On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point

Ivan Chuchman

Communicated by M. Ya. Komarnytskyj

Abstract. In this paper we study the semigroup $\mathfrak{I C}(I,[a])$ $(\mathfrak{I O}(I,[a]))$ of closed (open) connected partial homeomorphisms of the unit interval I with a fixed point $a \in I$. We describe left and right ideals of $\mathfrak{I C}(I,[0])$ and the Green's relations on $\mathfrak{I C}(I,[0])$. We show that the semigroup $\mathfrak{I C}(I,[0])$ is bisimple and every nontrivial congruence on $\mathfrak{I C}(I,[0])$ is a group congruence. Also we prove that the semigroup $\mathfrak{I C}(I,[0])$ is isomorphic to the semigroup $\mathfrak{I O}(I,[0])$ and describe the structure of a semigroup $\mathfrak{I I}(I,[0])=$ $\mathfrak{I C}(I,[0]) \sqcup \mathfrak{I} \mathfrak{O}(I,[0])$. As a corollary we get structures of semigroups $\mathfrak{I C}(I,[a])$ and $\mathfrak{I V}(I,[a])$ for an interior point $a \in I$.

1. Introduction and preliminaries

Furthermore we shall follow the terminology of [2] and [6]. For a semigroup S we denote the semigroup S with the adjoined unit by S^{1} (see [2]).

A semigroup S is called inverse if for any element $x \in S$ there exists a unique element $x^{-1} \in S$ (called the inverse of x) such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$. If S is an inverse semigroup, then the function inv: $S \rightarrow S$ which assigns to every element x of S its inverse element x^{-1} is called inversion.

[^0]If S is a semigroup, then we shall denote the subset of idempotents in S by $E(S)$. If S is an inverse semigroup, then $E(S)$ is closed under multiplication and we shall refer to $E(S)$ a band (or the band of S). If the band $E(S)$ is a non-empty subset of S, then the semigroup operation on S determines the following partial order \leqslant on $E(S): e \leqslant f$ if and only if $e f=f e=e$. This order is called the natural partial order on $E(S)$. A semilattice is a commutative semigroup of idempotents. A semilattice E is called linearly ordered or a chain if its natural order is a linear order. Let E be a semilattice and $e \in E$. We denote $\downarrow e=\{f \in E \mid f \leqslant e\}$ and $\uparrow e=\{f \in E \mid e \leqslant f\}$.

If S is a semigroup, then we shall denote by $\mathscr{R}, \mathscr{L}, \mathscr{J}, \mathscr{D}$ and \mathscr{H} the Green relations on S (see [2]):

$$
\begin{aligned}
& a \mathscr{R} b \text { if and only if } a S^{1}=b S^{1} ; \\
& a \mathscr{L} b \text { if and only if } S^{1} a=S^{1} b ; \\
& a \mathscr{J} b \text { if and only if } S^{1} a S^{1}=S^{1} b S^{1} ; \\
& \mathscr{D}=\mathscr{L} \circ \mathscr{R}=\mathscr{R} \circ \mathscr{L} ; \\
& \mathscr{H}=\mathscr{L} \cap \mathscr{R} .
\end{aligned}
$$

A semigroup S is called simple if S does not contain proper two-sided ideals and bisimple if S has only one \mathscr{D}-class.

A congruence \mathfrak{C} on a semigroup S is called non-trivial if \mathfrak{C} is distinct from universal and identity congruence on S, and group if the quotient semigroup S / \mathfrak{C} is a group.

The bicyclic semigroup $\mathscr{C}(p, q)$ is the semigroup with the identity 1 generated by elements p and q subject only to the condition $p q=1$. The distinct elements of $\mathscr{C}(p, q)$ are exhibited in the following useful array:

$$
\begin{array}{ccccc}
1 & p & p^{2} & p^{3} & \ldots \\
q & q p & q p^{2} & q p^{3} & \ldots \\
q^{2} & q^{2} p & q^{2} p^{2} & q^{2} p^{3} & \ldots \\
q^{3} & q^{3} p & q^{3} p^{2} & q^{3} p^{3} & \ldots
\end{array}
$$

The bicyclic semigroup is bisimple and every one of its congruences is either trivial or a group congruence. Moreover, every non-annihilating homomorphism h of the bicyclic semigroup is either an isomorphism or the image of $\mathscr{C}(p, q)$ under h is a cyclic group (see [2, Corollary 1.32]). The bicyclic semigroup plays an important role in algebraic theory of semigroups and in the theory of topological semigroups. For example the well-known Andersen's result [1] states that a (0-) simple semigroup
is completely ($0-$)simple if and only if it does not contain the bicyclic semigroup.

Let \mathscr{I}_{X} denote the set of all partial one-to-one transformations of an non-empty set X together with the following semigroup operation:

$$
x(\alpha \beta)=(x \alpha) \beta \quad \text { if } \quad x \in \operatorname{dom}(\alpha \beta)=\{y \in \operatorname{dom} \alpha \mid y \alpha \in \operatorname{dom} \beta\}
$$

for $\alpha, \beta \in \mathscr{I}_{X}$. The semigroup \mathscr{I}_{X} is called the symmetric inverse semigroup over the set X (see [2, Section 1.9]). The symmetric inverse semigroup was introduced by Wagner [10] and it plays a major role in the theory of semigroups.

Let I be an interval $[0,1]$ with the usual topology. A partial map $\alpha: I \rightharpoonup I$ is called:

- closed, if $\operatorname{dom} \alpha$ and ran α are closed subsets in I;
- open, if $\operatorname{dom} \alpha$ and ran α are open subsets in I;
- convex, if dom α and ran α are convex non-singleton subsets in I;
- monotone, if $x_{1} \leqslant x_{2}$ implies $\left(x_{1}\right) \alpha \leqslant\left(x_{2}\right) \alpha$, for all $x_{1}, x_{2} \in \operatorname{dom} \alpha$;
- a local homeomorphism, if the restriction $\left.\alpha\right|_{\operatorname{dom} \alpha}: \operatorname{dom} \alpha \rightarrow \operatorname{ran} \alpha$ is a homeomorphism.

We fix an arbitrary $a \in I$. Hereafter we shall denote by:

- $\mathfrak{I C}(I,[a])$ the semigroup of all closed connected partial homeomorphisms α such that $\operatorname{Int}_{I}(\operatorname{dom} \alpha) \neq \varnothing$ and $(a) \alpha=a$;
- $\mathfrak{I O}(I,[a])$ the semigroup of all open connected partial homeomorphisms α such that $(a) \alpha=a$;
- $\mathfrak{H}(I)$ the group of all homeomorphisms of I;
- $\mathfrak{H}^{\text {}}(I)$ the group of all monotone homeomorphisms of I;
- \mathbb{I} the identity map from I onto I.

Remark 1. We observe that for every $a \in I$ the semigroups $\mathfrak{I C}(I,[a])$ and $\mathfrak{I} \mathfrak{O}(I,[a])$ are inverse subsemigroups of the symmetric inverse semigroup \mathscr{I}_{I} over the set I.

In $[3,4]$ Gluskin studied the semigroup S of homeomorphic transformations of the unit interval. He described all ideals, homomorphisms and automorphisms of the semigroup S and congruence-free subsemigroups of S. This studies was continued in [7] by Shneperman. In [9] Shneperman
described the structure of the semigroup of homeomorphisms of a simple arc. In the paper [8] he studied a semigroup $G(X)$ of all continuous transformations of a closed subset X of the real line.

In our paper we study the semigroup $\mathfrak{I C}(I,[a])(\mathfrak{I O}(I,[a]))$ of closed (open) connected partial homeomorphisms of the unit interval I with a fixed point $a \in I$. We describe left and right ideals of $\mathfrak{I C}(I,[0])$ and the Green's relations on $\mathfrak{I C}(I,[0])$. We show that the semigroup $\mathfrak{I C}(I,[0])$ is bisimple and every non-trivial congruence on $\mathfrak{I C}(I,[0])$ is a group congruence. Also we prove that the semigroup $\mathfrak{I C}(I,[0])$ is isomorphic to the semigroup $\mathfrak{I O}(I,[0])$ and describe the structure of a semigroup $\mathfrak{I I}(I,[0])=\mathfrak{I C}(I,[0]) \sqcup \mathfrak{I O}(I,[0])$. As a corollary we get structures of semigroups $\mathfrak{I C}(I,[a])$ and $\mathfrak{I V}(I,[a])$ for an interior point $a \in I$.

2. On the semigroup $\mathfrak{I C}(I,[0])$

Proposition 1. The following conditions hold:
(i) every element of the semigroup $\mathfrak{I C}(I,[0])(\mathfrak{I D}(I,[1]))$ is a monotone partial map;
(ii) the semigroups $\mathfrak{I C}(I,[0])$ and $\mathfrak{I C}(I,[1])$ are isomorphic;
(iii) $\max \{\operatorname{dom} \alpha\}$ exists for every $\alpha \in \mathfrak{I C}(I,[0])$;
(iv) $\sup \{\operatorname{dom} \alpha\}$ exists for every $\alpha \in \mathfrak{I V}(I,[0])$;
(v) (0) $\alpha=0$ and (1) $\alpha=1$ for every $\alpha \in \mathfrak{H}^{\nearrow}(I)$.

Proof. Statements $(i),(i i i),(i v)$ and (v) follow from elementary properties of real-valued continuous functions.
(ii) A homomorphism $\mathfrak{i}: \mathfrak{I C}(I,[0]) \rightarrow \mathfrak{I C}(I,[1])$ we define by the following way:

$$
\begin{aligned}
(\alpha) \mathfrak{i}=\beta, \quad \text { where } & \operatorname{dom} \beta=\{1-x \mid x \in \operatorname{dom} \alpha\} \\
& \operatorname{ran} \beta=\{1-x \mid x \in \operatorname{ran} \alpha\}, \text { and } \\
& (a) \beta=1-(1-a) \alpha \text { for all } a \in \operatorname{dom} \beta
\end{aligned}
$$

Simple verifications show that such defined map \mathfrak{i} is an isomorphism from the semigroup $\mathfrak{I C}(I,[0])$ onto the semigroup $\mathfrak{I O}(I,[1])$.

Proposition 2. The following statements hold:
(i) an element α of the semigroup $\mathfrak{I C}(I,[0])$ is an idempotent if and only if $(x) \alpha=x$ for every $x \in \operatorname{dom} \alpha$;
(ii) If $\varepsilon, \iota \in E(\Im \mathfrak{I C}(I,[0]))$, then $\varepsilon \leqslant \iota$ if and only if $\operatorname{dom} \varepsilon \subseteq \operatorname{dom} \iota$;
(iii) The semilattice $E(\mathfrak{I C}(I,[0]))$ is isomorphic to the semilattice $((0,1]$, min) under the mapping $(\varepsilon) h=\max \{\operatorname{dom} \varepsilon\}$;
(iv) $\alpha \mathscr{R} \beta$ in $\mathfrak{I C}(I,[0])$ if and only if $\operatorname{dom} \alpha=\operatorname{dom} \beta$;
(v) $\alpha \mathscr{L} \beta$ in $\mathfrak{I C}(I,[0])$ if and only if $\operatorname{ran} \alpha=\operatorname{ran} \beta$.
(vi) $\alpha \mathscr{H} \beta$ in $\mathfrak{I C}(I,[0])$ if and only if $\operatorname{dom} \alpha=\operatorname{dom} \beta$ and $\operatorname{ran} \alpha=\operatorname{ran} \beta$.
(vii) for every distinct idempotents $\varepsilon, \iota \in \mathfrak{I C}(I,[0])$ there exists an element α of the semigroup $\mathfrak{I C}(I,[0])$ such that $\alpha \cdot \alpha^{-1}=\varepsilon$ and $\alpha^{-1} \cdot \alpha=\iota$;
(viii) $\alpha \mathscr{D} \beta$ for all $\alpha, \beta \in \mathfrak{I C}(I,[0])$, and hence the semigroup $\mathfrak{I C}(I,[0])$ is bisimple;
(ix) $\alpha \mathscr{J} \beta$ for all $\alpha, \beta \in \mathfrak{I C}(I,[0])$, and hence the semigroup $\mathfrak{I C}(I,[0])$ is simple;
(x) a subset \mathscr{L} is a left ideal of $\mathfrak{I C}(I,[0])$ if and only if there exists $a \in(0,1]$ such that either $\mathscr{L}=\{\alpha \in \mathfrak{I C}(I,[0]) \mid \operatorname{ran} \alpha \subseteq[0, a)\}$ or $\mathscr{L}=\{\alpha \in \mathfrak{I C}(I,[0]) \mid \operatorname{ran} \alpha \subseteq[0, a]\} ;$
(xi) a subset \mathscr{R} is a right ideal of $\mathfrak{I C}(I,[0])$ if and only if there exists a $a \in(0,1]$ such that either $\mathscr{R}=\{\alpha \in \mathfrak{I C}(I,[0]) \mid \operatorname{dom} \alpha \subseteq[0, a)\}$ or $\mathscr{R}=\{\alpha \in \mathfrak{I C}(I,[0]) \mid \operatorname{dom} \alpha \subseteq[0, a]\}$.

Proof. Statements (i), (ii) and (iii) are trivial and they follow from the definition of the semigroup $\mathfrak{I C}(I,[0])$.
(iv) Let be $\alpha, \beta \in \mathfrak{I C}(I,[0])$ such that $\alpha \mathscr{R} \beta$. Since $\alpha \mathfrak{I C}(I,[0])=$ $\beta \mathfrak{I} \mathfrak{C}(I,[0])$ and $\mathfrak{I C}(I,[0])$ is an inverse semigroup, Theorem 1.17 [2] implies that

$$
\alpha \mathfrak{I C}(I,[0])=\alpha \alpha^{-1} \mathfrak{I C}(I,[0]) \quad \text { and } \quad \beta \mathfrak{I C}(I,[0])=\beta \beta^{-1} \mathfrak{I C}(I,[0])
$$

and hence we have that $\alpha \alpha^{-1}=\beta \beta^{-1}$. Therefore we get that $\operatorname{dom} \alpha=$ $\operatorname{dom} \beta$.

Conversely, let be $\alpha, \beta \in \mathfrak{I C}(I,[0])$ such that $\operatorname{dom} \alpha=\operatorname{dom} \beta$. Then $\alpha \alpha^{-1}=\beta \beta^{-1}$. Since $\mathfrak{I C}(I,[0])$ is an inverse semigroup, Theorem 1.17 [2] implies that

$$
\alpha \mathfrak{I C}(I,[0])=\alpha \alpha^{-1} \mathfrak{I C}(I,[0])=\beta \beta^{-1} \mathfrak{I C}(I,[0])=\beta \mathfrak{I C}(I,[0])
$$

and hence $\alpha \mathfrak{I C}(I,[0])=\beta \mathfrak{I} \mathfrak{C}(I,[0])$.
The proof of statement (v) is similar to $(i v)$.

Statement (vi) follows from (iv) and (v).
(vii) We fix arbitrary distinct idempotents ε and ι in $\mathfrak{I C}(I,[0])$. If $d_{\varepsilon}=\max \{\operatorname{dom} \varepsilon\}$ and $d_{\iota}=\max \{\operatorname{dom} \iota\}$, then $d_{\varepsilon} \neq 0, d_{\iota} \neq 0$, and ε and ι are identity maps of intervals $\left[0, d_{\varepsilon}\right]$ and $\left[0, d_{\iota}\right]$, respectively. We define a partial map $\alpha: I \rightharpoonup I$ as follows: $\operatorname{dom} \alpha=\left[0, d_{\varepsilon}\right], \quad \operatorname{ran} \alpha=\left[0, d_{\iota}\right] \quad$ and $\quad(x) \alpha=\frac{d_{\iota}}{d_{\varepsilon}} \cdot x$, for all $x \in \operatorname{dom} \alpha$.

Then we have that $\alpha \in \mathfrak{I C}(I,[0]), \alpha \cdot \alpha^{-1}=\varepsilon$ and $\alpha^{-1} \cdot \alpha=\iota$.
(viii) Statement (vii) and Lemma 1.1 from [5] imply that $\mathfrak{T C}(I,[0])$ is a bisimple semigroup.

Since $\mathscr{D} \subseteq \mathscr{J}$, statement (viii) implies assertion (ix).
(x) The semigroup operation on $\mathfrak{I C}(I,[0])$ implies that the sets $\{\alpha \in \mathfrak{I C}(I,[0]) \mid \operatorname{ran} \alpha \subseteq[0, a)\}$ and $\{\alpha \in \mathfrak{I C}(I,[0]) \mid \operatorname{ran} \alpha \subseteq[0, a]\}$ are left ideals in $\mathfrak{I C}(I,[0])$, for every $a \in(0,1]$.

Suppose that \mathscr{L} is an arbitrary left ideal of the semigroup $\mathfrak{I C}(I,[0])$. We fix any $\alpha \in \mathscr{L}$. Then statements $(i),(i i)$ and (v) imply that the left ideal \mathscr{L} contains all $\beta \in \mathscr{L}$ such that $\operatorname{ran} \beta \subseteq \operatorname{ran} \alpha$. We put

$$
A=\bigcup_{\alpha \in \mathscr{L}} \operatorname{ran} \alpha
$$

and let $a=\sup A$. If there exists $\alpha \in \mathscr{L}$ such that $\sup \operatorname{ran} \alpha=a$ then statement (v) implies that $\mathscr{L}=\{\alpha \in \mathfrak{I C}(I,[0]) \mid \operatorname{ran} \alpha \subseteq[0, a]\}$. In other case we have that statement (v) implies that

$$
\mathscr{L}=\{\alpha \in \mathfrak{I C}(I,[0]) \mid \operatorname{ran} \alpha \subseteq[0, a)\} .
$$

The proof of statement $(x i)$ is similar to statement (x).
Definitions of the group $\mathfrak{H}^{\boldsymbol{X}}(I)$ and the semigroup $\mathfrak{I} \mathfrak{C}(I,[0])$ imply the following:

Proposition 3. The group of units of the semigroup $\mathfrak{I C}(I,[0])$ is isomorphic to (i.e., coincides with) the group $\mathfrak{H}^{\nearrow}(I)$.

Proposition 2.20 of [2] states that every two subgroup which lie in some \mathscr{D}-class are isomorphic, and hence Proposition 3 implies the following:

Corollary 1. Every maximal subgroup of the semigroup $\mathfrak{I C}(I,[0])$ is isomorphic to $\mathfrak{H}^{\nearrow}(I)$.

Later we need the following two lemmas:

Lemma 1. Let \mathfrak{R} is an arbitrary congruence on a semilattice E and let a and b be elements of the semilattice E such that $a \mathfrak{R} b$. If $a \leqslant b$ then $a \mathfrak{R} c$ for all $c \in E$ such that $a \leqslant c \leqslant b$.

The proof of the lemma follows from the definition of a congruence on a semilattice.

Lemma 2. For arbitrary distinct idempotents α and β of the semigroup $\mathfrak{I C}(I,[0])$ there exists a subsemigroup \mathscr{C} in $\mathfrak{I C}(I,[0])$ such that $\alpha, \beta \in \mathscr{C}$ and \mathscr{C} is isomorphic to the bicyclic semigroup $\mathscr{C}(p, q)$.

Proof. Without loss of generality we can assume that $\beta \leqslant \alpha$ in $E(\mathfrak{I C}(I,[0]))$. We define partial maps $\gamma, \delta: I \rightharpoonup I$ as follows:
$\operatorname{dom} \gamma=\left[0, d_{\alpha}\right], \quad \operatorname{ran} \gamma=\left[0, d_{\beta}\right] \quad$ and $\quad(x) \gamma=\frac{d_{\beta}}{d_{\alpha}} \cdot x$, for all $x \in \operatorname{dom} \gamma$, and

$$
\operatorname{dom} \delta=\left[0, d_{\beta}\right], \quad \operatorname{ran} \delta=\left[0, d_{\alpha}\right] \quad \text { and } \quad(x) \delta=\frac{d_{\alpha}}{d_{\beta}} \cdot x, \text { for all } x \in \operatorname{dom} \delta
$$

where $d_{\alpha}=\max \{\operatorname{dom} \alpha\}$ and $d_{\beta}=\max \{\operatorname{dom} \beta\}$. Then we have that

$$
\alpha \cdot \gamma=\gamma \cdot \alpha=\gamma, \quad \alpha \cdot \delta=\delta \cdot \alpha=\delta, \quad \gamma \cdot \delta=\alpha \quad \text { and } \quad \delta \cdot \gamma=\beta \neq \alpha
$$

Hence by Lemma 1.31 from [2] we get that a subsemigroup in $\mathfrak{I C}(I,[0])$ which is generated by elements γ and δ is isomorphic to the bicyclic semigroup $\mathscr{C}(p, q)$.

Theorem 1. Every non-trivial congruence on the semigroup $\mathfrak{I C}(I,[0])$ is a group congruence.

Proof. Suppose that \mathfrak{K} is a non-trivial congruence on the semigroup $\mathfrak{I C}(I,[0])$. Then there exist distinct elements α and β in $\mathfrak{I C}(I,[0])$ such that $\alpha \mathfrak{K} \beta$. We consider the following three cases:
(i) α and β are idempotents in $\mathfrak{I C}(I,[0])$;
(ii) α and β are not \mathscr{H}-equivalent in $\mathfrak{I C}(I,[0])$;
(iii) α and β are \mathscr{H}-equivalent in $\mathfrak{I C}(I,[0])$.

Suppose case (i) holds and without loss of generality we assume that $\alpha \leqslant \beta$ in $E(\mathfrak{I C}(I,[0]))$. We define a partial map $\rho: I \rightharpoonup I$ as follows:

$$
\operatorname{dom} \rho=\operatorname{dom} \beta, \quad \operatorname{ran} \rho=I \quad \text { and } \quad(x) \rho=\frac{1}{d_{\beta}} \cdot x, \text { for all } x \in \operatorname{dom} \rho,
$$

where $d_{\beta}=\max \{\operatorname{dom} \beta\}$. Then we have that $\rho^{-1} \cdot \beta \cdot \rho=\mathbb{I}$ and hence by Proposition $1(i)$ the element $\alpha_{\beta}=\rho^{-1} \cdot \alpha \cdot \rho$ is an idempotent of the semigroup $\mathfrak{I C}(I,[0])$. Obviously, $\alpha_{\beta} \leqslant \mathbb{I}$ in $E(\Im \mathfrak{I}(I,[0])), \alpha_{\beta} \neq \mathbb{I}$ and $\alpha_{\beta} \mathfrak{K I I}$. Then by Lemma 2 there exist $\gamma, \delta \in \mathfrak{I C}(I,[0])$ such that
$\mathbb{I} \cdot \gamma=\gamma \cdot \mathbb{I}=\gamma, \quad \mathbb{I} \cdot \delta=\delta \cdot \mathbb{I}=\delta, \quad \gamma \cdot \delta=\mathbb{I} \quad$ and $\quad \delta \cdot \gamma=\alpha_{\beta} \neq \mathbb{I}$,
and a subsemigroup $\mathscr{C}\langle\gamma, \delta\rangle$ in $\mathfrak{I C}(I,[0])$ which is generated by elements γ and δ is isomorphic to the bicyclic semigroup $\mathscr{C}(p, q)$. Since by Corollary 1.32 from [2] every non-trivial congruence on the bicyclic semigroup $\mathscr{C}(p, q)$ is a group congruence on $\mathscr{C}(p, q)$ we get that all idempotents of the semigroup $\mathscr{C}\langle\gamma, \delta\rangle$ are \mathfrak{K}-equivalent. Also by Lemma 1.31 from [2] we get that every idempotent of the semigroup $\mathscr{C}\langle\gamma, \delta\rangle$ has a form

$$
\delta^{n} \cdot \gamma^{n}=(\underbrace{\delta \cdot \ldots \cdot \delta}_{n-\text { times }}) \cdot(\underbrace{\gamma \cdot \ldots \cdot \gamma}_{n \text {-times }}), \quad \text { where } \quad n=0,1,2,3, \ldots,
$$

and hence we get that $\operatorname{dom}\left(\delta^{n} \cdot \gamma^{n}\right)=\left[0, d^{n}\right]$, where $d=\max \left\{\operatorname{dom} \alpha_{\beta}\right\}$. This implies that for every idempotent $\varepsilon \in \mathfrak{I C}(I,[0])$ there exists a positive integer n such that $\delta^{n} \cdot \gamma^{n} \leqslant \varepsilon$, and hence by Lemma 1 we get that all idempotents of the semigroup $\mathfrak{I C}(I,[0])$ are \mathfrak{K}-equivalent. Then Lemma 7.34 and Theorem 7.36 from $[2]$ imply that the quotient semigroup $\mathfrak{I C}(I,[0]) / \mathfrak{K}$ is a group.

Suppose case (ii) holds: α and β are not \mathscr{H}-equivalent in $\mathfrak{I C}(I,[0])$. Since $\mathfrak{I C}(I,[0])$ is an inverse semigroup we get that either $\alpha \alpha^{-1} \neq \beta \beta^{-1}$ or $\alpha^{-1} \alpha \neq \beta^{-1} \beta$. Suppose inequality $\alpha \alpha^{-1} \neq \beta \beta^{-1}$ holds. Since $\alpha \mathfrak{K} \beta$ and $\mathfrak{I C}(I,[0])$ is an inverse semigroup, Lemma III.1.1 from [6] implies that $\left(\alpha \alpha^{-1}\right) \mathfrak{K}\left(\beta \beta^{-1}\right)$, and hence by case (i) we get that \mathfrak{K} is a group congruence on the semigroup $\mathfrak{I C}(I,[0])$. In the case $\alpha^{-1} \alpha \neq \beta^{-1} \beta$ the proof is similar.

Suppose case (iii) holds: α and β are \mathscr{H}-equivalent in $\mathfrak{I C}(I,[0])$. Then Theorem 2.3 of [2] implies that without loss of generality we can assume that α and β are elements of the group of units $H(\mathbb{I})$ of the semigroup $\mathfrak{I C}(I,[0])$. Therefore we get that $\mathbb{I}=\alpha \cdot \alpha^{-1}$ and $\gamma=\beta \cdot \alpha^{-1} \in H(\mathbb{I})$ are \mathscr{H}-equivalent distinct elements in $\mathfrak{I C}(I,[0])$. Since $\mathbb{I} \neq \gamma$ we get that there exists $x_{\gamma} \in I$ such that $\left(x_{\gamma}\right) \gamma \neq x_{\gamma}$. We suppose $\left(x_{\gamma}\right) \gamma>x_{\gamma}$. We define a partial map $\delta: I \rightharpoonup I$ as follows:

$$
\operatorname{dom} \delta=\left[0,\left(x_{\gamma}\right) \gamma\right], \quad \operatorname{ran} \delta=\left[0, x_{\gamma}\right] \quad \text { and } \quad(x) \rho=\frac{x_{\gamma}}{\left(x_{\gamma}\right) \gamma} \cdot x
$$

for all $x \in \operatorname{dom} \delta$. Then we have that $\mathbb{I} \cdot \delta=\delta$ and hence we get that $(\gamma \cdot \delta) \mathfrak{K} \delta$. Since $\operatorname{dom}(\gamma \cdot \delta)=\operatorname{dom} \gamma \neq \operatorname{dom} \delta$, Proposition $1(v i)$ implies
that the elements $\gamma \cdot \delta$ and δ are not \mathscr{H}-equivalent. Therefore case (ii) holds, and hence \mathfrak{K} is a group congruence on the semigroup $\mathfrak{I C}(I,[0])$.

In the case $\left(x_{\gamma}\right) \gamma<x_{\gamma}$ the proof that \mathfrak{K} is a group congruence on the semigroup $\mathfrak{I C}(I,[0])$ is similar. This completes the proof of our theorem.

Proposition 4. The semigroups $\mathfrak{I C}(I,[0])$ and $\mathfrak{I O}(I,[0])$ are isomorphic.
Proof. We define a map $\mathfrak{i}: \mathfrak{I C}(I,[0]) \rightarrow \mathfrak{I} \mathfrak{O}(I,[0])$ by the following way: for arbitrary $\alpha \in \mathfrak{I C}(I,[0])$ we put $(\alpha) \mathfrak{i}$ is the restriction of α on the set $\left[0, a_{\alpha}\right] \backslash\left\{a_{\alpha}\right\}$, where $a_{\alpha}=\max \{\operatorname{dom} \alpha\}$, with $\operatorname{dom}((\alpha) i)=\operatorname{dom} \alpha \backslash\left\{a_{\alpha}\right\}$ and $\operatorname{ran}((\alpha) \mathfrak{i})=\operatorname{ran} \alpha \backslash\left\{\left(a_{\alpha}\right) \alpha\right\}$. Simple verifications show that such defined map $\mathfrak{i}: \mathfrak{I C}(I,[0]) \rightarrow \mathfrak{I O}(I,[0])$ is an isomorphism.

3. On the semigroup $\mathfrak{I} \Im(I,[0])$

We put $\mathfrak{I I}(I,[0])=\mathfrak{I C}(I,[0]) \sqcup \mathfrak{I} \mathfrak{O}(I,[0])$.
Later we shall denote elements of the semigroup $\mathfrak{I C}(I,[0])$ by $\bar{\alpha}$ and put $\stackrel{\circ}{\alpha}=(\bar{\alpha}) \mathfrak{i} \in \mathfrak{I O}(I,[0])$, where $\mathfrak{i}: \mathfrak{I C}(I,[0]) \rightarrow \mathfrak{I V}(I,[0])$ is the isomorphism which is defined in the proof of Proposition 4. Since the semigroups $\mathfrak{I C}(I,[0])$ and $\mathfrak{I O}(I,[0])$ are inverse subsemigroups of the symmetric inverse semigroup \mathscr{I}_{I} over the set I and by Proposition 1 all elements of the semigroups $\mathfrak{I C}(I,[0])$ and $\mathfrak{I O}(I,[0])$ are monotone partial maps, the semigroup operation in \mathscr{I}_{I} implies that for $\bar{\alpha} \in \mathfrak{I C}(I,[0])$ and $\stackrel{\circ}{\beta} \in \mathfrak{I O}(I,[0])$ we have that
$\bar{\alpha} \cdot \stackrel{\circ}{\beta}=\left\{\begin{array}{ll}\bar{\gamma}, & \text { if } \operatorname{ran} \bar{\alpha} \subset \operatorname{dom} \stackrel{\circ}{\beta} ; \\ \stackrel{\circ}{\gamma}, & \text { if } \operatorname{dom} \stackrel{\circ}{\beta} \subset \operatorname{ran} \bar{\alpha}\end{array} \quad\right.$ and $\stackrel{\circ}{\beta} \cdot \bar{\alpha}= \begin{cases}\circ & \text { if } \operatorname{ran} \stackrel{\circ}{\beta} \subset \operatorname{dom} \bar{\alpha} ; \\ \bar{\delta}, & \text { if } \operatorname{dom} \bar{\alpha} \subset \operatorname{ran} \beta,\end{cases}$
where $\bar{\gamma}=\bar{\alpha} \cdot \bar{\beta} \in \mathfrak{I C}(I,[0])$ (i.e., $\stackrel{\circ}{\gamma}=\stackrel{\circ}{\alpha} \cdot \stackrel{\circ}{\beta} \in \mathfrak{I O}(I,[0]))$ and $\bar{\delta}=\bar{\beta} \cdot \bar{\alpha} \in$ $\mathfrak{I C}(I,[0])$ (i.e., $\stackrel{\circ}{\delta}_{\delta}=\stackrel{\circ}{\beta} \cdot \stackrel{\circ}{\alpha} \in \mathfrak{I O}(I,[0])$). Hence we get the following:

Given two partially ordered sets $\left(A, \leqslant_{A}\right)$ and $\left(B, \leqslant_{B}\right)$, the lexicographical order $\leqslant_{\text {lex }}$ on the Cartesian product $A \times B$ is defined as follows:
$(a, b) \leqslant_{\operatorname{lex}}\left(a^{\prime}, b^{\prime}\right) \quad$ if and only if $\quad a<_{A} a^{\prime} \quad$ or $\quad\left(a=a^{\prime}\right.$ and $\left.b \leqslant_{B} b^{\prime}\right)$.
In this case we shall say that the partially ordered set $\left(A \times B, \leqslant_{\text {lex }}\right)$ is the lexicographic product of partially ordered sets $\left(A, \leqslant_{A}\right)$ and $\left(B, \leqslant_{B}\right)$ and it is denoted by $A \times{ }_{\text {lex }} B$. We observe that a lexicographic order of two linearly ordered sets is a linearly ordered set.

Hereafter for every $\bar{\alpha} \in \mathfrak{I C}(I,[0])$ and $\stackrel{\circ}{\beta} \in \mathfrak{I O}(I,[0])$ we denote $d_{\alpha}=$ $\max \{\operatorname{dom} \bar{\alpha}\}, r_{\alpha}=\max \{\operatorname{ran} \bar{\alpha}\}, d_{\beta}=\sup \{\operatorname{dom} \stackrel{\circ}{\beta}\}$ and $r_{\beta}=\sup \{\operatorname{ran} \beta \stackrel{\circ}{\beta}\}$. Obviously we have that $d_{\alpha}=\sup \{\operatorname{dom} \dot{\alpha}\}$ and $r_{\alpha}=\sup \{\operatorname{ran} \dot{\alpha}\}$ for any $\stackrel{\circ}{\alpha} \in \mathfrak{I O}(I,[0])$.

Proposition 6. The following conditions hold:
(i) $E(\mathfrak{I} \mathfrak{I}(I,[0]))=E(\mathfrak{I C}(I,[0])) \cup E(\Im \mathfrak{I}(I,[0]))$.
(ii) If $\bar{\alpha}, \stackrel{\circ}{\alpha}, \bar{\beta}, \stackrel{\circ}{\beta} \in E(\mathfrak{I I}(I,[0]))$, then
(a) $\stackrel{\circ}{\alpha} \leqslant \bar{\alpha}$;
(b) $\bar{\alpha} \leqslant \bar{\beta}$ if and only if $d_{\alpha} \leqslant d_{\beta}\left(r_{\alpha} \leqslant r_{\beta}\right)$;
(c) $\stackrel{\circ}{\alpha} \leqslant \stackrel{\circ}{\beta}$ if and only if $d_{\alpha} \leqslant d_{\beta}\left(r_{\alpha} \leqslant r_{\beta}\right)$;
(d) $\bar{\alpha} \leqslant \stackrel{\circ}{\beta}$ if and only if $d_{\alpha}<d_{\beta}\left(r_{\alpha}<r_{\beta}\right) ;$ and
(e) $\stackrel{\circ}{\alpha} \leqslant \bar{\beta}$ if and only if $d_{\alpha} \leqslant d_{\beta}\left(r_{\alpha} \leqslant r_{\beta}\right)$.
(iii) The semilattice $E(\Im \mathfrak{I}(I,[0]))$ is isomorphic to the lexicographic product $(0 ; 1] \times_{\text {lex }}\{0 ; 1\}$ of the semilattices $((0 ; 1], \min)$ and $(\{0 ; 1\}$, min $)$ under the mapping $(\bar{\alpha}) \mathfrak{i}=\left(d_{\alpha} ; 1\right)$ and $(\stackrel{\circ}{\alpha}) \mathfrak{i}=\left(d_{\alpha} ; 0\right)$, and hence $E(\Im \Im(I,[0]))$ is a linearly ordered semilattice.
(iv) The elements α and β of the semigroup $\mathfrak{I I}(I,[0])$ are \mathscr{R}-equivalent in $\mathfrak{I I}(I,[0])$ provides either $\alpha, \beta \in \mathfrak{I C}(I,[0])$ or $\alpha, \beta \in \mathfrak{I V}(I,[0])$ and moreover, we have that
(a) $\bar{\alpha} \mathscr{R} \bar{\beta}$ in $\mathfrak{I I}(I,[0])$ if and only if $d_{\alpha}=d_{\beta}$; and
(b) $\stackrel{\circ}{\alpha} \stackrel{\circ}{\beta}$ in $\mathfrak{I} \Im(I,[0])$ if and only if $d_{\alpha}=d_{\beta}$.
(v) The elements α and β of the semigroup $\mathfrak{I I}(I,[0])$ are \mathscr{L}-equivalent in $\mathfrak{I} \mathfrak{I}(I,[0])$ provides either $\alpha, \beta \in \mathfrak{I C}(I,[0])$ or $\alpha, \beta \in \mathfrak{I V}(I,[0])$ and moreover, we have that
(a) $\bar{\alpha} \mathscr{L} \bar{\beta}$ in $\mathfrak{I T}(I,[0])$ if and only if $r_{\alpha}=r_{\beta}$; and
(b) $\stackrel{\circ}{\alpha} \mathscr{L} \beta$ in $\mathfrak{I I}(I,[0])$ if and only if $r_{\alpha}=r_{\beta}$.
 in $\mathfrak{I I}(I,[0])$ provides either $\alpha, \beta \in \mathfrak{I C}(I,[0])$ or $\alpha, \beta \in \mathfrak{I} \mathfrak{O}(I,[0])$ and moreover, we have that
(a) $\bar{\alpha} \mathscr{H} \bar{\beta}$ in $\mathfrak{I} \Im(I,[0])$ if and only if $d_{\alpha}=d_{\beta}$ and $r_{\alpha}=r_{\beta}$; and
(b) $\stackrel{\circ}{\alpha} \mathscr{H} \stackrel{\circ}{\beta}$ in $\mathfrak{I I}(I,[0])$ if and only if $d_{\alpha}=d_{\beta}$ and $r_{\alpha}=r_{\beta}$.
(vii) $\mathfrak{I I}(I,[0])$ is a simple semigroup.
 inverse subsemigroups $\mathfrak{I C}(I,[0])$ and $\mathfrak{I O}(I,[0])$.

Proof. Statements (i), (ii) and (iii) follow from the definition of the semigroup $\mathfrak{I I}(I,[0])$ and Proposition 5.

Proofs of statements $(i v),(v)$ and $(v i)$ follow from Proposition 5 and Theorem 1.17 [2] and are similar to statements $(i v),(v)$ and $(v i)$ of Proposition 2.
(vii) We shall show that $\mathfrak{I I}(I,[0]) \cdot \alpha \cdot \Im \Im(I,[0])=\mathfrak{I} \mathfrak{I}(I,[0])$ for every $\alpha \in \mathfrak{I}(I,[0])$. We fix arbitrary $\alpha, \beta \in \mathfrak{I} \Im(I,[0])$ and show that there exist $\gamma, \delta \in \mathfrak{I I}(I,[0])$ such that $\gamma \cdot \alpha \cdot \delta=\beta$.

We consider the following four cases:
(1) $\alpha=\bar{\alpha} \in \mathfrak{I C}(I,[0])$ and $\beta=\bar{\beta} \in \mathfrak{I C}(I,[0])$;
(2) $\alpha=\bar{\alpha} \in \mathfrak{I C}(I,[0])$ and $\beta=\stackrel{\circ}{\beta} \in \mathfrak{I O}(I,[0])$;
(3) $\alpha=\stackrel{\circ}{\alpha} \in \mathfrak{I V}(I,[0])$ and $\beta=\bar{\beta} \in \mathfrak{I C}(I,[0])$;
(4) $\alpha=\stackrel{\circ}{\alpha} \in \mathfrak{I} \mathfrak{O}(I,[0])$ and $\beta=\stackrel{\circ}{\beta} \in \mathfrak{I} \mathfrak{O}(I,[0])$.

By Λ_{a}^{b} we denote a linear partial map from I into I with $\operatorname{dom} \Lambda_{a}^{b}=$ $[0 ; a]$ and $\operatorname{ran} \Lambda_{a}^{b}=[0 ; b]$, and defined by the formula: $(x) \Lambda_{a}^{b}=\frac{b}{a} \cdot x$, for $x \in \operatorname{dom} \Lambda_{a}^{b}$.

We put:

$$
\begin{aligned}
& \gamma=\Lambda_{d_{\beta}}^{d_{\alpha}} \text { and } \delta=\alpha^{-1} \cdot \Lambda_{d_{\alpha}}^{d_{\beta}} \cdot \beta \text { in case }(1) \\
& \gamma=\Lambda_{d_{\beta}}^{d_{\alpha}} \text { and } \delta=\alpha^{-1} \cdot \Lambda_{d_{\alpha}}^{d_{\beta}} \cdot \beta \text { in case }(2) \\
& \gamma=\Lambda_{d_{\beta}}^{a} \text { and } \delta=\alpha^{-1} \cdot \Lambda_{a}^{d_{\beta}} \cdot \beta, \text { where } 0<a<d_{\alpha}, \text { in case }(3) \\
& \gamma=\Lambda_{d_{\beta}}^{d_{\alpha}} \text { and } \delta=\alpha^{-1} \cdot \Lambda_{d_{\alpha}}^{d_{\beta}} \cdot \beta \text { in case }(4)
\end{aligned}
$$

Elementary verifications show that $\gamma \cdot \alpha \cdot \delta=\beta$, and this completes the proof of assertion (vii).

Statement (viii) follows from statements (iv) and (v).
On the semigroup $\mathfrak{I} \mathfrak{I}(I,[0])$ we determine a relation $\sim_{\mathfrak{i d}}$ by the following way. Let $\mathfrak{i}: \mathfrak{I C}(I,[0]) \rightarrow \mathfrak{I V}(I,[0])$ be a map which is defined in the proof of Proposition 4. We put

$$
\alpha \sim_{\mathfrak{i d}} \beta \quad \text { if and only if } \alpha=\beta \text { or }(\alpha) \mathfrak{i d}=\beta \text { or }(\beta) \mathfrak{i d}=\alpha,
$$

for $\alpha, \beta \in \mathfrak{I I}(I,[0])$. Simple verifications show that $\sim_{\mathfrak{i d}}$ is an equivalence relation on the semigroup $\mathfrak{I I}(I,[0])$.

The following proposition immediately follows from Proposition $1(i)$ and the definition of the relation $\sim_{\mathfrak{i d}}$ on the semigroup $\mathfrak{I} \mathfrak{I}(I,[0])$:

Proposition 7. Let α and β are elements of the semigroup $\mathfrak{I}(I,[0])$. Then $\alpha \sim_{\mathfrak{i} 0} \beta$ in $\mathfrak{I I}(I,[0])$ if and only if the following conditions hold:
(i) $d_{\alpha}=d_{\beta}$;
(ii) $r_{\alpha}=r_{\beta}$;
(iii) $(x) \alpha=(x) \beta$ for every $x \in\left[0, d_{\alpha}\right)$;
(iv) $(y) \alpha=(y) \beta$ for every $y \in\left[0, d_{\beta}\right)$.

Proposition 8. The relation $\sim_{\mathfrak{i d}}$ is a congruence on the semigroup $\mathfrak{I}(I,[0])$. Moreover, the quotient semigroup $\mathfrak{I} \mathfrak{I}(I,[0]) / \sim_{\mathfrak{i d}}$ is isomorphic to the semigroup $\mathfrak{I C}(I,[0])$.

Proof. We fix arbitrary $\bar{\alpha}, \stackrel{\circ}{\alpha}, \bar{\beta}, \stackrel{\gamma}{\gamma} \in \mathfrak{I} \mathfrak{I}(I,[0])$. It is complete to show that the following conditions hold:
(i) $(\bar{\alpha} \cdot \bar{\beta}) \sim_{\mathfrak{i d}}(\stackrel{\circ}{\alpha} \cdot \bar{\beta})$;
(ii) $(\bar{\beta} \cdot \bar{\alpha}) \sim_{\mathfrak{i d}}(\bar{\beta} \cdot \stackrel{\circ}{\alpha})$;
(iii) $(\bar{\alpha} \cdot \stackrel{\circ}{\gamma}) \sim_{\mathfrak{i o}}(\stackrel{\circ}{\alpha} \cdot \stackrel{\circ}{\gamma})$;
(iv) $(\stackrel{\circ}{\gamma} \cdot \bar{\alpha}) \sim_{\mathfrak{i o}}(\stackrel{\circ}{\gamma} \cdot \stackrel{\circ}{\alpha})$.

Suppose case (i) holds. If $d_{\beta} \leqslant r_{\alpha}$, then Proposition $1(i)$ implies that $(x)(\bar{\alpha} \cdot \bar{\beta})=(x)(\stackrel{\circ}{\alpha} \cdot \bar{\beta})$ for all $x \in\left[0,\left(d_{\beta}\right)(\bar{\alpha})^{-1}\right)$, and hence by Proposition 7 we get that $(\bar{\alpha} \cdot \bar{\beta}) \sim_{\mathfrak{i d}}(\stackrel{\circ}{\alpha} \cdot \bar{\beta})$. If $d_{\beta}>r_{\alpha}$, then Proposition $1(i)$ implies that $(x)(\bar{\alpha} \cdot \bar{\beta})=(x)(\stackrel{\circ}{\alpha} \cdot \bar{\beta})$ for all $x \in\left[0, d_{\alpha}\right)$, and hence by Proposition 7 we get that $(\bar{\alpha} \cdot \bar{\beta}) \sim_{\mathfrak{i d}}(\stackrel{\circ}{\alpha} \cdot \bar{\beta})$.

In cases (ii), (iii) and (iv) the proofs are similar. Hence $\sim_{\mathfrak{i d}}$ is a congruence on the semigroup $\mathfrak{I} \mathfrak{I}(I,[0])$.

Let $\Phi_{\sim_{\mathfrak{i d}}}: \mathfrak{I} \mathfrak{I}(I,[0]) \rightarrow \mathfrak{I C}(I,[0])$ a natural homomorphism which is generated by the congruence $\sim_{\mathfrak{i d}}$. Since the restriction $\Phi_{\sim_{\mathfrak{i}}} \mid \mathfrak{I C}(I,[0])$: $\mathfrak{I C}(I,[0]) \rightarrow \mathfrak{I C}(I,[0])$ of the natural homomorphism $\Phi_{\sim_{\text {io }}}: \mathfrak{I} \Im(I,[0]) \rightarrow$ $\mathfrak{I C}(I,[0])$ is an identity map we conclude that the semigroup $(\mathfrak{I I}(I,[0])) \Phi_{\sim_{i \mathfrak{l}}}$ is isomorphic to the semigroup $\mathfrak{I C}(I,[0])$.

Theorem 2. Let \mathfrak{K} be a non-trivial congruence on the semigroup $\mathfrak{I I}(I,[0])$. Then the quotient semigroup $\mathfrak{I I}(I,[0]) / \mathfrak{K}$ is either a group or $\mathfrak{I I}(I,[0]) / \mathfrak{K}$ is isomorphic to the semigroup $\mathfrak{I C}(I,[0])$.

Proof. Since the subsemigroup of idempotents of the semigroup $\mathfrak{I I}(I,[0])$ is linearly ordered we have that similar arguments as in the proof of Theorem 1 imply that there exist distinct idempotents ε and ι in $\mathfrak{I} \Im(I,[0])$ such that $\varepsilon \mathfrak{K} \iota$ and $\varepsilon \leqslant \iota$. If the set $(\varepsilon, \iota)=\{v \in E(\mathfrak{I} \mathfrak{I}(I,[0])) \mid \varepsilon<v<\iota\}$ is non-empty, then Lemma 1 and Theorem 1 imply that the quotient semigroup $\mathfrak{I} \Im(I,[0]) / \Re$ is inverse and it contains only one idempotent, and hence by Lemma II.1.10 from $[6]$ we get that $\mathfrak{I I}(I,[0]) / \Re$ is a group. Otherwise Proposition $7(i i)$ implies that $\varepsilon=\stackrel{\circ}{\alpha}$ and $\iota=\bar{\alpha}$ for some idempotents $\stackrel{\circ}{\alpha} \in \mathfrak{I} \mathfrak{O}(I,[0])$ and $\bar{\alpha} \in \mathfrak{I C}(I,[0])$.

Since by Proposition $2(i x)$ the semigroup $\mathfrak{I C}(I,[0])$ is simple we get that for every $\bar{\beta} \in \mathfrak{I C}(I,[0])$ there exist $\bar{\gamma}, \bar{\delta} \in \mathfrak{I C}(I,[0])$ such that $\bar{\beta}=\bar{\gamma} \cdot \bar{\alpha} \cdot \bar{\delta}$. Since $\mathfrak{I C}(I,[0])$ is an inverse semigroup and all elements of $\mathfrak{I C}(I,[0])$ are monotone partial maps of the unit interval I we conclude that that

$$
\bar{\beta}=\bar{\beta} \cdot \bar{\beta}^{-1} \cdot \bar{\gamma} \cdot \bar{\alpha} \cdot \bar{\alpha}^{-1} \cdot \bar{\alpha} \cdot \bar{\alpha}^{-1} \cdot \bar{\alpha} \cdot \bar{\delta} \cdot \bar{\beta}^{-1} \cdot \bar{\beta}
$$

and hence for elements

$$
\bar{\gamma}_{\beta}=\bar{\beta} \cdot \bar{\beta}^{-1} \cdot \bar{\gamma} \cdot \bar{\alpha} \cdot \bar{\alpha}^{-1} \quad \text { and } \quad \bar{\delta}_{\beta}=\bar{\alpha}^{-1} \cdot \bar{\alpha} \cdot \bar{\delta} \cdot \bar{\beta}^{-1} \cdot \bar{\beta}
$$

of the semigroup $\mathfrak{I C}(I,[0])$ the following conditions hold:

$$
\bar{\beta}=\bar{\gamma}_{\beta} \cdot \bar{\alpha} \cdot \bar{\delta}_{\beta}, \quad \operatorname{dom} \bar{\beta}=\operatorname{dom} \bar{\gamma}_{\beta}, \quad \operatorname{ran} \bar{\gamma}_{\beta}=\operatorname{dom} \bar{\alpha}, \quad \operatorname{ran} \bar{\alpha}=\operatorname{dom} \bar{\delta}_{\beta}
$$

$$
\text { and } \quad \operatorname{ran} \bar{\beta}=\operatorname{ran} \bar{\delta}_{\beta}
$$

Analogously, since all elements of the semigroups $\mathfrak{I C}(I,[0])$ and $\mathfrak{I O}(I,[0])$ are monotone partial maps of I we get that $\stackrel{\circ}{\beta}=\stackrel{\circ}{\gamma}_{\beta} \cdot \stackrel{\circ}{\alpha} \cdot \stackrel{\circ}{\delta}_{\beta}$ and hence $\bar{\beta} \Re \stackrel{\circ}{\beta}$. This implies that the congruence \mathfrak{R} on the semigroup $\mathfrak{I I}(I,[0])$ coincides with the congruence $\sim_{\mathfrak{i d}}$ on $\mathfrak{I} \Im(I,[0])$. Then Proposition 8 implies that the quotient semigroup $\mathfrak{I I}(I,[0]) / \mathfrak{K}$ is isomorphic to the semigroup $\mathfrak{I C}(I,[0])$.

By S_{2} we denote the cyclic group of order 2 .
Theorem 3. For arbitrary $a, b \in(0,1)$ the semigroups $\mathfrak{I C}(I,[a])$ and $\mathfrak{I C}(I,[b])$ are isomorphic. Moreover, for every $a \in(0,1)$ the semigroup $\mathfrak{I C}(I,[a])$ is isomorphic to the direct product

$$
S_{2} \times \mathfrak{I C}(I,[0]) \times \mathfrak{I C}(I,[0])
$$

Proof. We fix an arbitrary $a \in(0,1)$. Obviously, the semigroup $\mathfrak{I C}(I,[a])$ is isomorphic to the direct product $S_{2} \times \mathfrak{I C}^{\nearrow}(I,[a])$, where $\mathfrak{I C}^{\nearrow}(I,[a])$ is a subsemigroup of $\mathfrak{I C}(I,[a])$ which consists of monotone partial maps of the unit interval I.

By $\mathfrak{I C}^{\nearrow}(I \sqcup I,[0])$ we denote the semigroup of all monotone convex closed partial local homeomorphisms α of the interval $[-1,1]$ such that $(0) \alpha=0$ and $0 \in \operatorname{Int}_{[-1,1]}(\operatorname{dom} \alpha)$. We define a map $\mathfrak{i}: \mathfrak{I C}^{\wedge}(I,[a]) \rightarrow$ $\mathfrak{I C}^{\nearrow}(I \sqcup I,[0])$ by the following way. For an arbitrary $\alpha \in \mathfrak{I C}^{\nearrow}(I,[a])$ we determine a partial map $\beta=(\alpha) \mathfrak{i} \in \mathfrak{I C}^{\nearrow}(I \sqcup I,[0])$ as follows:
(i) $\operatorname{dom} \beta=\left[\frac{d_{m}(\alpha)-a}{a}, \frac{d_{M}(\alpha)-a}{1-a}\right]$, where $d_{m}(\alpha)=\min \{\operatorname{dom} \alpha\}$ and $d_{M}(\alpha)=\max \{\operatorname{dom} \alpha\} ;$
(ii) $\operatorname{ran} \beta=\left[\frac{r_{m}(\alpha)-a}{a}, \frac{r_{M}(\alpha)-a}{1-a}\right]$, where $r_{m}(\alpha)=\min \{\operatorname{ran} \alpha\}$ and $r_{M}(\alpha)=\max \{\operatorname{ran} \alpha\} ;$ and
(iii) $(x) \beta=\left\{\begin{array}{cc}(a x+a) \alpha, & \text { if } x \leqslant 0 \\ ((1-a) x+a) \alpha, & \text { if } x \geqslant 0\end{array}\right.$, for all $x \in \operatorname{dom} \beta$.

Simple verifications show that such defined map $\mathfrak{i}: \mathfrak{I C}^{\nearrow}(I,[a]) \rightarrow \mathfrak{I C}^{\nearrow}(I \sqcup$ $I,[0])$ is an isomorphism. This completes the first part of the proof of the theorem.

Next we define a map j: $\mathfrak{I C}^{\nearrow}(I \sqcup I,[0]) \rightarrow \mathfrak{I C}(I,[0]) \times \mathfrak{I C}(I,[0])$ by the following way. For an arbitrary $\alpha \in \mathfrak{I C}^{\nearrow}(I \sqcup I,[0])$ we determine a pair of partial maps $(\beta, \gamma)=(\alpha) \mathfrak{i} \in \mathfrak{I C}(I,[0]) \times \mathfrak{I C}(I,[0])$ as follows:
(i) $\operatorname{dom} \beta=\operatorname{dom} \alpha \cap[0,1]$ and $\operatorname{ran} \beta=\operatorname{ran} \alpha \cap[0,1]$;
(ii) $\operatorname{dom} \gamma=\{-x \mid x \in \operatorname{dom} \alpha \cap[0,1]\}$ and $\operatorname{ran} \gamma=\{-x \mid x \in \operatorname{ran} \alpha \cap$ $[0,1]\} ;$
(iii) $(x) \beta=(x) \alpha$ for $x \in \operatorname{dom} \beta ; \quad$ and
(iv) $(x) \gamma=-(x) \alpha$ for $x \in \operatorname{dom} \gamma$.

Simple verifications show that such defined map $\mathfrak{j}: \mathfrak{I C}^{\nearrow}(I \sqcup I,[0]) \rightarrow$ $\mathfrak{I C}(I,[0]) \times \mathfrak{I C}(I,[0])$ is an isomorphism. This completes the proof of the theorem.

Theorem 3 implies the following:
Corollary 2. For arbitrary $a, b \in(0,1)$ the semigroups $\mathfrak{I I}(I,[a])$ and $\mathfrak{I}(I,[b])$ are isomorphic. Moreover, for every $a \in(0,1)$ the semigroup $\mathfrak{I} \mathfrak{I}(I,[a])$ is isomorphic to the direct product

$$
S_{2} \times \mathfrak{I} \mathfrak{I}(I,[0]) \times \mathfrak{I} \mathfrak{I}(I,[0]) .
$$

References

[1] O. Andersen, Ein Bericht über die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952.
[2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
[3] L. M. Gluskin, The semi-group of homeomorphic mappings of an interval, Mat. Sb. (N.S.), 49(91):1 (1959), 13-28 (in Russian).
[4] L. M. Gluskin, On some semigroup of continuous functions, Dopovidi AN URSR no. 5 (1960), 582-585 (in Ukrainian).
[5] W. D. Munn, Uniform semilattices and bisimple inverse semigroups, Quart. J. Math. 17:1 (1966), 151-159.
[6] M. Petrich, Inverse Semigroups, John Wiley \& Sons, New York, 1984.
[7] L. B. Shneperman, Semigroups of continuous transformations, Dokl. Akad. Nauk SSSR 144:3 (1962), 509-511 (in Russian).
[8] L. B. Shneperman, Semigroups of continuous transformations of closed sets of the number axis, Izv. Vyssh. Uchebn. Zaved. Mat., no. 6 (1965), 166-175 (in Russian).
[9] L. B. Shneperman, The semigroups of the homeomorphisms of a simple arc, Izv. Vyssh. Uchebn. Zaved. Mat., no. 2 (1966), 127-136 (in Russian).
[10] V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).

Contact information

Ivan Chuchman
Department of Mechanics and Mathematics, Ivan
Franko Lviv National University, Universytetska 1, Lviv, 79000, Ukraine
E-Mail: chuchman_i@mail.ru

Received by the editors: 22.09.2011
and in final form 22.09.2011.

[^0]: 2010 Mathematics Subject Classification: 20M20,54H15, $20 M 18$.
 Key words and phrases: Semigroup of bijective partial transformations, symmetric inverse semigroup, semigroup of homeomorphisms, group congruence, bisimple semigroup.

