \mid x \in \operatorname{dom} \alpha\}, \\ \operatorname{ran} \beta = \{1 - x \mid x \in \operatorname{ran} \alpha\}, \text{ and} \\ (a)\beta = 1 - (1 - a)\alpha \text{ for all } a \in \operatorname{dom} \beta.$$

Simple verifications show that such defined map \mathfrak{i} is an isomorphism from the semigroup $\mathfrak{IC}(I, [0])$ onto the semigroup $\mathfrak{IO}(I, [1])$.

Proposition 2. The following statements hold:

(i) an element α of the semigroup $\mathfrak{IC}(I, [0])$ is an idempotent if and only if $(x)\alpha = x$ for every $x \in \operatorname{dom} \alpha$;

- (*ii*) If $\varepsilon, \iota \in E(\mathfrak{IC}(I, [0]))$, then $\varepsilon \leq \iota$ if and only if dom $\varepsilon \subseteq \operatorname{dom} \iota$;
- (iii) The semilattice $E(\mathfrak{IC}(I, [0]))$ is isomorphic to the semilattice $((0, 1], \min)$ under the mapping $(\varepsilon)h = \max\{\operatorname{dom} \varepsilon\};$
- (iv) $\alpha \mathscr{R} \beta$ in $\mathfrak{IC}(I, [0])$ if and only if dom $\alpha = \operatorname{dom} \beta$;
- (v) $\alpha \mathscr{L}\beta$ in $\mathfrak{IC}(I, [0])$ if and only if $\operatorname{ran} \alpha = \operatorname{ran} \beta$.
- (vi) $\alpha \mathscr{H} \beta$ in $\mathfrak{IC}(I, [0])$ if and only if dom $\alpha = \operatorname{dom} \beta$ and ran $\alpha = \operatorname{ran} \beta$.
- (vii) for every distinct idempotents $\varepsilon, \iota \in \mathfrak{IC}(I, [0])$ there exists an element α of the semigroup $\mathfrak{IC}(I, [0])$ such that $\alpha \cdot \alpha^{-1} = \varepsilon$ and $\alpha^{-1} \cdot \alpha = \iota$;
- (viii) $\alpha \mathscr{D}\beta$ for all $\alpha, \beta \in \mathfrak{IC}(I, [0])$, and hence the semigroup $\mathfrak{IC}(I, [0])$ is bisimple;
 - (ix) $\alpha \mathscr{J}\beta$ for all $\alpha, \beta \in \mathfrak{IC}(I, [0])$, and hence the semigroup $\mathfrak{IC}(I, [0])$ is simple;
 - (x) a subset \mathscr{L} is a left ideal of $\mathfrak{IC}(I, [0])$ if and only if there exists $a \in (0, 1]$ such that either $\mathscr{L} = \{\alpha \in \mathfrak{IC}(I, [0]) \mid \operatorname{ran} \alpha \subseteq [0, a)\}$ or $\mathscr{L} = \{\alpha \in \mathfrak{IC}(I, [0]) \mid \operatorname{ran} \alpha \subseteq [0, a]\};$
 - (xi) a subset \mathscr{R} is a right ideal of $\mathfrak{IC}(I, [0])$ if and only if there exists a $a \in (0, 1]$ such that either $\mathscr{R} = \{\alpha \in \mathfrak{IC}(I, [0]) \mid \operatorname{dom} \alpha \subseteq [0, a)\}$ or $\mathscr{R} = \{\alpha \in \mathfrak{IC}(I, [0]) \mid \operatorname{dom} \alpha \subseteq [0, a]\}.$

Proof. Statements (i), (ii) and (iii) are trivial and they follow from the definition of the semigroup $\Im \mathfrak{C}(I, [0])$.

(*iv*) Let be $\alpha, \beta \in \mathfrak{IC}(I, [0])$ such that $\alpha \mathscr{R}\beta$. Since $\alpha \mathfrak{IC}(I, [0]) = \beta \mathfrak{IC}(I, [0])$ and $\mathfrak{IC}(I, [0])$ is an inverse semigroup, Theorem 1.17 [2] implies that

 $\alpha \Im \mathfrak{C}(I,[0]) = \alpha \alpha^{-1} \Im \mathfrak{C}(I,[0]) \quad \text{and} \quad \beta \Im \mathfrak{C}(I,[0]) = \beta \beta^{-1} \Im \mathfrak{C}(I,[0]),$

and hence we have that $\alpha \alpha^{-1} = \beta \beta^{-1}$. Therefore we get that dom $\alpha = \text{dom } \beta$.

Conversely, let be $\alpha, \beta \in \mathfrak{IC}(I, [0])$ such that dom $\alpha = \operatorname{dom} \beta$. Then $\alpha \alpha^{-1} = \beta \beta^{-1}$. Since $\mathfrak{IC}(I, [0])$ is an inverse semigroup, Theorem 1.17 [2] implies that

$$\alpha \mathfrak{IC}(I,[0]) = \alpha \alpha^{-1} \mathfrak{IC}(I,[0]) = \beta \beta^{-1} \mathfrak{IC}(I,[0]) = \beta \mathfrak{IC}(I,[0]),$$

and hence $\alpha \mathfrak{IC}(I, [0]) = \beta \mathfrak{IC}(I, [0]).$

The proof of statement (v) is similar to (iv).

Statement (vi) follows from (iv) and (v).

(vii) We fix arbitrary distinct idempotents ε and ι in $\mathfrak{IC}(I, [0])$. If $d_{\varepsilon} = \max\{\operatorname{dom} \varepsilon\}$ and $d_{\iota} = \max\{\operatorname{dom} \iota\}$, then $d_{\varepsilon} \neq 0$, $d_{\iota} \neq 0$, and ε and ι are identity maps of intervals $[0, d_{\varepsilon}]$ and $[0, d_{\iota}]$, respectively. We define a partial map $\alpha \colon I \to I$ as follows:

dom
$$\alpha = [0, d_{\varepsilon}]$$
, ran $\alpha = [0, d_{\iota}]$ and $(x)\alpha = \frac{d_{\iota}}{d_{\varepsilon}} \cdot x$, for all $x \in \text{dom } \alpha$.

Then we have that $\alpha \in \mathfrak{IC}(I, [0]), \ \alpha \cdot \alpha^{-1} = \varepsilon$ and $\alpha^{-1} \cdot \alpha = \iota$.

(*viii*) Statement (*vii*) and Lemma 1.1 from [5] imply that $\Im \mathfrak{C}(I, [0])$ is a bisimple semigroup.

Since $\mathscr{D} \subseteq \mathscr{J}$, statement (*viii*) implies assertion (*ix*).

(x) The semigroup operation on $\mathfrak{IC}(I, [0])$ implies that the sets $\{\alpha \in \mathfrak{IC}(I, [0]) \mid \operatorname{ran} \alpha \subseteq [0, a)\}$ and $\{\alpha \in \mathfrak{IC}(I, [0]) \mid \operatorname{ran} \alpha \subseteq [0, a]\}$ are left ideals in $\mathfrak{IC}(I, [0])$, for every $a \in (0, 1]$.

Suppose that \mathscr{L} is an arbitrary left ideal of the semigroup $\mathfrak{IC}(I, [0])$. We fix any $\alpha \in \mathscr{L}$. Then statements (i), (ii) and (v) imply that the left ideal \mathscr{L} contains all $\beta \in \mathscr{L}$ such that ran $\beta \subseteq$ ran α . We put

$$A = \bigcup_{\alpha \in \mathscr{L}} \operatorname{ran} \alpha$$

and let $a = \sup A$. If there exists $\alpha \in \mathscr{L}$ such that $\sup \operatorname{ran} \alpha = a$ then statement (v) implies that $\mathscr{L} = \{\alpha \in \mathfrak{IC}(I, [0]) \mid \operatorname{ran} \alpha \subseteq [0, a]\}$. In other case we have that statement (v) implies that

$$\mathscr{L} = \{ \alpha \in \mathfrak{IC}(I, [0]) \mid \operatorname{ran} \alpha \subseteq [0, a) \}.$$

The proof of statement (xi) is similar to statement (x).

Definitions of the group $\mathfrak{H}(I)$ and the semigroup $\mathfrak{IC}(I, [0])$ imply the following:

Proposition 3. The group of units of the semigroup $\mathfrak{IC}(I, [0])$ is isomorphic to (i.e., coincides with) the group $\mathfrak{H}^{\prec}(I)$.

Proposition 2.20 of [2] states that every two subgroup which lie in some \mathscr{D} -class are isomorphic, and hence Proposition 3 implies the following:

Corollary 1. Every maximal subgroup of the semigroup $\mathfrak{IC}(I, [0])$ is isomorphic to $\mathfrak{H}^{\sim}(I)$.

Later we need the following two lemmas:

 \square

Lemma 1. Let \Re is an arbitrary congruence on a semilattice E and let a and b be elements of the semilattice E such that $a\Re b$. If $a \leq b$ then $a\Re c$ for all $c \in E$ such that $a \leq c \leq b$.

The proof of the lemma follows from the definition of a congruence on a semilattice.

Lemma 2. For arbitrary distinct idempotents α and β of the semigroup $\mathfrak{IC}(I, [0])$ there exists a subsemigroup \mathscr{C} in $\mathfrak{IC}(I, [0])$ such that $\alpha, \beta \in \mathscr{C}$ and \mathscr{C} is isomorphic to the bicyclic semigroup $\mathscr{C}(p, q)$.

Proof. Without loss of generality we can assume that $\beta \leq \alpha$ in $E(\mathfrak{I}(I, [0]))$. We define partial maps $\gamma, \delta \colon I \rightharpoonup I$ as follows:

 $\operatorname{dom} \gamma = [0, d_{\alpha}], \quad \operatorname{ran} \gamma = [0, d_{\beta}] \quad \text{and} \quad (x)\gamma = \frac{d_{\beta}}{d_{\alpha}} \cdot x, \text{ for all } x \in \operatorname{dom} \gamma,$

and

dom
$$\delta = [0, d_{\beta}]$$
, ran $\delta = [0, d_{\alpha}]$ and $(x)\delta = \frac{d_{\alpha}}{d_{\beta}} \cdot x$, for all $x \in \text{dom }\delta$,

where $d_{\alpha} = \max\{\operatorname{dom} \alpha\}$ and $d_{\beta} = \max\{\operatorname{dom} \beta\}$. Then we have that

$$\alpha \cdot \gamma = \gamma \cdot \alpha = \gamma, \quad \alpha \cdot \delta = \delta \cdot \alpha = \delta, \quad \gamma \cdot \delta = \alpha \quad \text{ and } \quad \delta \cdot \gamma = \beta \neq \alpha.$$

Hence by Lemma 1.31 from [2] we get that a subsemigroup in $\mathfrak{IC}(I, [0])$ which is generated by elements γ and δ is isomorphic to the bicyclic semigroup $\mathscr{C}(p,q)$.

Theorem 1. Every non-trivial congruence on the semigroup $\Im \mathfrak{C}(I, [0])$ is a group congruence.

Proof. Suppose that \mathfrak{K} is a non-trivial congruence on the semigroup $\mathfrak{IC}(I, [0])$. Then there exist distinct elements α and β in $\mathfrak{IC}(I, [0])$ such that $\alpha \mathfrak{K} \beta$. We consider the following three cases:

- (i) α and β are idempotents in $\mathfrak{IC}(I, [0])$;
- (*ii*) α and β are not \mathscr{H} -equivalent in $\mathfrak{IC}(I, [0])$;
- (*iii*) α and β are \mathscr{H} -equivalent in $\mathfrak{IC}(I, [0])$.

Suppose case (i) holds and without loss of generality we assume that $\alpha \leq \beta$ in $E(\mathfrak{I}(I, [0]))$. We define a partial map $\rho \colon I \to I$ as follows:

dom
$$\rho = \operatorname{dom} \beta$$
, ran $\rho = I$ and $(x)\rho = \frac{1}{d_{\beta}} \cdot x$, for all $x \in \operatorname{dom} \rho$,

where $d_{\beta} = \max\{\operatorname{dom} \beta\}$. Then we have that $\rho^{-1} \cdot \beta \cdot \rho = \mathbb{I}$ and hence by Proposition 1(*i*) the element $\alpha_{\beta} = \rho^{-1} \cdot \alpha \cdot \rho$ is an idempotent of the semigroup $\mathfrak{IC}(I, [0])$. Obviously, $\alpha_{\beta} \leq \mathbb{I}$ in $E(\mathfrak{IC}(I, [0])), \alpha_{\beta} \neq \mathbb{I}$ and $\alpha_{\beta}\mathfrak{K}\mathbb{I}$. Then by Lemma 2 there exist $\gamma, \delta \in \mathfrak{IC}(I, [0])$ such that

 $\mathbb{I} \cdot \gamma = \gamma \cdot \mathbb{I} = \gamma, \qquad \mathbb{I} \cdot \delta = \delta \cdot \mathbb{I} = \delta, \qquad \gamma \cdot \delta = \mathbb{I} \qquad \text{and} \qquad \delta \cdot \gamma = \alpha_{\beta} \neq \mathbb{I},$

and a subsemigroup $\mathscr{C}\langle\gamma,\delta\rangle$ in $\mathfrak{IC}(I,[0])$ which is generated by elements γ and δ is isomorphic to the bicyclic semigroup $\mathscr{C}(p,q)$. Since by Corollary 1.32 from [2] every non-trivial congruence on the bicyclic semigroup $\mathscr{C}(p,q)$ is a group congruence on $\mathscr{C}(p,q)$ we get that all idempotents of the semigroup $\mathscr{C}\langle\gamma,\delta\rangle$ are \mathfrak{K} -equivalent. Also by Lemma 1.31 from [2] we get that every idempotent of the semigroup $\mathscr{C}\langle\gamma,\delta\rangle$ has a form

$$\delta^n \cdot \gamma^n = (\underbrace{\delta \cdot \ldots \cdot \delta}_{n-\text{times}}) \cdot (\underbrace{\gamma \cdot \ldots \cdot \gamma}_{n-\text{times}}), \quad \text{where} \quad n = 0, 1, 2, 3, \dots,$$

and hence we get that dom $(\delta^n \cdot \gamma^n) = [0, d^n]$, where $d = \max\{\text{dom } \alpha_\beta\}$. This implies that for every idempotent $\varepsilon \in \mathfrak{IC}(I, [0])$ there exists a positive integer n such that $\delta^n \cdot \gamma^n \leq \varepsilon$, and hence by Lemma 1 we get that all idempotents of the semigroup $\mathfrak{IC}(I, [0])$ are \mathfrak{K} -equivalent. Then Lemma 7.34 and Theorem 7.36 from [2] imply that the quotient semigroup $\mathfrak{IC}(I, [0])/\mathfrak{K}$ is a group.

Suppose case (*ii*) holds: α and β are not \mathscr{H} -equivalent in $\mathfrak{IC}(I, [0])$. Since $\mathfrak{IC}(I, [0])$ is an inverse semigroup we get that either $\alpha \alpha^{-1} \neq \beta \beta^{-1}$ or $\alpha^{-1} \alpha \neq \beta^{-1} \beta$. Suppose inequality $\alpha \alpha^{-1} \neq \beta \beta^{-1}$ holds. Since $\alpha \mathfrak{K} \beta$ and $\mathfrak{IC}(I, [0])$ is an inverse semigroup, Lemma III.1.1 from [6] implies that $(\alpha \alpha^{-1}) \mathfrak{K}(\beta \beta^{-1})$, and hence by case (*i*) we get that \mathfrak{K} is a group congruence on the semigroup $\mathfrak{IC}(I, [0])$. In the case $\alpha^{-1} \alpha \neq \beta^{-1} \beta$ the proof is similar.

Suppose case (*iii*) holds: α and β are \mathscr{H} -equivalent in $\mathfrak{IC}(I, [0])$. Then Theorem 2.3 of [2] implies that without loss of generality we can assume that α and β are elements of the group of units $H(\mathbb{I})$ of the semigroup $\mathfrak{IC}(I, [0])$. Therefore we get that $\mathbb{I} = \alpha \cdot \alpha^{-1}$ and $\gamma = \beta \cdot \alpha^{-1} \in H(\mathbb{I})$ are \mathscr{H} -equivalent distinct elements in $\mathfrak{IC}(I, [0])$. Since $\mathbb{I} \neq \gamma$ we get that there exists $x_{\gamma} \in I$ such that $(x_{\gamma})\gamma \neq x_{\gamma}$. We suppose $(x_{\gamma})\gamma > x_{\gamma}$. We define a partial map $\delta: I \to I$ as follows:

dom
$$\delta = [0, (x_{\gamma})\gamma]$$
, ran $\delta = [0, x_{\gamma}]$ and $(x)\rho = \frac{x_{\gamma}}{(x_{\gamma})\gamma} \cdot x$,

for all $x \in \text{dom } \delta$. Then we have that $\mathbb{I} \cdot \delta = \delta$ and hence we get that $(\gamma \cdot \delta)\mathfrak{K}\delta$. Since $\text{dom}(\gamma \cdot \delta) = \text{dom } \gamma \neq \text{dom } \delta$, Proposition 1(vi) implies

that the elements $\gamma \cdot \delta$ and δ are not \mathscr{H} -equivalent. Therefore case (*ii*) holds, and hence \mathfrak{K} is a group congruence on the semigroup $\mathfrak{IC}(I, [0])$.

In the case $(x_{\gamma})\gamma < x_{\gamma}$ the proof that \mathfrak{K} is a group congruence on the semigroup $\mathfrak{IC}(I, [0])$ is similar. This completes the proof of our theorem.

Proposition 4. The semigroups $\mathfrak{IC}(I, [0])$ and $\mathfrak{ID}(I, [0])$ are isomorphic.

Proof. We define a map $i: \mathfrak{IC}(I, [0]) \to \mathfrak{ID}(I, [0])$ by the following way: for arbitrary $\alpha \in \mathfrak{IC}(I, [0])$ we put $(\alpha)i$ is the restriction of α on the set $[0, a_{\alpha}] \setminus \{a_{\alpha}\}$, where $a_{\alpha} = \max\{\operatorname{dom} \alpha\}$, with $\operatorname{dom}((\alpha)i) = \operatorname{dom} \alpha \setminus \{a_{\alpha}\}$ and $\operatorname{ran}((\alpha)i) = \operatorname{ran} \alpha \setminus \{(a_{\alpha})\alpha\}$. Simple verifications show that such defined map $i: \mathfrak{IC}(I, [0]) \to \mathfrak{ID}(I, [0])$ is an isomorphism. \Box

3. On the semigroup $\Im \Im (I, [0])$

We put $\Im \Im(I, [0]) = \Im \mathfrak{C}(I, [0]) \sqcup \Im \mathfrak{O}(I, [0]).$

Later we shall denote elements of the semigroup $\mathfrak{IC}(I, [0])$ by $\overline{\alpha}$ and put $\overset{\circ}{\alpha} = (\overline{\alpha})\mathfrak{i} \in \mathfrak{IO}(I, [0])$, where $\mathfrak{i} \colon \mathfrak{IC}(I, [0]) \to \mathfrak{IO}(I, [0])$ is the isomorphism which is defined in the proof of Proposition 4. Since the semigroups $\mathfrak{IC}(I, [0])$ and $\mathfrak{IO}(I, [0])$ are inverse subsemigroups of the symmetric inverse semigroup \mathscr{I}_I over the set I and by Proposition 1 all elements of the semigroups $\mathfrak{IC}(I, [0])$ and $\mathfrak{IO}(I, [0])$ are monotone partial maps, the semigroup operation in \mathscr{I}_I implies that for $\overline{\alpha} \in \mathfrak{IC}(I, [0])$ and $\overset{\circ}{\beta} \in \mathfrak{IO}(I, [0])$ we have that

$$\overline{\alpha} \cdot \overset{\circ}{\beta} = \begin{cases} \overline{\gamma}, & \text{if } \operatorname{ran} \overline{\alpha} \subset \operatorname{dom} \overset{\circ}{\beta}; \\ \overset{\circ}{\gamma}, & \text{if } \operatorname{dom} \overset{\circ}{\beta} \subset \operatorname{ran} \overline{\alpha} \end{cases} \quad \text{and} \quad \overset{\circ}{\beta} \cdot \overline{\alpha} = \begin{cases} \overset{\circ}{\delta}, & \text{if } \operatorname{ran} \overset{\circ}{\beta} \subset \operatorname{dom} \overline{\alpha}; \\ \overline{\delta}, & \text{if } \operatorname{dom} \overline{\alpha} \subset \operatorname{ran} \overset{\circ}{\beta}, \end{cases}$$

where $\overline{\gamma} = \overline{\alpha} \cdot \overline{\beta} \in \mathfrak{IC}(I, [0])$ (i.e., $\mathring{\gamma} = \mathring{\alpha} \cdot \mathring{\beta} \in \mathfrak{IO}(I, [0])$) and $\overline{\delta} = \overline{\beta} \cdot \overline{\alpha} \in \mathfrak{IC}(I, [0])$ (i.e., $\mathring{\delta} = \mathring{\beta} \cdot \mathring{\alpha} \in \mathfrak{IO}(I, [0])$). Hence we get the following:

Proposition 5. $\Im \Im (I, [0])$ is an inverse semigroup.

Given two partially ordered sets (A, \leq_A) and (B, \leq_B) , the *lexicographical order* $\leq_{\mathbf{lex}}$ on the Cartesian product $A \times B$ is defined as follows:

 $(a,b) \leq_{\mathbf{lex}} (a',b')$ if and only if $a <_A a'$ or $(a = a' \text{ and } b \leq_B b')$.

In this case we shall say that the partially ordered set $(A \times B, \leq_{\mathbf{lex}})$ is the *lexicographic product* of partially ordered sets (A, \leq_A) and (B, \leq_B) and it is denoted by $A \times_{\mathbf{lex}} B$. We observe that a lexicographic order of two linearly ordered sets is a linearly ordered set. Hereafter for every $\overline{\alpha} \in \mathfrak{IC}(I, [0])$ and $\overset{\circ}{\beta} \in \mathfrak{IO}(I, [0])$ we denote $d_{\alpha} = \max\{\operatorname{dom}\overline{\alpha}\}, r_{\alpha} = \max\{\operatorname{ran}\overline{\alpha}\}, d_{\beta} = \sup\{\operatorname{dom}\overset{\circ}{\beta}\}$ and $r_{\beta} = \sup\{\operatorname{ran}\overset{\circ}{\beta}\}$. Obviously we have that $d_{\alpha} = \sup\{\operatorname{dom}\overset{\circ}{\alpha}\}$ and $r_{\alpha} = \sup\{\operatorname{ran}\overset{\circ}{\alpha}\}$ for any $\overset{\circ}{\alpha} \in \mathfrak{IO}(I, [0])$.

Proposition 6. The following conditions hold:

- (i) $E(\mathfrak{II}(I,[0])) = E(\mathfrak{IC}(I,[0])) \cup E(\mathfrak{II}(I,[0])).$
- (*ii*) If $\overline{\alpha}, \overset{\circ}{\alpha}, \overline{\beta}, \overset{\circ}{\beta} \in E(\mathfrak{II}(I, [0]))$, then
 - (a) $\mathring{\alpha} \leqslant \overline{\alpha};$
 - (b) $\overline{\alpha} \leq \overline{\beta}$ if and only if $d_{\alpha} \leq d_{\beta}$ $(r_{\alpha} \leq r_{\beta})$;
 - (c) $\overset{\circ}{\alpha} \leq \overset{\circ}{\beta}$ if and only if $d_{\alpha} \leq d_{\beta}$ $(r_{\alpha} \leq r_{\beta})$;
 - (d) $\overline{\alpha} \leq \overset{\circ}{\beta}$ if and only if $d_{\alpha} < d_{\beta}$ $(r_{\alpha} < r_{\beta})$; and
 - (e) $\mathring{\alpha} \leq \overline{\beta}$ if and only if $d_{\alpha} \leq d_{\beta}$ $(r_{\alpha} \leq r_{\beta})$.
- (iii) The semilattice $E(\mathfrak{II}(I,[0]))$ is isomorphic to the lexicographic product $(0;1] \times_{lex} \{0;1\}$ of the semilattices $((0;1],\min)$ and $(\{0;1\},\min)$ under the mapping $(\overline{\alpha})\mathfrak{i} = (d_{\alpha};1)$ and $(\mathring{\alpha})\mathfrak{i} = (d_{\alpha};0)$, and hence $E(\mathfrak{II}(I,[0]))$ is a linearly ordered semilattice.
- (iv) The elements α and β of the semigroup $\Im(I, [0])$ are \mathscr{R} -equivalent in $\Im(I, [0])$ provides either $\alpha, \beta \in \Im \mathfrak{C}(I, [0])$ or $\alpha, \beta \in \Im \mathfrak{O}(I, [0])$ and moreover, we have that
 - (a) $\overline{\alpha}\mathscr{R}\overline{\beta}$ in $\Im(I, [0])$ if and only if $d_{\alpha} = d_{\beta}$; and
 - (b) $\mathring{\alpha}\mathscr{R}\overset{\circ}{\beta}$ in $\Im(I, [0])$ if and only if $d_{\alpha} = d_{\beta}$.
- (v) The elements α and β of the semigroup $\mathfrak{II}(I, [0])$ are \mathscr{L} -equivalent in $\mathfrak{II}(I, [0])$ provides either $\alpha, \beta \in \mathfrak{IC}(I, [0])$ or $\alpha, \beta \in \mathfrak{IO}(I, [0])$ and moreover, we have that
 - (a) $\overline{\alpha}\mathscr{L}\overline{\beta}$ in $\Im\Im(I, [0])$ if and only if $r_{\alpha} = r_{\beta}$; and
 - (b) $\mathring{\alpha}\mathscr{L}\overset{\circ}{\beta}$ in $\Im\Im(I,[0])$ if and only if $r_{\alpha} = r_{\beta}$.
- (vi) The elements α and β of the semigroup $\mathfrak{II}(I, [0])$ are \mathscr{H} -equivalent in $\mathfrak{II}(I, [0])$ provides either $\alpha, \beta \in \mathfrak{IC}(I, [0])$ or $\alpha, \beta \in \mathfrak{IO}(I, [0])$ and moreover, we have that
 - (a) $\overline{\alpha}\mathscr{H}\overline{\beta}$ in $\Im\Im(I,[0])$ if and only if $d_{\alpha} = d_{\beta}$ and $r_{\alpha} = r_{\beta}$; and
 - (b) $\overset{\circ}{\alpha}\mathscr{H}^{\overset{\circ}{\beta}}$ in $\Im \Im (I, [0])$ if and only if $d_{\alpha} = d_{\beta}$ and $r_{\alpha} = r_{\beta}$.

(vii) $\Im \Im (I, [0])$ is a simple semigroup.

(viii) The semigroup $\Im \Im (I, [0])$ has only two distinct \mathscr{D} -classes: that are inverse subsemigroups $\Im \mathfrak{C}(I, [0])$ and $\Im \mathfrak{O}(I, [0])$.

Proof. Statements (i), (ii) and (iii) follow from the definition of the semigroup $\Im(I, [0])$ and Proposition 5.

Proofs of statements (iv), (v) and (vi) follow from Proposition 5 and Theorem 1.17 [2] and are similar to statements (iv), (v) and (vi) of Proposition 2.

(vii) We shall show that $\Im(I, [0]) \cdot \alpha \cdot \Im(I, [0]) = \Im(I, [0])$ for every $\alpha \in \Im(I, [0])$. We fix arbitrary $\alpha, \beta \in \Im(I, [0])$ and show that there exist $\gamma, \delta \in \Im(I, [0])$ such that $\gamma \cdot \alpha \cdot \delta = \beta$.

We consider the following four cases:

- (1) $\alpha = \overline{\alpha} \in \mathfrak{IC}(I, [0]) \text{ and } \beta = \overline{\beta} \in \mathfrak{IC}(I, [0]);$
- (2) $\alpha = \overline{\alpha} \in \mathfrak{IC}(I, [0]) \text{ and } \beta = \overset{\circ}{\beta} \in \mathfrak{IO}(I, [0]);$
- (3) $\alpha = \mathring{\alpha} \in \mathfrak{IO}(I, [0]) \text{ and } \beta = \overline{\beta} \in \mathfrak{IC}(I, [0]);$
- (4) $\alpha = \overset{\circ}{\alpha} \in \mathfrak{IO}(I, [0]) \text{ and } \beta = \overset{\circ}{\beta} \in \mathfrak{IO}(I, [0]).$

By Λ_a^b we denote a linear partial map from I into I with dom $\Lambda_a^b = [0; a]$ and ran $\Lambda_a^b = [0; b]$, and defined by the formula: $(x)\Lambda_a^b = \frac{b}{a} \cdot x$, for $x \in \text{dom } \Lambda_a^b$.

We put:

$$\begin{split} \gamma &= \Lambda_{d_{\beta}}^{d_{\alpha}} \text{ and } \delta = \alpha^{-1} \cdot \Lambda_{d_{\alpha}}^{d_{\beta}} \cdot \beta \text{ in case (1)}; \\ \gamma &= \Lambda_{d_{\beta}}^{d_{\alpha}} \text{ and } \delta = \alpha^{-1} \cdot \Lambda_{d_{\alpha}}^{d_{\beta}} \cdot \beta \text{ in case (2)}; \\ \gamma &= \Lambda_{d_{\beta}}^{a} \text{ and } \delta = \alpha^{-1} \cdot \Lambda_{a}^{d_{\beta}} \cdot \beta, \text{ where } 0 < a < d_{\alpha}, \text{ in case (3)}; \\ \gamma &= \Lambda_{d_{\beta}}^{d_{\alpha}} \text{ and } \delta = \alpha^{-1} \cdot \Lambda_{d_{\alpha}}^{d_{\beta}} \cdot \beta \text{ in case (4)}. \end{split}$$

Elementary verifications show that $\gamma \cdot \alpha \cdot \delta = \beta$, and this completes the proof of assertion (*vii*).

Statement (viii) follows from statements (iv) and (v).

On the semigroup $\mathfrak{II}(I, [0])$ we determine a relation $\sim_{\mathfrak{id}}$ by the following way. Let $\mathfrak{i}: \mathfrak{IC}(I, [0]) \to \mathfrak{IO}(I, [0])$ be a map which is defined in the proof of Proposition 4. We put

$$\alpha \sim_{i\mathfrak{d}} \beta$$
 if and only if $\alpha = \beta$ or $(\alpha)i\mathfrak{d} = \beta$ or $(\beta)i\mathfrak{d} = \alpha$,

for $\alpha, \beta \in \mathfrak{II}(I, [0])$. Simple verifications show that $\sim_{\mathfrak{id}}$ is an equivalence relation on the semigroup $\mathfrak{II}(I, [0])$.

The following proposition immediately follows from Proposition 1(*i*) and the definition of the relation $\sim_{i\mathfrak{d}}$ on the semigroup $\mathfrak{II}(I, [0])$:

Proposition 7. Let α and β are elements of the semigroup $\Im \Im (I, [0])$. Then $\alpha \sim_{i\mathfrak{d}} \beta$ in $\Im \Im (I, [0])$ if and only if the following conditions hold:

- (i) $d_{\alpha} = d_{\beta};$
- (*ii*) $r_{\alpha} = r_{\beta};$
- (*iii*) $(x)\alpha = (x)\beta$ for every $x \in [0, d_{\alpha})$;
- (iv) $(y)\alpha = (y)\beta$ for every $y \in [0, d_{\beta})$.

Proposition 8. The relation $\sim_{i\mathfrak{d}}$ is a congruence on the semigroup $\mathfrak{II}(I, [0])$. Moreover, the quotient semigroup $\mathfrak{II}(I, [0])/\sim_{i\mathfrak{d}}$ is isomorphic to the semigroup $\mathfrak{IC}(I, [0])$.

Proof. We fix arbitrary $\overline{\alpha}, \overset{\circ}{\alpha}, \overline{\beta}, \overset{\circ}{\gamma} \in \mathfrak{II}(I, [0])$. It is complete to show that the following conditions hold:

- (i) $(\overline{\alpha} \cdot \overline{\beta}) \sim_{\mathfrak{id}} (\overset{\circ}{\alpha} \cdot \overline{\beta});$
- (*ii*) $(\overline{\beta} \cdot \overline{\alpha}) \sim_{\mathfrak{id}} (\overline{\beta} \cdot \mathring{\alpha});$
- (*iii*) $(\overline{\alpha} \cdot \mathring{\gamma}) \sim_{\mathfrak{id}} (\mathring{\alpha} \cdot \mathring{\gamma});$
- $(iv) \ (\mathring{\gamma} \cdot \overline{\alpha}) \sim_{\mathfrak{id}} (\mathring{\gamma} \cdot \mathring{\alpha}).$

Suppose case (i) holds. If $d_{\beta} \leq r_{\alpha}$, then Proposition 1(i) implies that $(x) (\overline{\alpha} \cdot \overline{\beta}) = (x) (\mathring{\alpha} \cdot \overline{\beta})$ for all $x \in [0, (d_{\beta})(\overline{\alpha})^{-1})$, and hence by Proposition 7 we get that $(\overline{\alpha} \cdot \overline{\beta}) \sim_{i\mathfrak{d}} (\mathring{\alpha} \cdot \overline{\beta})$. If $d_{\beta} > r_{\alpha}$, then Proposition 1(i) implies that $(x) (\overline{\alpha} \cdot \overline{\beta}) = (x) (\mathring{\alpha} \cdot \overline{\beta})$ for all $x \in [0, d_{\alpha})$, and hence by Proposition 7 we get that $(\overline{\alpha} \cdot \overline{\beta}) \sim_{i\mathfrak{d}} (\mathring{\alpha} \cdot \overline{\beta})$.

In cases (*ii*), (*iii*) and (*iv*) the proofs are similar. Hence $\sim_{i\mathfrak{d}}$ is a congruence on the semigroup $\mathfrak{II}(I, [0])$.

Let $\Phi_{\sim_{i\mathfrak{d}}} \colon \mathfrak{II}(I, [0]) \to \mathfrak{IC}(I, [0])$ a natural homomorphism which is generated by the congruence $\sim_{i\mathfrak{d}}$. Since the restriction $\Phi_{\sim_{i\mathfrak{d}}}|_{\mathfrak{IC}(I, [0])} \colon$ $\mathfrak{IC}(I, [0]) \to \mathfrak{IC}(I, [0])$ of the natural homomorphism $\Phi_{\sim_{i\mathfrak{d}}} \colon \mathfrak{II}(I, [0]) \to$ $\mathfrak{IC}(I, [0])$ is an identity map we conclude that the semigroup $(\mathfrak{II}(I, [0]))\Phi_{\sim_{i\mathfrak{d}}}$ is isomorphic to the semigroup $\mathfrak{IC}(I, [0])$. \Box

Theorem 2. Let \mathfrak{K} be a non-trivial congruence on the semigroup $\mathfrak{II}(I, [0])$. Then the quotient semigroup $\mathfrak{II}(I, [0])/\mathfrak{K}$ is either a group or $\mathfrak{II}(I, [0])/\mathfrak{K}$ is isomorphic to the semigroup $\mathfrak{IC}(I, [0])$.

Proof. Since the subsemigroup of idempotents of the semigroup $\Im(I, [0])$ is linearly ordered we have that similar arguments as in the proof of Theorem 1 imply that there exist distinct idempotents ε and ι in $\Im(I, [0])$ such that $\varepsilon \mathfrak{K} \iota$ and $\varepsilon \leq \iota$. If the set $(\varepsilon, \iota) = \{ \upsilon \in E(\Im(I, [0])) \mid \varepsilon < \upsilon < \iota \}$ is non-empty, then Lemma 1 and Theorem 1 imply that the quotient semigroup $\Im(I, [0])/\mathfrak{R}$ is inverse and it contains only one idempotent, and hence by Lemma II.1.10 from [6] we get that $\Im(I, [0])/\mathfrak{R}$ is a group. Otherwise Proposition 7(ii) implies that $\varepsilon = \mathring{\alpha}$ and $\iota = \overline{\alpha}$ for some idempotents $\mathring{\alpha} \in \Im(I, [0])$ and $\overline{\alpha} \in \Im \mathfrak{C}(I, [0])$.

Since by Proposition 2(*ix*) the semigroup $\mathfrak{IC}(I, [0])$ is simple we get that for every $\overline{\beta} \in \mathfrak{IC}(I, [0])$ there exist $\overline{\gamma}, \overline{\delta} \in \mathfrak{IC}(I, [0])$ such that $\overline{\beta} = \overline{\gamma} \cdot \overline{\alpha} \cdot \overline{\delta}$. Since $\mathfrak{IC}(I, [0])$ is an inverse semigroup and all elements of $\mathfrak{IC}(I, [0])$ are monotone partial maps of the unit interval I we conclude that that

$$\overline{\beta} = \overline{\beta} \cdot \overline{\beta}^{-1} \cdot \overline{\gamma} \cdot \overline{\alpha} \cdot \overline{\alpha}^{-1} \cdot \overline{\alpha} \cdot \overline{\alpha}^{-1} \cdot \overline{\alpha} \cdot \overline{\delta} \cdot \overline{\beta}^{-1} \cdot \overline{\beta},$$

and hence for elements

$$\overline{\gamma}_{\beta} = \overline{\beta} \cdot \overline{\beta}^{-1} \cdot \overline{\gamma} \cdot \overline{\alpha} \cdot \overline{\alpha}^{-1} \qquad \text{and} \qquad \overline{\delta}_{\beta} = \overline{\alpha}^{-1} \cdot \overline{\alpha} \cdot \overline{\delta} \cdot \overline{\beta}^{-1} \cdot \overline{\beta},$$

of the semigroup $\mathfrak{IC}(I, [0])$ the following conditions hold:

$$\overline{\beta} = \overline{\gamma}_{\beta} \cdot \overline{\alpha} \cdot \overline{\delta}_{\beta}, \quad \operatorname{dom} \overline{\beta} = \operatorname{dom} \overline{\gamma}_{\beta}, \quad \operatorname{ran} \overline{\gamma}_{\beta} = \operatorname{dom} \overline{\alpha}, \quad \operatorname{ran} \overline{\alpha} = \operatorname{dom} \overline{\delta}_{\beta}$$

and
$$\operatorname{ran} \overline{\beta} = \operatorname{ran} \overline{\delta}_{\beta}.$$

Analogously, since all elements of the semigroups $\mathfrak{IC}(I, [0])$ and $\mathfrak{IO}(I, [0])$ are monotone partial maps of I we get that $\mathring{\beta} = \mathring{\gamma}_{\beta} \cdot \mathring{\alpha} \cdot \mathring{\delta}_{\beta}$ and hence $\overline{\beta}\mathfrak{R}\mathring{\beta}$. This implies that the congruence \mathfrak{R} on the semigroup $\mathfrak{IO}(I, [0])$ coincides with the congruence $\sim_{\mathfrak{id}}$ on $\mathfrak{IO}(I, [0])$. Then Proposition 8 implies that the quotient semigroup $\mathfrak{IO}(I, [0])/\mathfrak{K}$ is isomorphic to the semigroup $\mathfrak{IC}(I, [0])$.

By S_2 we denote the cyclic group of order 2.

Theorem 3. For arbitrary $a, b \in (0, 1)$ the semigroups $\mathfrak{IC}(I, [a])$ and $\mathfrak{IC}(I, [b])$ are isomorphic. Moreover, for every $a \in (0, 1)$ the semigroup $\mathfrak{IC}(I, [a])$ is isomorphic to the direct product

$$S_2 \times \mathfrak{IC}(I, [0]) \times \mathfrak{IC}(I, [0]).$$

Proof. We fix an arbitrary $a \in (0, 1)$. Obviously, the semigroup $\mathfrak{IC}(I, [a])$ is isomorphic to the direct product $S_2 \times \mathfrak{IC}^{\nearrow}(I, [a])$, where $\mathfrak{IC}^{\nearrow}(I, [a])$ is a subsemigroup of $\mathfrak{IC}(I, [a])$ which consists of monotone partial maps of the unit interval I.

By $\mathfrak{IC}^{\checkmark}(I \sqcup I, [0])$ we denote the semigroup of all monotone convex closed partial local homeomorphisms α of the interval [-1,1] such that $(0)\alpha = 0$ and $0 \in \operatorname{Int}_{[-1,1]}(\operatorname{dom} \alpha)$. We define a map $\mathfrak{i} \colon \mathfrak{IC}^{\checkmark}(I, [a]) \to$ $\mathfrak{IC}^{\backsim}(I \sqcup I, [0])$ by the following way. For an arbitrary $\alpha \in \mathfrak{IC}^{\backsim}(I, [a])$ we determine a partial map $\beta = (\alpha)\mathfrak{i} \in \mathfrak{IC}^{\backsim}(I \sqcup I, [0])$ as follows:

(i)
$$\operatorname{dom} \beta = \left[\frac{d_m(\alpha) - a}{a}, \frac{d_M(\alpha) - a}{1 - a}\right]$$
, where $d_m(\alpha) = \min\{\operatorname{dom} \alpha\}$
and $d_M(\alpha) = \max\{\operatorname{dom} \alpha\}$;

(*ii*)
$$\operatorname{ran} \beta = \left[\frac{r_m(\alpha) - a}{a}, \frac{r_M(\alpha) - a}{1 - a}\right]$$
, where $r_m(\alpha) = \min\{\operatorname{ran} \alpha\}$ and $r_M(\alpha) = \max\{\operatorname{ran} \alpha\}$; and

$$(iii) \ (x)\beta = \begin{cases} (ax+a)\alpha, & \text{if } x \leq 0\\ ((1-a)x+a)\alpha, & \text{if } x \geq 0 \end{cases}, \text{ for all } x \in \operatorname{dom} \beta.$$

Simple verifications show that such defined map $\mathfrak{i}: \mathfrak{IC}^{(I,[a])} \to \mathfrak{IC}^{(I \sqcup I,[0])}$ is an isomorphism. This completes the first part of the proof of the theorem.

Next we define a map $\mathfrak{j}: \mathfrak{IC}^{\nearrow}(I \sqcup I, [0]) \to \mathfrak{IC}(I, [0]) \times \mathfrak{IC}(I, [0])$ by the following way. For an arbitrary $\alpha \in \mathfrak{IC}^{\nearrow}(I \sqcup I, [0])$ we determine a pair of partial maps $(\beta, \gamma) = (\alpha)\mathfrak{i} \in \mathfrak{IC}(I, [0]) \times \mathfrak{IC}(I, [0])$ as follows:

- (i) dom β = dom $\alpha \cap [0, 1]$ and ran β = ran $\alpha \cap [0, 1]$;
- (*ii*) dom $\gamma = \{-x \mid x \in \operatorname{dom} \alpha \cap [0, 1]\}$ and ran $\gamma = \{-x \mid x \in \operatorname{ran} \alpha \cap [0, 1]\};$
- (*iii*) $(x)\beta = (x)\alpha$ for $x \in \text{dom }\beta$; and
- (*iv*) $(x)\gamma = -(x)\alpha$ for $x \in \operatorname{dom} \gamma$.

Simple verifications show that such defined map $\mathfrak{j}: \mathfrak{IC}(I \sqcup I, [0]) \to \mathfrak{IC}(I, [0]) \times \mathfrak{IC}(I, [0])$ is an isomorphism. This completes the proof of the theorem. \Box

Theorem 3 implies the following:

Corollary 2. For arbitrary $a, b \in (0, 1)$ the semigroups $\mathfrak{II}(I, [a])$ and $\mathfrak{II}(I, [b])$ are isomorphic. Moreover, for every $a \in (0, 1)$ the semigroup $\mathfrak{II}(I, [a])$ is isomorphic to the direct product

$$S_2 \times \mathfrak{II}(I, [0]) \times \mathfrak{II}(I, [0]).$$

References

- O. Andersen, Ein Bericht über die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952.
- [2] A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups*, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
- [3] L. M. Gluskin, The semi-group of homeomorphic mappings of an interval, Mat. Sb. (N.S.), 49(91):1 (1959), 13-28 (in Russian).
- [4] L. M. Gluskin, On some semigroup of continuous functions, Dopovidi AN URSR no. 5 (1960), 582–585 (in Ukrainian).
- [5] W. D. Munn, Uniform semilattices and bisimple inverse semigroups, Quart. J. Math. 17:1 (1966), 151-159.
- [6] M. Petrich, Inverse Semigroups, John Wiley & Sons, New York, 1984.
- [7] L. B. Shneperman, Semigroups of continuous transformations, Dokl. Akad. Nauk SSSR 144:3 (1962), 509-511 (in Russian).
- [8] L. B. Shneperman, Semigroups of continuous transformations of closed sets of the number axis, Izv. Vyssh. Uchebn. Zaved. Mat., no. 6 (1965), 166–175 (in Russian).
- [9] L. B. Shneperman, The semigroups of the homeomorphisms of a simple arc, Izv. Vyssh. Uchebn. Zaved. Mat., no. 2 (1966), 127-136 (in Russian).
- [10] V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119–1122 (in Russian).

CONTACT INFORMATION

Ivan Chuchman Department of Mechanics and Mathematics, Ivan Franko Lviv National University, Universytetska 1, Lviv, 79000, Ukraine *E-Mail:* chuchman_i@mail.ru

Received by the editors: 22.09.2011 and in final form 22.09.2011.