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ABSTRACT. We consider a class of normal bimodule problems
satisfying some structure, triangularity and finiteness conditions.
For a bimodule problem from this class we construct explicitly an
analogue of multiplicative basis which we call quasi multiplicative.

Introduction

A classification of bimodule problems of finite and tame representation
type and their indecomposable representations and description of their
representation categories belongs to important problems of representation
theory [6, 7, 8]. A useful tool for a solution of the finiteness problem is so
called “covering method” (|5, 3]), which is especially effective when the basis
of associative algebra ([4]) or bimodule problem ([9]) is multiplicative. We
give a generalization of the notion of a scalarly multiplicative basis from [9]
and apply it for a wider class of bimodule problems. For a faithful bimodule
problem from our class we construct explicitly the quasi multiplicative
basis using mainly geometrical techniques.

1. Preliminaries

Let k be algebraically closed field. Unless otherwise stated, all the
categories we consider are the categories over k, all morphism spaces are
finite dimensional, and all functors are k-linear. A category K is called local,
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2 GENERALIZED MULTIPLICATIVE BASES

provided for every X € ObK the endomorphism algebra K(X, X) is local,
and regular, if, in addition, every invertible morphism is automorphism.
A category K is called fully additive or Krull-Schmidt category if K is
a category with finite direct sums and every idempotent from K splits,
i. e. it has kernel and cokernel. A full subcategory Ky C K will be called
an additive skeleton of K, provided K is regular and every X € ObK is
isomorphic to a finite direct sum of objects from Kj.

For a local category K and for every X € ObK there exists the
decomposition K(X, X) = kly & Rad X, where Rad X is the Jacobson
radical of the algebra K(X, X). If K is regular, then we denote by Rad K
the radical of K, i.e. an ideal in K such that Rad K(X,Y) = K(X,Y") for
X #Y,and RadK(X, X)=Rad X, X,Y € ObK.

Let V be a K-bimodule ([1]). A category K (a bimodule V) is called
locally finite dimensional, if for any X € ObK the spaces @& K(X,Y)

YeObK
and @& K, X)( & V(X,Y)and & V(Y,X)) are finite di-
YeObK YeObK YeObK
mensional, and finite dimensional, provided the spaces @ KX,Y)

X,YcObK

(@& V(X,Y)) are finite dimensional.
X,Y€ObK

Given a category K, we denote by add K an additive hull of K, i.e. a
minimal fully additive category which contains K. For a K-bimodule V,
we denote by addV the corresponding add K-bimodule.

A pair A = (K, V) consisting of a category K and a K-bimodule V is
called a bimodule problem over K or shortly bimodule problem. A bimodule
problem A will be called normal, provided the category K is regular, and
both K and V are locally finite dimensional. All the bimodule problems we
will consider are assumed to be normal. Given some S C ObK denote by
Kg the full subcategory of K with ObKg = S, and by Vg the subbimodule
Vs = KgVKg. A bimodule problem Ag = (Kg, Vg) is called the restriction
of A4 to S.

For a bimodule problem A = (K,V), a representation M of A is
a pair M = (Mg, My), where Mk € ObaddV = ObaddK and My €
add V(Mg, Mg). If M, N are two representations of A, then a morphism
f from M to N is a morphism f € add K(Mk, Nk) such that Ny - f — f -
My = 0. The composition of morphisms and the unit morphisms in the
representation category rep A and in the category add K coincide.

Given two bimodule problems A = (K,V) and A" = (K, V'), a mor-
phism of bimodule problems 6 : A — A’ is a pair 8 = (0, 61), where
0y : K — K’ is a k-functor, #; : V — V' is a K-bimodule morphism with
the K-bimodule structure on V' induced by 6y ([1]).

Let A = (K,V) be a normal bimodule problem. Bigraph ¥(= X 4) =
(X0,21) is called a basis of the bimodule problem A, if 33 = ObK,
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Y(X,Y) is a basis of V(X,Y), and X}(X,Y) is a basis of Rad K(X,Y),
X,Y € ObK. For all z,y € X1 such that the product zy is not specified,
we assume xy = 0. A bimodule problem is called connected, if its bigraph
is connected.

Let V be a K-bimodule. We say that € Rad K(X,Y") annihilates the
bimodule V, if xa = 0, bx = 0 for any Z € ObK, a € V(Z,X),b e V(Y, Z).
The ideal of the category K consisting of all elements annihilating the
bimodule V is called the annihilator of V and is denoted by Anng (V). A
bimodule V is called faithful provided Annk (V) = 0. We call a bimodule
problem A = (K, V) faithful, if the bimodule V is faithful. For a bimodule
problem A, a faithful part of A is defined as the faithful bimodule problem
Ared, Ared = (Kred, V), where Kioq = K/ Anng V. Remark that a restriction
of faithful bimodule problem may not be faithful. Faithful part of restriction
of a bimodule problem is called faithful restriction.

Let A = (K,V) be a bimodule problem, and V' C V be a subbimodule
of V such that V' # 0, V' # V. Denote by > the minimal relation of (strict)
partial order on the set of bimodule problems such that A = A’ and
A= A" where A" ~ (K, V"), A” ~ (K,V/V'), and A = Ag for any proper
subset S C Ob K. Similarly we denote by ~ the minimal equivalence such
that for every ideal Z C K, ZV = VZ = 0, holds A ~ A7 = (K/Z,V),
and if A ~ B then A ~ B. The transitive closure of > and ~ defines a
preorder on the set of bimodule problems, which defines the strict order,
denoted again by >. The relations > and ~ are obviously defined on the
set of isoclasses of bimodule problems. If for bimodule problems A, B
holds A >~ B then we say B is a subproblem of A.

Let A = (K,V) be a normal bimodule problem, R = Rad K, ¥ be a
basis of A. Radical R is called nilpotent if R™ = 0 for some n € N. The
integer N is called the nilpotence degree of A if RN =0, but RV=1 £ 0.
Denote by V; = R"=V, i =1,..., N. We have two filtrations

ROR?’>...oRN 150, VioVyD...DO VN DO. (1)
Remark that all inclusions in (1) are strict, and for A faithful V; # 0 for
alli=1,...,N.

The map h: RUV — N such that h(z) = max{i € N|x € RlUV,} is
called the height of an element. Let h(0) = co. Then h(zy) > h(x) + h(y)
and h(z +y) > min{h(x), h(y)} for z,y € RUV. Let E’f(l) =P A7),
i=1,...,N, k=01 Clearly, the set {S¥” i = 1,..., N} is a partition
of ¥ k=0,1.

Definition 1. The basis ¥ of bimodule problem A we call triangled (with

~ N () ‘ i N o)
respect to the filtration (1)), if lU' X1 is a basis of R® and lU'El is a
basis of Vi, i =1,...,N. - N
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Lemma 1 ([6]). Every normal finite dimensional bimodule problem A
with the nilpotent radical has a triangled basis.

Remark 1. For a triangled basis ¥ of a normal bimodule problem A =
(K, V) with nilpotent radical R = Rad K, the following properties hold:

1) Z%(i) is a basis of R?/R*! modulo R™* i =1,...,N —1, Z(l)(i) is a
basis of V;/V;+1 modulo V41,1 =1,..., N,

2) for x € RUV the equality x = Y~ A\yy, Ay € k, implies h(y) > h(x)
yeX
for any y € X7 with A\, # 0.

Definition 2. A normal bimodule problem A with nilpotent radical R =
Rad K we call admitted if the set ObK can be decomposed to a disjoint
union ObK = ObKT UObK™ such that inequality V(X,Y) # 0 implies
X € ObK™, Y € ObK™", and R(X,Y) # 0 implies X,Y € ObKT,
The property of a bimodule problem A to be admitted depends only on
the bigraph X 4, therefore we will use the notation Z(T = ObK™ and
¥y = ObK™.

Let A = (K,V) be an admitted bimodule problem with nilpotent
radical R = Rad K and a triangled basis .

Remark 2. There are the decompositions

Vi = ®  ViE,A), R'= @ RY(A,B), i=1,...,N
Eexy  Acsd A,Besd

of k-vector spaces with the multiplications

R'(A,B) x Vj(E,A) = V,y;(E,B), ABeX],Ec¥y,
RY(B,0) x RI(A,B) = R (A,C), A,B,Cexf.

Definition 3. Fora,b € V, we say that a E b (or simply a < b), if b € Ra.

In other words, a < b if and only if ra = b for some r € R(A, B), in this
case we write a <, b. Obviously, the order E on V is non-reflexive and

transitive. Two elements a,b € V are called comparable is either ag b or

b<a. For A€ X§ letord A= Y dimgV(E,A) = Y [Zi(E,A)|. It
R Besy Besy

is clear, that h(a) < h(b) for any a,b € XV, a < b, i. e. h is monotonous

with respect to <.

Lemma 2. The admitted bimodule problems AF = (KF,V¥), k =1,.,4,
given respectively by the following bases (see bigraphs below)

1) 5 = {A}, Sy = {E1,E2,E3,Eq}, 39 = {a; : B, — Aji =
1,...,4}, 1 = &;
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2) ES_ = {A}; Ea = {E}, 2(1) = {al,a2 . E — A}, 2% — @}.

3) o5 ={A,B}, %y = {E\, F},Es, FEy, E3 = E4}, 39 = {a; : E; —
A’bi:EZ(_>B7i:17273}7 E%:®7

4) 5 ={A, B}, 5y ={E1,E2, B3}, ¥ = {a; : E; — Ab; : E; —
B,i= 1’E‘21’3}’ E% ={p :144 - B},E(%’nd pa; = bi,El; =1,2,3;

1 1

) . g RN

By g7 A~ E, @ a2 ATEJ?B AZ_ -~ =B
Ta:s GZT Tb2 GQT Tbs
as
E3 B Es E} B, Es
Al AQ A3 A4

are of strictly unbounded representation type (see [6]).

Definition 4. Define the class C of admitted bimodule problems A = (K, V)
with nilpotent radical R = Rad K and a triangled basis ¥ such that for any
Eex,, AABex{, A+ B:

1) ord A < 3;

2) any ai,az € XY(E, A) are comparable;

3) if ord A = ord B = 3, then any a € XY(E, A), b € XY(E, B) are
comparable;

4) if p € R(A, B), then Y dimgpV(FE,A) < 3.

Eexy

If one of the conditions 1)-4) does not hold, then, using Lemma 2,
it is easy to check that the bimodule problem is of strictly unbounded
representation type.

Let A € C. For any * € RUV there is a basis decomposition = =

>~ Ay y, where almost all A, € k equals 0. Denote by con, z = A, the
LIS
content of y in x. Two nonzero elements x,y € RUV are called collinear

if k*z = k*y, in this case we write x||y. Given a,b € X} we shall write
S b and a ? b if there exists ¢ € X1 such that b||¢a.

Definition 5. Given A, B € ObX{, denote by AAE) = (KAB) v(4.B))
the restriction of the bimodule problem A to the set

Sap ={A,B}U{E €%y | V(E, A) # 0 or V(E, B) # 0}.

Denote by S4B < S the basis of AE) which is the restriction of %
to AXAB) - We will write A instead of AAY4) in the case A = B. The
bimodule problem AB) inherits the triangled structure from A (and may
have the proper one).
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Remark 3. Let A, B € Zf{. If A is faithful, then bimodule problem
AAB) s faithful as well. Moreover, R(A, B) = Rad(K(4B))(A, B). This
fact follows from the equality

Anng (V) = U Anngas (VAD).
A,BEObxT

2. Quasi multiplicative basis. Main result

Let A= (K,V) be a bimodule problem from C with nilpotent radical
R = Rad K and a triangled basis X.

A change of basis ¥ = %Y U 3 consists of a family of changes of
bases in all V(E, A) (the change of X{) and in all R(A, B) (the change of
¥, A, B¢ YT E € ¥, . These new bases gives the new basis ¥’ of A.
The change of basis from X to X/ we call triangled, provided both ¥ and
Y are triangled.

Definition 6. Let z,y € ¥¢(X,Y), i = 0,1. For A\, € k, A\, € k*, the
change of basis from ¥ to ¥’ such that y' = \yy + Ayz, and 2/ = z
for all z € ¥1\{y} we call elementary. An elementary change is called
correct, if h(xz) = h(y). Denote by €x(z,y) and €x(y) elementary changes
vy =y+ A, \€k, and y = Ay, \ € k*, respectively.

The change of basis from X to Y is called standard if it is the super-
position of correct elementary changes. We use only standard changes of
basis. Usually we do not modify the notations of basis and its elements
after change, and write ¥ and y instead of X' and y' respectively.

Definition 7. For A,B€ X{, E €%y, a € X)(E,A), be X\(E, B) let

S(0.) = {€ € ZH(A, B) | com(€a) # 0} o

C(a,b) = {€ € 21(A, B) | £a|b} C S(a,b).
A pair (a,b) is called adjusted if S(a,b) = C(a,b). For any ¢ € %1,
denote P, = {(a,b) € Y x XY | ¢ € S(a,b)}. A ¢ € ¥ is called
single provided P, = {(a,b)} and the pair (a,b) is adjusted, and joint
if Py = {(a1,b1), (az,b2)} with ay # aa, by # ba, and the pairs (a1, b1),
(ag,ba) are adjusted. Obviously, if A is faithful, P, # @ for any ¢ € ¥}.

Remark 4. Let A, B € Ear, A # B, p € ¥1(A, B). If three adjusted pairs
(@i, b;), i =1,2,3, lies in Py, then A ¢ C by Definition 4, item 4).

Lemma 3. Let a € $Y(E, A), b€ X)(E, B), and a < b.
1) If o, € S(a,b) and h(yp) = h(v)), then there is a correct elementary
change of basis €x(p,1), X € k*, such that S'(a,b) = S(a,b)\{¢¥}.
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2) There is a standard change of basis from 1 to ¥} on $1(A, B),
such that |S'(a,b)] = 1.

Proof. Since h(yp) > h(v), then the elementary change of basis ¢/ =

) — %(p is correct and leads to the condition S'(a,b) = S(a,b)\{¢}.
The second item follows from the first by induction algorithm. O

We call elements @1, 92 € S1(A, B), A, B € X3, A # B, joint parallel
if ord(A) = ord(B) = 3, and there are Ey, E1, E2 € ¥, a; € X{(E;, A),
b; € ¥9(E;, B), i = 0,1,2, such that the following hold:

1) C(ao, bo) = {1, m} Clai, bi) ={¢i}, i=1,2;

2) Py, = {(ao,bo), (as,b;)}, i = 1,2 (see diagram below).

az

="
\ /

Here some of vertices Ey, F, F2 may be equal, but the arrows ag, a1, as
(bo, b1, b2) are pairwise different.

t
Given aq,...,a; € ¥, define k*(aq,...,a;) = {Z)\iai | A\ € k*}.
i=1

Definition 8. We say that the multiplication rule holds on A if given
any o, € X1 with ¥ # 0, one of the following conditions holds:

1) there is T € X} s.t. ol T;

2) ¢,1 are joint, and there are single 1,70 € X1 such that vy €
k*(71,72), and there are Ey, Eo € ¥, with, possibly, By = FEy, A,B,C €
Ear, where two of the vertices A, B, C may be equal, a; € YI(E;, A),
b; € XV(E;, B), ¢; € LY(E;,C), such that pa; ||b;, ¥b; | c;, i = 1,2, and
T;a;|[055¢i, i, § = 1,2 where 0;; is the Kronecker delta:

ay Ey c1

Definition 9. The triangled basis 3 of a bimodule problem A € C is called
quasi multiplicative if the following properties hold:

1) Any pair (a,b) € X9 x X9 with S(a,b) # @ is adjusted.

2) Any ¢ € X1 with P, # @ is either single or joint.
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3) For any a € X(E, A), b € Y(E, B), the inequality |C(a,b)| < 2
holds. If C(a,b) = {1, p2}, then w1, pa are joint parallel.
4) The multiplication rule holds on A.

It is an approximation of the notion of multiplicative basis ([4], [9]).

Theorem 1 (Main result). Let A be a faithful connected finite dimensional
bimodule problem from class C with nilpotent radical. Then there exists a
standard change of triangled basis to a quast multiplicative one.

The rest of this paper is devoted to the proof of Theorem 1.

3. Bimodule problems with |2/ | =1

Proposition 1. Let A= (K,V) be a faithful connected bimodule problem
from C with nilpotent radical R = Rad K and a triangled basis X such
that ¢ = {A}. Then there exists a standard change of basis such that ¥
becomes multiplicative and one the following conditions hold:

1) E%(AvA) =9;

2) |IZH(A,A)| = 1, |Z5] < 2, and there exists E € X, such that
E?(E, A) = {al,ag}, Y1201 = a9 fO?" P12 € E%(A, A),‘

8) 2 < |E%(A7A)‘ <3, % = {E}, Z(l)(EvA) = {a1,a2,a3}, and
1A, A)={p12, 23, 13} with, possibly, p12 = @23, where 13 = Pazpia,
P12a1 = ag, Pa3as = agz, pi3a1 = ag (all other products are zero).

Proof. By Definition 4, ord A < 3. Thus dimiV < 3 and [¥;] < 3. If
R = 0, then, obviously, ¥1(4, A) = @. Assume R # 0.

Consider the case |X; | = 1. Here dimyV;/Vi41 < 1,7 =1,2, R3V =
V4 =0 and so R® = 0. Let N be nilpotence degree of A. Then 2 < N < 3.
We have Vi 2 Vo 2 V3 and dimyV;/Vig = 1,0 = 1,2. Let a; € E?(Z),
i=1,...,N.

Let N = 2. If ¢ € X}, then pa; = Ayaz for some A, € k* and paz = 0.
If there is another ¢ € ¥, then Ay — Aptp = 0 due to faithfulness of A.
Hence, |21 = 1. Applying correct elementary change (’:)\;1(90), we obtain
Y1 = {p12} such that p12a; = as.

Let N = 3. Then for any ¢ € Z%(Q), we have pay || a3, par = 0,
k = 2,3. Hence, as above, Z%(g) = {13} and pi3a; = as, pizaz = 0.
Now if ¢ € S(a1,a3)\{®13}, then there exists correct elementary change
€ (¢13, ) such that cong,(pai) =0, i. e.

S(a1,a3) = C(ay,a3) = {p13}. (3)

Further, there is ¢ € E%(l) such that as = Aya3, A\, € k*. For
another v € Z%(l) with 1as = Ayas, Ay € k*, we have (Ayp —Ap90)as = 0.
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Applying correct elementary changes € (¢,1) and (’Z/\gl(cp) (that

does not change C(ay,as)), we obtain that Z%(l) contains o3 such that
pazao = a3 and was = 0 for any ¢ € E%(l)\{(pgg}, 1. e.

S(az,a3) = C(ag, a3) = {pas}. (4)

Now it is obvious that 31\ {¢13, w23} C C(a1,a2) C E%(l). For o, €
C(a1,a2), ¢ # a3, €x(p, 1) does not change (3) and (4). Then, simi-
larly, S(a1,a2) = C(a1,a2) = {pi2}. If 12 # o3, then there is some
¢ (p12) such that pi2a; = az, pieas = 0. In this case poza; = 0. Oth-
erwise, poza; = Aag. Applying correct elementary changes €, (y13) and
¢y-1(a1), we obtain @a3a1 = ag, wazas = as and @j3a; = ag. In both
cases 231201 = a3 = p13a1, and hence @312 = P13.

It remains to consider the case |$, | > 1. If X5 | = |X9], then R = 0. So
Yo = {F1, Ex}, and |X9| = 3. We have (up to renumbering) X¢(Fy, A) =
{ai, a2}, X9(E2, A) = {a}. Since a; and ay are comparable by Definition
4 and A is faithful, then ¥1(A4, A) = {©}, and az|@a;. Therefore, we can
obtain wa; = as. O

4. Bimodule problems with |X1| =2

Proposition 2. Let A= (K,V) be a faithful connected bimodule problem
from C with nilpotent radical R = Rad K and a triangled basis 3 such
that X = {A, B}, A# B, and X5 = {E}. Then there exists a standard
change € of basis such that ¥ becomes quasi multiplicative. If A4 and
AB) are endowed with quasi multiplicative basis, then € leaves these bases
unchangeable.

We give the proof by series of lemmas under conditions of Proposition 2.
First of all we note that since A € C is a faithful connected bimodule
problem, then the bimodule problems A and A(5) are faithful connected
as well by Remark 3. We assume that bases of A, A®B) are quasi
multiplicative (they exist by Proposition 1). So, it is sufficient to change
the basic elements from ¥1(A, B) U ¥1(B, A) without changing the rest
of them from 3J; in order to make ¥ quasi multiplicative.

By Proposition 1, we can assert that X{(E, 4) = {a1,...,aq, }, where
1 < g4 = dimgV(E, A) < 3 due to Definition 4, X}(A,4) = {a;; |
1 < i< j < qa} where, possibly, aja = ags for the case g4 = 3, and
C(ai,aj) = {Oéij}, 13 — (9319 (lf qA = 3), Q505 = Ay, 1 < j, and all
other products equals zero.

Similarly, (E, B) = {b1,...,by, }, where 1 < ¢p = dim;V(E, B)
3, %1(B,B) = {fij | 1 <i<j<qp} (possibly, f12 = f23) and C(b;, b;)

A
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{,Bij}, B13 = P23512 (if qB = 3), ﬁzjbl = bj, 1 < 7, and all other products
are zero.

Let h, hy and h be heights of elements of bimodule problems A, A“)
and AP) respectively.

Remark 5. Any nonzero a € V(E, A) is uniquely decomposed to a sum

a = Z)\kak with i = hy(a), \; € k*, 1 < i < ga. For a,d’ € V(E, A),

a < a’ 1f and only if ha(a) < ha(a’) (see Proposition 1).

Lemma 4. Leta € V(E,A), b e V(E, B) and a < b. Then a, < by for all

u,v such that 1 < u < ha(a) and hp(b) < qB Besides, S(al, i) #0
if and only if a; § b;.

Proof. Denote i = ha(a), j = hp(b). Due to transitivity of E it is sufficient
to show that a; E bj. By Remark 5, we can assume a = a; + o/, where

a' =0 or ha(a') >4, and r’a; = ' for some r’ € R. Similarly, b = b; 4 V/,
where b/ = 0 or hp(b') > j. Since ra = b for some r € R, then a; <; b for
s=r+rr, and so a; E b. While b§ b, then s'a; = ' for some s’ € R. So

a; <s—g bj, and hence a; < b;.
To prove second statement consider { € S(a;,bj). Then hp(€a;) <
hg(bj) = j. Since a; E £a;, then a; E b; as proved above. Conversely, while

ra; =b; with r = 3 A¢&, then S(a;, bj) # @. -
€ex]

4.1. The case g4 =g =3

We have ZO {al, as,as, by, bs, bg} with aq a< as a< as, 13 = 3019,
12 23

and by 6< b B< b3, P13 = PozfPie. Any ai € ZO(E A) and b; € EO(E B),
12

< k,l < 3, are comparable by Definition 4. Then, due to the triangularity,
there is the linear order on the set ¥.Y. Without loss of generality we can
assume a; the smallest element. For z,y € X9, let n(z,y) = [{z € X7 |
r <z <y} If aja = agg = a then 1(A, A) = {a,a?}, and o® = 0.

Lemma 5. If g4 = qp = 3, a12 = a3 = «, and 12 = P23 = f3, then
n(ai,a2) = n(az,a3) = 0 and n(by,b2) = n(ba,b3) = 0. Therefore the
following case occurs: a1 <o az <o a3z < by <g bz <g b3.

Proof. If there exists b € V(E, B) such that a; < b < a;1+1, i = 1,2, then
due to Lemma 4, there is b; € X{(E, B) such that a; < b; < a;41, in
particular, n(a;, a;11) > 0.



V.BABYCH, N. GOLOVASHCHUK, S. OVSIENKO 11

Assume n(ag, az) > 1 (the cases n(a1, a2), n(b1,b2), n(ba,b3) > 1 can
be considered similarly). Then as <, bj <g bj+1 <s a3 for some r €
R(A,B), s € R(B, A), j € {1,2}, and we have sfr = a + Aa? € R(4, A).
We can assume A = 0. Indeed, otherwise sBra = a? and sfBr’ = a for
" =r— A ra € R(A, B). Since C(ag, ag) = S(ag, a3) = {a}, then there are
b, b" € V(E, B) such that a1 <, b’ <g b" <, as. But this is impossible
while ¢ = 3.

Hence n(aj,a2) = n(ag,a3) =1, and a1 <, by <5 ag with r € R(A, B),
s € R(B,A). As above, we can assume sr = «, ay < by < as. Then
a1 < by <ag < by <ag< bs.

Note that h(p) = 1 for any ¢ € U 3S(az,bl). By Lemma 3, there

7 )

is standard change of basis such that S(as,b3) = C(as, bs) = {¢3} and
S(az,ba) = Clag,b2) = {w2} where, possibly, p2 = ¢3. Let p;a; = \ib;,
Ai € k*, i =23 If there is ¢ € S(a1,b1), p # v2, @3, then we can do
standard change of basis such that S(ay,b1) = C(a1,b1) = {p1}, 1 #
2, 3. Otherwise, we can assume S(ay, b1) C {2, p3}. Let v3 € S(ay, by)
and w3a; = A\b; + )\’ by + )\363, A1 # 0. If o3 # o, then standard
change ¢4 = @3 — 12 Yot — —gpgaQ leads to equalities ¢ha; = A\by,
Yhay = p3az = 0, phaz = /\3b3 If v € S(ay,b1), then similarly we
obtain pha; = u1by, Yhas = @aas = Aaba, Yhas = 0, p1 € k*. Hence
S(a;,b;) = C(a;, b;), i =1,2,3, and we have one of the cases:

1) C(ai,bi) = {pi}, i = 1,2,3, where two of ¢1, 2, p3 may be equal;

2) Clas, bi) = {pi}, 1 = 2,3, Ca1,b1) = {2, ¢3}-

In the case p2 = @3 we have ¢ = @3 as well, and similarly S(a,b1) =
C(a1,b1) = {¢1}. But this case contradicts A € C (see Remark 4).

Similarly, we can find 1,2 € X1 such that S(b1,az) = C(by,a2) =
{1}, S(ba,as) = C(ba,a3) = {12}, where possibly 1)1 = 19, and finally

a1 <by<ag<by<az<by or a; <b <as<by<ag<bs.
w1 w2 2 ©3 p2,93 Y1 w2 o ©3

Let ¢ € C(ay,b1), then ¢1¢ || a. Since aaz = a3 then ¢ € C(ag, be),
and therefore ¢ = 9. Furthermore, @911 |5, then ¥ = 1)y and ¢oas # 0,
hence 2 = 3. But this contradicts Remark 4. O

4.2. Comparable pairs
Definition 10. Denote by Il =114 p the set

I = {(a;,b;) € £Y(B, A) x Y(E, B) |az<b}

Let us define partial order on I1: given different pairs (ai, b;), (ay,by) € 11,
we say that (a;,b;) < (ay,by) if ay < a; < bj < by. We say that two
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pairs (a;, bj), (ay,by) € II are comparable, provided (a;,bj) < (ay,by) or

(@u,by) < (as,bj). We call the map 11 > (ai,l)~)»h—m>5 ISI%aXb )h(f) e N
€5(a;,bj

the mazimal height, and denote by Sp,(a;,b;) = {§ € S(a;, b;) | h(§) =

hm(ai,bj)}. For (ai,bj) e 11, Sm(a,;,bj) ;ﬁ .

Lemma 6. If (ai,bj) ell, £ e Sm(ai,bj), then hB(fai) = hB(bj) =j.In
particular, h(§a;) = h(bj), and h(b;) — h(a;) = hm(a;, bj).

Pmof If €a;|| by + b for I < j and hp(b') > [, then fj;€a;| bj + 0" and
hp(b") > j. Hence there exists n € S(a;, b;) such that h(n) > h(5;£) >
h(§) = hm(a;,bj), and we get contradiction. Then h(b;) = h(fa;) >
h(€) + h(a;), hence h(b;) — h(a;) = hm(ai, bj). O

Lemma 7. If (ai, b;), (ay,by) € II and hy(ai, bj) = hpm(ay, by) then the
pairs (a;,b;), (ayu,by) are incomparable.

Proof. If cony, (ra;) # 0, 7 € R(A, B), then hy,(a;,b;) = h(r). Indeed, if

r= >, A, then h(§) = h(r) whenever \¢ # 0. Since cony, (ra;) # 0,
£exi(A,B)

then there exists & € S(ay, bj) such that A¢ # 0, and therefore hy,(a;, bj) =

e, )h( n) = h() = h(r )

For (a;, bj), (ay,by) € II, the inequality hp,(ai,b;) < hm(au,by) holds
whenever (a;, b;) < (ay,by). Let (ai, b;) < (ay,by), ¢ € Sm(ai,bj). f i =u
and j < v, then cony, (ra;) # 0 for r = Bjp. If u < i, j = v, then
cony, (ray) # 0 for r = pay;. If u < i, j < v, then cony, (ra,) # 0 for
1 = Bjupoay;. For all the cases, iy (ay, by) = h(r) > h(p) = hm(a;, b5). O

Further, writing (a;,b;), (ay,by) € II, we assume (a;,b;) # (ay, by).

Remark 6. If (a;,b;), (ay,by) € I are incomparable, then either i < u,
j<wvori>u,j>uv.

Proof. The pairs (az,b])7 (ai,by), j # v, are comparable as well as the
pairs (a;, b;), (ay, bj), i # u. Hence i # u, j # v. Given i < u, assume that
j > v, then a; < a, < b, < bj, and hence (ay, b,) < (ai, b;). O]

Definition 11. For any subset X C II, put C(X) = |J C(ay, bj).
(as, bj)ex
Given ¢ € X1(A, B), let X, = {(ai,b;) € X | ¢ € C(a;,b;)}. Obviously,
X, # 9 if and only if p € C(X). A subset X C II is named upper closed
if for any (a;,b;) € X and (ay, by) € IT there hold:
= if hyp(ay, by) > hin(ai, b)), then (ay,by,) € X;
= if hi(@us by) = him(ai, bj) and u > i, then (ay,b,) € X.
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The pair (a;, b;) € II\X is called boundary for the upper closed set
X Il if XU {(as,b))} is upper closed too. A upper closed subset X C 11
1s said to be canonical if the following conditions hold:

1) if (a;, b;) € X then we have |S(a;, bj)| = |C(as, bj)| = 1;

2) 1< |X,| <2 for each ¢ € C(X);

3) if X, = {(ai, bj), (au, by)}, then a; # ay, bj # by, and hy(as, bj) =
B (ay, by) = 1.

Remark that X = & is canonical.
A standard basis change is called careful for the canonical subset
X C IT if X is a canonical subset with respect to the new basis as well.

Lemma 8. Let X C II be a canonical subset and let (a;,b;) € II\X be a
boundary pair. Then Sp,(ai, b;) C Clas, by).

Proof. If cony, (§a;) # 0, & € S(ai, b;), k > j, then & € S(a;, by), and so
(a;, by) € X since (aj, b)) > (a;,bj). We have S(a;, by) = C(a;, by) = {£} by
the definition of X, hence £a;| by that contradicts to inclusion & € S(aj, b;).
Therefore cony, (€a;) = 0 for all £ € S(a;,b;) and k > j.

Let ¢ € Sp(ai, bj). If pailtb;, then we conclude pa; = ppby+. ..+ jb;
with k < j and py, # 0, pj # 0. Therefore (Byjp)a; = prbj+. . .+ 15 (Br;bs)-

There exists § in decomposition frjo = > A¢§ such that A¢ # 0 and
£exi(A,B)

cony, (a;) # 0, s0 £ € S(a;, by). But h(§) = h(Brjp) > h(p) = hm(ai, b)),

and we obtain contradiction. O

Lemma 9. If g4 = qp = 3, a12 = a3 = «, and P13 = Be3 = [, then
Uap = {(a;,bj) | i,j =1,2,3} is canonical, each p € X}(A, B) is single,
and multiplication rule holds.

Proof. By Lemma 5, a1 <, a2 <o a3z <; by <g bz <g b3. Hence, II4 p =
{(ai, b;) | 1,5 = 1,2,3} is upper closed. By Lemma 3 there is standard
basis change that leads to condition S(as, b1) = C(as,b1) = {7}. Obviously,
h(r) =1.

Let Tas = A1by + Aobo + A3b3, then standard basis change 7/ = 7 —
MTa — XofTa — A\3B%Ta implies 7'as = 0, 7'agz = by. Similarly, we can
obtain Ta; =0, Tas =0, Tag = by.

Denote ;; = /1137 i, j = 1,2,3. Then ¢;; = @) implies i = k,
j = 1. Indeed, if k < 4, then 0 = g 1ra?Fa; = fi~1rada; = bj. So
i = k. Similarly, j = [. It is easy to check that y;jar = d;1b;.

If there is ¢ € S(a;,b;)\{wij}, then h(p) < h(p;ij) and ¢ # ¢y for
all k,l. So basis change €)(pij, ) with A = cony, (pa;) is correct and
leads to condition ¢ ¢ S(a;,b;). Thus, C(a;,b;) = S(CLZ7 by) = {pi;} and
YA, B) = {pij,i,7 = 1,2, 3} Multiplication rule holds obviously. [
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4.3. Induction step

We exclude the case of Lemma 9 from further consideration in this
subsection. Let us fix a canonical subset X C II and a boundary pair
(ai, b]) S H\%

Lemma 10. If there exists ¢ € Sy, (ai, bj)\C(X), then there is a careful
basis change such that S(ai, b;) = C(a;, b ) = {p}, p € C(X).

Proof. By Lemma 8, ¢ € C(aj,b;). For a ¢ € S(a;,b;)\{¢}, we have

h(y) < h(p). Hence, there exists A € k* such that the elementary basis

change ¢/ = ¢ 4+ Ap is correct and leads to the condition S(a;,b;) =
S(ai, by)\{¢} by Lemma 3.

Let us show that this change is careful. If ¢ & C(X) then it is clear.
Otherwise, there is the pair (ay, b,) € X such that S(ay, by) = C(ay, by) =
{Y}. If pa, # 0, then ¢ € S(ay, by) for some v < w < g since h(pa,,) >
h(vay,) = h(by). Then (ay, by) € X while (ay, byw) > (ay, by), and therefore
¢ € C(X). We have a contradiction. So pa, = 0, and ¥'a, = va,, hence
this change of basis is careful. O

Corollary 1. IfS,,(a;, b;) ¢ C(X) then XU{(as,b;)} is a canonical subset
as well.

Lemma 11. Let Y = {(ai,, b;, ),k =1,...,n} CII be any set of pairwise
mcomparable pairs in I1. Then n < 3, and if n =3, then g4 = qp = 3,

Y = {(a1,b1), (a2, b2), (a3, b3)}.

Proof. By Remark 6 iy < ... <1, and j; < ... < jp up to renumbering.
Then nqu<3. Ifn= 3, then 11 :jl = 1, 12 :j2 = 2, i3 :jg =3 O

Lemma 12. IfS,,(a;, b;) C C(X), then hy(a;, bj) = 1.

Proof. Assume h = hp,(a;,b;) > 1. Denote Y = |J X,. By defini-
@€Sm(as,bj)

tion 11, |Y| > |Sm(as, bj)|, and hy,(ay,by) = h for any (ay,b,) € Y, and

hence the pairs from Y U {(a;, b;)} are pairwise incomparable by Lemma

7. By Lemma 11, |Y| < 2.

Assume S,;, (aZ7 i) ={p, ¥}, and |X,] = |Xy| =1,V = X, U Xy. Then,
by Lemma 11, ga = ¢ = 3, and Y U {(a;, b;)} = {(ax,bx) | k =1,2,3},
besides, (a;, b; ) (a1,b1) and II = X | J{ (a1, bl)} while X is upper closed.
Let X, = {(a2752)} Xy = {(as,b3)}.

Since hy,(ag,by) = h > 1, k = 1,2,3, and there is a basic element
of each height, then either a1 < as < by < ag < by < b3 or a1 < as <
ag < by < by < bs. In the first case hy,(ai,b1) = hp(as,b3) = 2 but
hm(ag2,by) = 3, and we get a contradiction.
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In the second case hp,(ag,bx) =3, k =1,2,3. Let 7 € S(as,b;). Then

h(taig) = (1) + h(a1z) > 3, and Taig = > A, where = = {£ €
ez

${(A, B) | h(£) = 3}. Since each pair (ag, by) is adjusted, cony, (Say) =0
for all £ € E\{g, ¢ }. Then 0 = cony, (Ta13a2) = A, while cony, (¢ag) = 0.
Similarly, Ay, = 0, in contradiction with condition cony, (Ta13a1) # 0.

Therefore, Sy, (a;,b5) = {¢} C C(ai, b;), h(¢) = h. Since ¢ € C(X),
there exists (ay, by) € X such that C(ay, b,) = {¢}, the pairs (a;,b;) and
(ay, by) are incomparable, and i < u, j < v by Remark 6 in view of X is
upper closed.

Since h > 1, then ¢ is a linear combination of the summands belonging
to the set

I' = {¢a, BE, BEa | a € £1(A, A), B € S1(B, B), ¢ € 1(A,B)} NR™

Since @a;[|b; (resp., pay||by) then there is v € I' such that cony, (ya;) # 0
(resp., cony, (ya,) # 0). Denote I'" = {y € T' | cony, (ya;) # 0}, T" = {y €
I' | conp, (yay) # 0}. Then I" = T”. Indeed, if v = > Ay € T,
HEXL(A,B)
h()>h
then cony, (va;) = 0 and cony, (1a,,) = 0 for any 1 # ¢ by the construction.
Therefore A, # 0, cony, (yay,) = Ay cony, (pay) # 0 and v € I'". The proof
of inclusion T C T" is similar. Remark that vya; # 0 and ~ya,, # 0 for any
vel’.

Let v € TV. If v = £ or v = Ba, then aa; # 0 and aa, # 0. So
« is joint arrow while ¢ < u, and g4 = 3. If v = ¢ or v = [&a, then
vail|bj + b, where h(b') > h(b;), j > 2, and by||bs. Thus bj,b, € SV(E, B).
But j < v, hence 3 is a joint arrow, and gp = 3.

If v = a € TV, then @ = aj9 = ag3,s0 1 = 1, u = 2, and we
have a1 < a2 <g b;, az <o a3z <¢ b,. Here h(b;- — b;j) > h(b;) and
h(b, — by) > h(by). There is r € R(B, B) such that b’ <, b, by Remark 5.
We obtain as <¢ b} <, b, and we can find 3 € ¥1(B, B) such that
cony, (B€ay,) # 0, hence € € TV and S is a joint arrow. If v = 3¢, then,
similarly, « is a joint arrow.

If «, B are both joint, then g4 = g = 3, @ = @192 = o3, B = B12 = [a3.
This case of Lemma 9 is excluded from consideration. O

Lemma 13. Let Sy, (ai, bj) C C(X). Then one of the following conditions
holds (after some careful basis change):

1) S(ai, bj) = Clai, bj) = {¢}, h(p) =1, p € C(X), and |X,[ =1;

2) qa=q=3,1=j=1,1T=XJ{(a1,b1)} and C(ag,br) = {pr},
%ka - {(CLk,bk)}, k= 2)37 C(alvbl) — {@27903}'
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Proof. By Lemma 12, hy,(a;, bj) = 1. Clearly, Sy, (a;,bj) = S(a;, b;). By

Lemma 8, S(a;, b;) = C(ai, b;). Denote Y = |J  X,. By definition 11,
peC(ai,by)

| V| = |C(a;, b5)], and if (ay,by) € Y, then hp,(ay, by) = 1. Hence, the pairs

from Y (J{(as, b;)} are pairwise incomparable by Lemma 7, and so || < 2

by Lemma 11.

If |Y| = 1 then C(a;, bj) = {¢} and |X,| = 1, which implies 1). Assume
V| = 2. If C(ai, b;) = {go} then Y = X,. Thus P, includes three adjusted
pairs, which is impossible by Remark 4. Hence Clai, bj) = {go ¥}, and
Y = X, UXy. There are (a’,V),(a”, V") € X such that ¢’ < a”, and
C(a, V') = {¢}, C(a", V") = {¢}. The pairs (a;, b;), (a/,V), (a”,b”) are
pairwise incomparable by Lemma 7, while h(y) = h(¢) = 1. Since X is

upper closed, it is possible only if i = j = 1, then ay <w by < d < b <
®
a” j b, and IT = X |J{ (a1, b1)}. We obtain the case 2). O

Lemma 14. Let X C II be a canonical subset and let (a;,b;) € II\X be a
boundary pair. Then there exists a careful basis change on Y1(A, B) such

that X U {(ai, b;)} is a canonical subset in 11 except of the case g4 = qp =

3, a1 < bi<as < by < as < bs, and i = j =1, Il = X J{(a1,b1)},
$2,¥3

Clag, br) = {¢r}, 35% = {(almbk)} k=23, Ca1,b1) = {p2, p3}.

Proof. By Lemma 12, if ¢ € C(X U {(a;,b;)}) and h(p) > 1, then ¢ is
single. Then the proof follows from Lemmas 10 and 13. OJ

Combining results of Lemmas 9, 14 and 12, we obtain the following

Corollary 2. Under conditions of Proposition 2, one of the following
cases occurs:

1) I is a canonical set;

2) II\{(a1,b1)} is a canonical set; this is the case from Lemma 14.
In any case, for every a; € XY(E, A) and ¢ € X1(A, B), either pa; = 0
or wa;||b; for some b; € Y(E, B), and the height of each joint arrow in
Y1(A, B) equals 1.

Denote by 114 g and Il ' the sets, defined by definition 10. Assume
both II4 g and IIp 4 satisfy Corollary 2. Then at most one of these set
may be not canonical (since a; < by and by < a; are not simultaneous).

'Defined as in Definition 10.
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4.4. Multiplication rule on X}

For any ¢,v € X1, we say that the product ¢ belongs to 1, if
Y || € € X1 Further considerations are provided under assertions of
Corollary 2.

Lemma 15. Under conditions of Proposition 2, multiplication rule holds

for A.

Proof. Due to Corollary 2, either the set 114 p is canonical, or we have the
special case of Lemma 14 and IT4 g\{(a1,b1)} is a canonical set. Similarly,
IIp 4 or IIp 4\{(b1,a1)} is a canonical set. The special case occurs at
most for one of the cases 114 p and Il 4, so we can assume Il 4 to be
canonical. Due to Proposition 1, the sets II4 4 and IIp p are canonical as
well.

Since Anng V = 0 then C(Ilxy) = X}(X,Y) for all X,Y € {A, B}. If
X, Y or Z denotes one of the vertices A or B, then we write x;, y; or z;
instead of basic elements a; or b; respectively. Further we will omit the
condition 1 < 7 for the indices.

Assume 7 = 1 # 0, p € XX, Y), v € LY, Z) where X,Y,Z €
{A, B}. Let

r= > A& M€k (5)

£exi(X,2)

Denote by ¥, the set of all £ from decomposition (5) such that A¢ # 0.
Then A(§) = h(r) > 1 for any £ € %, and if X # Z, £ is single by
Corollary 2.

1) If ra; # 0 for some i < gx, then there exist j < ¢y and k < gz
such that ¢x;||y; and ¥y, 2 by construction, so ra;| 2.

2) Let reR(A, A). If X1(A, A) = {a,a?}, then r belongs to ¥1(4, A).
Indeed, if » = Aa + pa?, A\, i € k*, then ra; = Aas + pas in contradiction
with item 1), and Lemma is proved. So, if » € R(A, A), we assume all the
arrows from %1(A, A) to be single below.

3) Now it is enough to consider the situation when all the arrows from
Y, are single. Denote ¥, = {71,...,7,}, p > 0, and P, = {(xs,, 2x,) },
t=1,...,p. Then z;,...,x;, are pairwise different arrows and p < 3.
Indeed, if x;, = x;, then 2, # 2, while IIx z\{(z1,21)} is canonical,
and the sum rz;, = i A, ToXi, = qZZ 1;z; contains at least two nonzero

v=1 i=1
summands in contradiction with item 1).

4) If 7,70 € X, 71 # T2, then ¢, ¢ are joint. Indeed, since P,, =
{(xi,, 2k, )}, then @x;, # 0 for t = 1,2, and hence there exist y;,,y;, such
that (x;,,v;,) € P,. By item 3), x;, # x;, and hence Py, = {(24,,v;,), (%iy, Yjn) },



18 GENERALIZED MULTIPLICATIVE BASES

and ¢ is joint. Obviously, both (x;,,vy;,), (4,, yj,) have the same maximal
height. By Lemma 7, the pairs (2;,,;,), (zi,, y;,) are incomparable, and
hence y;, # y;, by Remark 6. Since vy, || rz;, || z,, t = 1,2, then ¢ is
joint as well, and Py, = {(y;,, 2k, ), (Yjz 2k, ) }- The pairs (y;,, 2k, ), (Yjz, 2k2)
are incomparable as above. In particular, z;, # 2j,. Due to Remark 4,
|3-] = p < 2. In the case p = 1 the assertion of Lemma is obvious. Now
assume p = 2.

5) The pairs (x;,, 2k, ), (Tiy, 2k,) are incomparable. Otherwise, up to
renumbering, x;, < T, < 2k, < 2k, But z;, <y < 2z, and x4, <y, <
Z,. The elements y;, and y;, are comparable, hence either z;, < y;, <
Yjo < 2hy < 2y, a0d (Yjo, 2hy) < (Yj1s 2k )5 OF Tiy < Ty < Yjp < Y5y, and
80 (Ziy, Yjn) < (z4y,y;,). Both cases contradict to 4).

6) Let r = o € R(A,B), ¢ = a € ©1(A, A). Then by 4), a and
Y € YA, B) are joint. Hence g4 = 3, 31(4,4) = {a,a?}, P, =
{(a1,a2), (az,a3)}, Py = {(a2,b;,), (a3, bj,)}, j1 < j2. Using 4) and 5),
we obtain o = A\71 + Ao, where A1, A2 € k* and 71,72 € 3{(A4, B)
are single, and P, = {(at,bj,)}. By Corollary 2 and Definition 11,
Clat,b5,) = {m}, Clats1,b5,) = {¥}, t = 1,2. So we have the follow-
ing partially ordered set:

\
/

J1J2

/
/\

where —* means ?, and C(bjy, bj,) = {Bjijo }- If [Eg; 0| > 1, then B,

is joint by 4), and the proof follows from Lemma 9. Otherwise 3;, ,1| 2.

Assume that bj, < ag with C(bj,,a3) = {{}. Then a1 < as <y bj, <¢
as < bj,. We obtain &as || az and hence & || o + pa®, p € k. In this
case &Yay ||ag + pas # 0 and a; # 0 which contradicts to Remark 4.
If a3 < b;, with C(as, bj,) = {¢}, then a1 < ag <4 a3z <¢ bj, < bj, and
hence {aas || bj,, and therefore h(y) > h(£a) > 1 which contradicts to
Definition 11, since 1) is joint. Thus, a3 and b;, are incomparable. By 3)
of Definition 4, qg = 2. In particular, j; = 1, jo = 2.
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Therefore, we have the following bigraph?:

A SN s S
T2
% \ bl / (as, by are incomparable)

According to 2) of Definition 8 multiplication rule holds for ¥e.

7) Let r = ¢p € R(A, B), ¢ = 8 € ©1(B, B). Then similarly ¢4 = 2,
qB = 37 E%(B7B) = {67ﬁ2}7 P, T1,T2 € E%(A7 B)v 1/’ = Bz BSO € k*<7-177-2>a
P<P:{(a17 bl)a (a27 b2)}7 PB:{(bh b2), (bQ, b3)}, Pq—t :{(at, bt+1)}, tzl, 2.

012(\\ / /_Tl_\\A //\B
NI
V4

E

—

(ag,b; are incomparable)

8) Let r = vp € R(A, A). Then g4 = 3, qg > 2, ¢ € X}(A,B),
Y € $1(B,A), Yo = k* (a2, aa3), a1z, a23 € L1(A, A), ar2 # ags, and
PSD = {(al’bjl)’ (a27bj2)}) Pd) = {(bjpa?)a (bj27a3)}) 1 <71 <Jj2 <¢g;

12 o ¥ /\6

N _——

~ —

S=A<______zB
7 % v, /7
J1
NV
E
If g = 3and b € 1(E, B)\{b;,,bj, } then either b < a; or ag < b. Besides,
Brz # Pas.
Indeed, by 2), a12 # a23. By 3), 4), 5) we have a;, < bj, E ag, ,
)

ai, < bj, < ay,, and hence a; < bj, < as < bj, < az. Then ra; || az41,

% ¥ 4 ¥ % ¥
ag||bj,, ¥bj, ||ai+1, t = 1,2, and r = a1z + pass, A, p € k*.

If gp = 3, then there exists by € X(E, B)\{bj,, b, }. Since ¢ is joint,
then h(y) = 1 by Definition 11, and hence by < aj or ag < bg. Assume
Pia = Paz = . I by <ay <by Se2s bs S e then |8 + puB?, 1 €k,

©

©
and hence by # 0 which is impossible by Remark 4. If a1 < by i as <
® ®

2Note that the pictured subbigraphs can be non-full.



20 GENERALIZED MULTIPLICATIVE BASES

ba j az < bs, then || B+ uB?, 1 € k, and hence a3 # 0 in contradiction

with Remark 4. Finally, if we have the special case from Lemma 14, and
v, ¢ € Cay,by), then ¥y’ ||a2 since otherwise ¢’ € C(ag, be).

9) The case r = ¥y € R(B, B) can be obtained from 8) by swapping
A and B. O

The proof of this Lemma implies the following result.

Remark 7. If g4 < 2, gg < 2, then all the arrows from Z% are single and
the product of two basic elements is basic up to scalar multiplier.

The proof of Proposition 2 is complete.

5. General case

Remark 8. Let A = (K, V) be a faithful connected bimodule problem
from C with nilpotent radical R = Rad K and a triangled basis ¥, and
A e X, E €. In this case Riy gy = R(4, 4). If V(E, A) # 0 and
Anngeg 4y V(E, A) # 0, then dimiV(E, A) = 1 and Anng(y ) V(E, 4) =
R(A, A). Moreover, in this case ord A = 3, and there is £y € ¥ such that
dimkV(El, A) = 2, AHHR V(El, A) =0.

Proposition 3. Let A= (K,V) be a faithful connected bimodule problem
from C with nilpotent radical R = Rad K and a triangled basis 3 such
that |S¢| =2 (but not necessary |5y | = 1). Then there exists a standard
change € of basis from ¥ to quasi multiplicative one. If A4 for A €
Z(J{ 1s endowed with quasi multiplicative basis, then € leaves these bases
unchangeable.

To prove Proposition 3, let & = {4, B}, X5 = {E\,..., E,}. Since
A is faithful, then the restrictions A*) and A are faithful as well by
Remark 3. Due to Proposition 1, we can assume that both A and A5
have quasi multiplicative bases.

Denote by A; and A} the restriction and the faithful restriction of
A to the set {A,B,E;}, i = 1,...,p, respectively. Then V] = V;, and
R = R;/ Anng, V;. For the proof of proposition, it is enough to check, that
we can choose a correct basis simultaneously for all AL, i=1,...,p.

Due to connectivity of A, there exists i such that V(E;, A) # 0
and V(E;, B) # 0. Therefore, if [¥| > 1, then dimV(F;, A) < 2 and
dimV(E;, B) < 2 for all j # i. If V(E;, A) = 0 for some j, then denote
A = (KV) = Ay gy gpyy I dimV(E), B) = 1 then A is faithful

as well as A, and the proof for A follows from the proof for A. Other-
wise, if dimV(Ej, B) = 2, then X}(B, B) = {12} by Proposition 1, and
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Anng V = (f12). In this case the proof for A follows from the proof for

the faithful part of A.
So we can assume that dimyV(E;, A) > 0 and dimgV(E;, B) > 0 for all

P P
i=1,...,p. By Definition 4, > dimyV(E;, A) < 3, > dimyV(E;, B) < 3.

Therefore p < 3. Ilf p=1, thenltﬁe proof follows fromZPioposition 2. Hence
p=2orp=3.

Assume there exists F; € X, such that dimyV(Ei, A) = 3 (resp.,
dimgV(E1, B) = 3); then p = 1. In the case dimyV(F;, A) = 2 (resp.,
dimgV(E1, B) = 2) we have p < 2. Finally, p = 3 only for the case
dimgV(E;, A) = dimgV(E;, B) =1 for i = 1,2, 3.

Consider the case ¥; = {E, E2}. By Proposition 2 A} is endowed
with quasi multiplicative basis 1(A}).

Lemma 16. Assume ¥, = {E1, Eo}, dimV(Es, A) = dimiV(E», B) = 1.
Then Proposition 8 holds.

Proof. Assume A satisfies Proposition 2. We have 1 < [X{(E1, 4)| < 2,
1 < |2Y(Ey, B)| < 2. Consider the case X9(Ey, A) = {a1,a2}, a1 < az,
YO(Ey, B) = {b1,b2}, by < be. By assumption, X9(Fs, A) = {as}, and
S9(Ey, B) = {bs}.

Note that S(ag, b3) = C(as, b3). Due to triangularity condition, either
C(as,bs) = @ or C(bs,a3) = @. Since A is faithful, and h(p) = 1 for
any ¢ € C(ag,bs), then C(as,bs) contains at least one p ¢ X1(A)). If
o, € Clas, bs), p &€ L1(A)), ¢ € B}(A)), then correct elementary change
(v, 1) leads to condition C(as,bs) = {¢} without corruption of multi-
plication on 1(A}). Finally, if C(as,b3) C $1(A}), then |C(as,b3)| < 2
while hy,(as, bs) = 1. If C(ag,bs) = {¢}, then ¢ can not be joint in A}
by Remark 4. Hence, ¢ is joint in A. If C(as,bs) = {p, ¥}, ¢, are joint
parallel in A. Obviously, multiplication rule holds in any case. The cases
1X0(F1, A)| =1 or |X9(Ey, B)| =1 are similar. O

Lemma 17. Assume ¥, = {Ei, Es}, YU(E, A) = {a1,as2}, a1 < as,
Y(Ey, A) = {as}, ¥V(F1, B) = {b1}, X(Ea, B) = {ba, b3}, by < bs. Then
Proposition 3 holds.
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Proof. Let us apply Proposition 2 to A}. We have

Denote = = %1(A))(A, B). Since A} has quasi multiplicative basis
Y1(A}), then [EUXHA)) (B, A)| < 2. If 2 = {¢,9}, then a; S a2 <b1,

ay j by and hence h(p) = 1, 9 || paiz. By the associativity Condltlon,

Y & Y1(AL) (A, B). If = = {¢}, then h(¢) = 1. Thus, if E # &, then =
contains the unique ¢ of height 1. If ¢ ¢ %1(A}) or = = @, then there is a
standard change of ¥1(A%)(A, B) such that each pair (a;,b;) € 114 p(A))
is adjusted and every arrow in Y1 (A, B) is single.

Let ¢ € 2N 21 (A)). Then h(p) = 1. Consider (a;,b;) € 114 p(Ab).
If p,¢ € S(ai,bj), then €5(1), ) leads to condition ¢ ¢ S(a;,b;). If
@ ¢ S(a;, bj), then |S(a;,b5)] = 1 and S(a;,b;) = C(as, bj) after some
standard basis change on E%(.A’Q)(A, B). If S(a;,bj) = {¢}, then ¢ is
joint. In any case, each arrow from %1(A, B)\{¢} is single. All changes
above does not corrupt quasi multiplicativity of 31(A}). The basis on
Y1(AL) (B, A) can be chosen similarly. It is clear that multiplication rule
holds on A. O

Lemma 18. Let X5 = {E1,...,E,}, 2 < p < 3, and XV(E;, A) = {a;},
YO(E;, B) = {b;}, i =1,...,p. Then Proposition 3 holds.

Proof. Here we have

o bo as By
{ %
AZZ__ L ___ZB
\a 1\ b1
Ey

As above, applying a standard basis change we obtain that each comparable
pair is adjusted and every arrow from X} is either single or joint, which
implies multiplication rule on A. ]

The proof of Proposition 3 is completed.
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Lemma 19. Let A € C be a faithful bimodule problem with a triangled
basis ¥, and B = {A,B,C}. If ¢ € S1(A,B), ¢ € XHB,C), and
{A, B,C}| = 3, then ¢y belongs to %21 except of the case:

VLI

E}‘F’ T B~ - ZC
T2
b
a r c2
Es

where ¢g0 S ]k*(Tl,TQ), T1,T2 € E%(A,C), and P‘p = {(al,bl),(ag,bz)};
P¢’ = {(blvcl)a (b27c2)}7 P‘I‘t = {(at7ct)}7 t= 1’2-

The proof is similar to the proof of Lemma 15.

The proof of Theorem 1. Since A is a faithful, then the bimodule problems
AW AAB) gre faithful as well for any A, B € E(T by Remark 3. Applying
consequently Proposition 1 to AW Proposition 3 to A5 and Lemma 19
for all A, B,C € ¥}, we obtain the proof of Theorem 1. O

Conclusion

The main result of the paper states the existence of quasi multiplicative
basis for a faithful connected finite dimensional bimodule problem with
nilpotent radical from considered class C. The authors are going to apply
the obtained results to construct the universal covering for such problem.
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