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ABSTRACT. This paper characterizes directed graphs which
are Cayley graphs of finite simple semigroups, i.e. of a subspecies of
completely regular semigroups. Moreover we investigate the struc-
ture of Cayley graphs of finite simple semigroups with a one-element
connection set. We introduce the conditions for which they are
isomorphic and connected.

Introduction

One of the first investigations on Cayley graphs of algebraic structures
can be found in Maschke’s Theorem from 1896 about groups of genus
zero, that is, groups G which possess a generating system A such that
the Cayley graph Cay(G, A) is planar, see for example [15]. In [10] Cay-
ley graphs which represent groupoids, quasigroups, loops or groups are
described. The result for groups originates from [15] and is meanwhile
folklore, see for example [2]. After this it is natural to investigate Cayley
graphs for semigroups which are unions of groups, so-called completely
regular semigroups, see for example [12|. In [1] Cayley graphs which rep-
resent completely regular semigroups which are right (left) groups are
characterized. We now investigate Cayley graphs which represent finite
simple semigroups. Recent studies in different directions investigate tran-
sitivity of Cayley graph of groups and semigroups [7] and of right and left
groups and of Clifford semigroups [11]|. Other related results can be found,
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for example, in [5], [7] and [9]. Relations to network theory together with
many theoretical results are presented in [4]. The concept of Cayley graph
of a groupoid has also been considered in relation to automata theory in
a book by A.V. Kelarev [6].

In this paper , we characterize finite simple semigroup digraphs. We
also describe the structure of Cayley graphs of finite simple semigroup
with a one-element connection set. Moreover we introduce the conditions
for which they are isomorphic and connected.

1. Basic definitions and results

All sets in this paper are assume to be finite. A semigroup S is called simple
if it has no proper ideals. An element a of a semigroup S is completely
reqular if there exists an element x € S such that a = axza and ax = za. A
semigroup S is called completely regular if all its elements are completely
regular. A completely regular semigroup S is called completely simple if it
is simple.

Since all sets in this paper are finite, simple semigroups are completely
simple semigroups. In this case a simple semigroup is always union of
groups.

Suppose that G is a group, I and A are nonempty sets, and P is a
A x I matrix over a group G.

The Rees matriz semigroup M(G, I, A, P) with sandwich matriz P
consists of all triples (g,i,A), where i € I, A € A, and g € G with multi-
plication defined by the rule (g1,1, A\1)(g2, 92, \2) = (91Pri592, i1, A2).

For an element g of group G we denote by |g| the order of ¢.

Theorem 1 ([13]). A semigroup S is completely simple if and only if S
1s 1somorphic to a Rees matrix semigroup.

In the sequel we will mainly use the term Rees matrix semigroup
instead of completely simple semigroup.

For an element of completely simple semigroup S = M(G, I, A, P) we
denote by p1, p2 and p3 the natural projections of S onto GG, onto I and
onto A, respectively.

Let (V4,FE1) and (Va, E2) be digraphs. A mapping ¢ : Vi — Vs is
called a digraph homomorphism if (u,v) € E; implies (p(u), p(v)) € Eo,
i.e. ¢ preserves arcs. We write ¢ : (V1,E1) — (Va, E2). A digraph ho-
momorphism ¢ : (V, E) — (V, E) is called a digraph endomorphism. If
¢ : (Vi, Ey) — (Va, E3) is a bijective digraph homomorphism and ¢~ is
also a digraph homomorphism, then ¢ is called a digraph isomorphism. A
digraph isomorphism ¢ : (V, E) — (V, E) is calleded a digraph automor-
phism.
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Let (V1, E1), (Va, E3), ..., (Va, Ey) be digraphs such that V; NV, =0
for all i # j. The disjoint union of (Vq, Ey), (Va, Es), ..., (Vy, Ey) is defined
as U (Vi, By) o= (U Vi, U Ey). Let (V,Eq), (V, Ba),..., (V,Ey)
be digraphs. The edge sum of (V, Ey), (V, Es),...,(V, E,) is defined as
D (V. E;) :== (V,Ul | E,) see for example [10].

Let S be a semigroup (group) and A C S. We define the Cayley graph
Cay(S, A) as follows: S is the vertex set and (u,v), u,v € S, is an arc in
Cay(S, A) if there exists an element a € A such that v = ua. The set A
is called the connection set of Cay(S, A).

A digraph (V| E) is called a semigroup (group) digraph or digraph of a
semigroup (group) if there exists a semigroup (group) S and a connection
set A C S such that (V| F) is isomorphic to the Cayley graph Cay(S, A).

For terms in graph theory not defined here see for example [2].

Theorem 2. ([2],[13],[14]) A digraph (V, E) is a Cayley graph of a group
G if and only if Aut(V, E) contains a subgroup A which is isomorphic to
G and for any two vertices u,v € V there exists o € A such that o(u) = v.

By the definition of completely simple semigroup, we have the following
lemma.

Lemma 1. Let G be a group, S = M(G,I, A\, P) a completely simple
semigroup, A C S, and let (g1,i1, 1), (92,12, A2) € S. Then ((g1,11, A1),
(92,12, A2)) is an arc in Cay(S, A) if and only if there exists a = (g,1, \2)
€ A such that g2 = gipx,19 and i1 = ia.

A subdigraph F of a digraph G is called a strong subdigraph of G if
and only if whenever u and v are vertices of F' and (u,v) is an arc in G,
then (u,v) is an arc in F' as well.

2. Cayley graphs of finite simple semigroups

In view of Lemma 3.2 in [8], we know that a completely simple semigroup
S = M(G,I,A, P) is aright group if and only if |I| = 1.

In [1] Cayley graphs which represent right groups are characterized.
Then we obtain the following proposition.

Proposition 1. Let G be a group, S = M(G,{i}, A, P).
Take a = (g,i,8) € S. Then

(1) the Cayley graph Cay(S,{a}) contains a strong group subdigraph
C’ay(G, {pﬁig});

(2) ((91,%, A1), (92,7, A2)) is an arc in Cay(S,{a}) if and only if go =
g1pxig and Ay = .
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If S =M(G,I,A,P) is a completely simple semigroup, let p; denote
the projection of S on to its i coordinate. In the next theorem, we
characterize a Cayley graph of a finite simple semigroup.

Theorem 3. A digraph (V, E) is a Cayley graph of a finite simple semi-
group if and only if the following conditions hold

(1) (V, E) is the disjoint union of n isomorphic subdigraphs
V1, E1), (Va, Eg), ..., (Vi, Ey) for some n € N;

(2) (Vi, E;) has n subdigraphs (Vii, Ei1), (Via, Ei2), ..., (Vin, Ein) such
that (Vi, E;) = @ 1 (Vij, Eij) with V; = Vi;
for every j € {1,2,..,n};

(3) (va Eij) contains m disjoint strong subdigraphs (VZ},El) (Vj, E2)
o (VI ETY) such that Vij = Upy Vi§;
(4) there exists a group G and a family of digraph isomorphisms
{f5 oz such that [« (Vi§, Ef) — Cay(G, af; Af;) for some af; €
G, AagGwzthA A%,agj:a%forallkte{l n}

(5) foreachu e VS v e v/

z]’ 197
for some a € Aij .

(u,v) € E if and only if f{}(v) = f&(u)afia

) )

Proof. (=) Let (V, E) be a Cayley graph of a finite simple semigroup.
Then there exists a finite simple semigroup S = M(G, I, A, P) where G is
a group, I ={1,2,...,n}, A ={1,2,...,m}, and P is a A x I matrix over
a group G, such that (V, E) = Cay(S, A) for some A C S. Hence we will
prove that (1),(2), (3),(4) and (5) are true for Cay(S, A).

(1) For each i € I, set V; := G x {i} x A, and E; := E(Cay(S,A)) N
(Vi x V;). Hence (V;, E;) is a strong subdigraph of Cay(S, A) and
Cay(S,A) = U,(Vi, E;). We show that (Vi, Ey), (Va, Ea), ...,
(Vy, Ey) are isomorphic. Let p,q € I, p # ¢, define a map ¢ from
(Vo Ep) to (Vy, Eq) by ¢((g,p,7)) = (9, ¢, 7). Since |Vp| = |[Vy|, ¢ is a
well defined bijection. To prove that ¢ and ¢! are digraph homomor-
phisms. For (g,p,7), (¢',p,7") € V}, take ((g,p,7), (9", p,7")) € Ep.
Since E, C E(Cay(S, A)), ((g,p,7),(¢',p,7")) is an arc in Cay(S, A).
By Lemma 1, there exists (a,l,7”) € A such that ¢ = gpna,

/

r' = 7" and thus (¢',q,7") = (9pna,q,v") = (9,¢;7) (a,1,7").
Then ((g,q,7),(¢',q,7")) is an arc in Cay(S,A). It follows that
((g,q,7), (¢',q,7")) € E;. This shows that ¢ is a digraph homo-
morphism. Similarly, ¢! is a digraph homomorphism. Hence ¢ is
a digraph isomorphism. Now we prove that Cay(S, A) is the dis-
joint union of (Vi, Ey), (Va, Ea), ..., (Vy, Ey). By definition of Vj,
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S = UV;. Since E; C E(Cay(S, A)) , UE; C E(Cay(S, A)). Let
((g,j, ), (g,k:,f)) € E(Cay(S,A). By Lemma 1, j = k, and thus
((9..7), (4. k7)) € By. Then ((g,4.7), (4. k) € UE:. Hence
E(Cay(S,A)) € UE;, and so E(Cay(S,A)) = UE;. Therefore
Cay(S, A) = U(Vi, Ey).

Let S;j = M(G, {i}, A, Pj) where 4,5 € {1,2,..,n},

P1j
b2y

L Pmj |

and Pj is the j'* column of P, and let A;; =: {(g,4, 3)|(g,J, B) € A}.
Take (Vij, Eij) = Cay(SZ-j, Aij). Hence Vij = M(G, {i},A, Pj) = VZ
To prove that (Vi, E) = @7, (Vij, Eyy). Let (9.7, 0), (¢',1, 8)) € E
Therefore ((g,1,),(¢,i,3)) is an arc in Cay(S, A). By Lemma 1,
there exists (¢”,1,v) € A such that v = 8 and ¢’ = gpag”. Since
(¢",1,8) € A, (¢",1,8) € Ay. Thus ((g,i, ), (¢',4,3)) is an arc in
Cay(SilvAil) as (gvi)a)(g”7i)/8) = (gpalg”aiuﬁ) = (g,aiaﬁ)' There-
fore ((g,4,c) ,(¢',i,8)) € Ey C U?:l E;j,and so E; C U?:l E;j. Let
((gu iu O[), (g,’ia ﬁ)) € U?:l EZ] Therefore ((gu iu O[), (g/7Z7/8)) S Eil
for some [ € {1,2,..,n}. It follows that ((g,%,«), (¢, i,5)) is an
arc in Cay(Sy, Ay). Then there exists (¢”,4,7) € Aj such that
v =8 and ¢ = gpug” by Lemma 1. Hence (¢”,1,3) € A because
(9",i,8) € Ag. Then (¢4, 8) = (9parg”,i,8) = (g,i,a)(g",1,3),
((g,i,0),(¢',i,8)) is an arc in Cay(S,A). Therefore ((g,1,),
(¢',4,8)) € E;, and thus J_, Ej; C E;. Hence E; = |J;_, E
This show that (Vi, ;) = @), (Vij, Eij).

Set V5 := M(G, {i},{a}, Py), B = E(Cay(Sij,Aij))ﬂ(Vi? X VZ?)
where Pf* = [po;] is an 1 x 1 matrix. Therefore V;§ C V;; and thus

(VZ?,EO‘) is a strong subdigraph of (Vi;, E;;). Let o, € A and
a # B. To prove that (V§, Ef}) and (VZf,Eﬁ) are disjoint. Since
VaﬁVB = (), by the definition of £} and Eg,EO‘ ﬂEﬁ = (). Therefore

(Vla Ea) and (Vé, EZ) are dlsJ01nt subdigraphs of (Vm E;j). Hence
Ua 1 Vz? = Ua:l M(G, {i}, {a}, [paj]) = M(G, {i}, A, PJ) = Vi

Let A% := {gl(g,i,a) € A;}. To prove that (V3 Ef) =
Cay(G,a%A ) where af; = paj. Let f5 + (Vi§ ES) —
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C’ay(G,pajA%) be the projection of V% on to its first coordinate,

Le. fii = p1. We first show that f7 and f%_l are digraph homo-
morphisms. For (g,4,a), (¢',i,a) € V3, take ((g,4,),(¢',i,a)) €
Ef. By the definition of Ef, ((9,4,a),(¢’,i,a)) is an arc in
Cay(S;j, Aij). Then there exists (¢”,4,7) € A;; such that ¢ =
9Pajg” and a = v by Lemma 1. Thus there is g” € Ag:. It follows
that (f3(g,1,), f5(¢',3,@)) = (g,¢') is an arc in Cay(G, pa; Af).
Hence fj is a digraph homomorphism. For g, g €G,let (g,9') be
an arc in Cay(G, pa;Afy). Therefore g' = gpa;g” for some g” € AZ.
By the definition of A, there is (¢”,4,a) € A;; and so (¢',i,a) =
(gpajd” i, @) = (9,1, a)(g", i, ). Therefore ((g,%, ), (¢, i, )) is an
arc in Cay(Si;, Aij). This shows that f,f;-*l is a digraph homo-
morphism. Let k,t € {1,2,...,n}. We show that Agj = Af;. Take
g € Aj;. Then (g, k,a) € Ayj and (g,j, a) € A. By the definition of
A, (9,1, @) € Ay, and thus g € AP, This shows that AR C AR
Similarly A}, O Af. Thus Ag; = A7 forall k,¢ € {1,2, ..., n}. Since
ag; = Paj and afy = paj, af; = ag; for all k,t € {1,2,...,n}.
(5) For each u = (g,i,a) € V;§, and v = (¢',4,8) € Vlf We prove that
((g9,i,0),(¢',i,8)) € E if and only if fg.(v) = ff(u)afia for some
a € Afj
(=) Let ((g,4,),(¢,i,8)) € E. Then ((g,1, ), (¢',4,3)) is an arc
in Cay(S,A). By Lemma 1, there exists (a,j,&) € A such that
g = gpaja and B = €. Then we have that (a,j,5) = (a,4,§) € A.
By the definition of A;;, there exists (a, i, 5) € A;;, and hence a € AZBJ

Therefore fg(v) = ¢ = gpaja = [ (u)agsa where af; = paj.

B _ B _
(<) Let fi;(v) = fij(u)afja for some a € Aj;. Therefore ¢’ =
fg(v) = fii(u)agsa = gafsa and there exists (a,i, ) € Ajj. By the
definition of A;j, there is (a, j, 8) € A. Since a; = paj, (¢',4,8) =
(ga%’aaiuﬁ) - (gpaja7i7ﬂ) - (gai7a><a7j7 B)) a'nd thU.S
(9,4, @), (¢',1,)) is an arc in Cay(S, A).

() Choose k € {1,2,...,n}, by (1), (2), and (3), we get V = U, U, Vg

is the disjoint union. Let S = M(G,I, A, P) where I = {1,2,...,n},
A={1,2,....,m},

1 1 1
achl alé:? Ok
a a a
_ k1 @2 k
P = no
m m m
g1 Aka Ak,

and let A == gy Uj_ (A%, x {k} x {a}). We show that (V,E) =
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Cay(S, A). Define amap f from (V, E) to Cay(S, A) by f(v) = (f5.(v),4, )
for any v € V3,0 € {1,2,...,n}, and a € {1,2,...,m}. Let u,v € V and
u=wv. Thenu=v € V;,i for some r € {1,2,...,n} and 8 € {1,2,...,m}.
Hence ffk(u) = ffk(v) and (ffk(u),r,ﬁ) = (ffk(v),r,ﬁ). Therefore f is
well defined. Let u,v € V and f(u) = f(v). Then u € Vli and v € V3,
for some [,t € {1,2,...,n} and 3,6 € {1 2,...,m}, and so (fﬁc(u),l,ﬁ) =
flu) = fv) = (ftk( ) 5). Hence fj(u) = f3,(v), 1 = t, and B = 4.
Then u,v € V}k and flk( u) = ka( v). Since flk is an isomorphism, u = v.
This shows that f is an injection. By (4), |G x {i} x {a}| = |G| = |V}
for all i € {1,2,...,n} and « € {1,2,...,m}. Thus |S = M(G,I,A, P)| =
|Uim Uama (G x {i} x {e})] = Uiz, UZL Vil = [V]. Hence [ is a sur-
jection. Now we must prove that f and f~! are digraph homomorphisms.
Let u,v € V and (u,v) € E. By (1), u,v € V; for some t € {1,2,...,n}.
Then u € V;g and v € V;‘; for some 3,0 € {1,2,...,m}. From (5), ffk(v) =
fgc(u)afka for some a € A% . Hence (a,k,d) € (A%, x {k} x {§}) C A. By

(4), afk akk Since afk is the entry in the 8 row and k™ column of

P, a, = af, = pgx. Therefore f(v) = (f3.(v),1,8) = (fi(w)ala,t,8) =

(fi (Wpgra,t,8) = (fir(u),t, B)(a, k,8) = f(u)(a, k,8). Then we get that
(f(u), f(v)) is an arc in Cay((G X Ly, X Ry,), A). This shows that f is a di-
graph homomorphism. Let g,¢' € G, j,t € {1,2,...,n}, 8,6 € {1,2,...,m},
and let ((g,7,8),(¢',t,d)) be an arc in Cay(S, A). Then there exists
(a,k,§) € Asuch that ¢’ = gpgra, t = j, and 6 = £. By the definition of A,
a€ Agk = Agk for some g € {1,2,...,n}. From (4), Agk = A;S-k and so a €
A?k Since g, ¢' € G, there exists u € Vﬁc and v € Vﬂc such that ffk(u) =g
and ffk(v) = ¢ by (4). Therefore f‘S (v) = ffk(u)pﬁka. By the definition

of P and (4), pgr = afk = d° ke Hence (f_l(g,lj,rg),f_l(g’,lt,r(;)) =

(M5 (w), 5,80, F7H(£3(0),3,6))) = (u,0) € E by (5). Thus f~'is a
digraph homomorphism. ]

Example 1. Consider the finite simple semigroup S = M(Zs, I, A,
P),Z3 = {0,1,2} with I = {1,2}, A = {1,2},

00 0 0
P[0 0] waums =[] = [0]

and let a1 = (0,1,1), a2 = (1,2,1), a3 = (0,2,2). Then we give the Cayley
graphs Cay(S, A) for all the three different one-element connection sets
A, as indicated in the pictures.
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011 111 211 021 121 221

012 112 212 022 122 222

Fig. 1. Cay(S, {a1})

011 111 021 121
SN ' SN s

Fig. 2. Cay(S,{az2})

011 111 211 021 121 221
. S SRS . S SEEEEEG
012 112 212 022 122 222

Fig. 3. Cay(S,{as})
So we have
Cay(5,{a1}) = ) )
E {(23}7){1} A, Pl)v {(0’ L, 1)}) Ucay(M(ZZ’n {2}a A, P1)> {(07 2, 1)})7
S, {as
Cay( (Zg, {1} A, P2)a {(L 1, 1)}) U an(M(Zg, {Q}a A, P2)7 {(17 2, 1)})7
Cay(S,{as}) = ) )
Cay(M(Zs3, {1}, A, P»),{(0,1,2)}) U Cay(M(Zs3, {2}, A, P»),{(0,2,2)}).
Therefore Cay(S,{a1, as, ag_}) =
[Ciay(M(Zﬁa {1}a A, Pl)v {(Oa 1, 1)}) @ C’ay(M(Zg, {1}a A, P2)7
{(1,1,1),(0,1,2)})] .
UJCay(/\/g(Zg, {2}7 A’ Pl)a {(07 2, 1)}) @ C’ay(M(Zg, {2}’ A, P2>7
[(1,2,1),0.2,2)})].
We see that Cay(S, {a1, az, as}) = (V1, E1) U(V2, E2) where
(V17 El) = [Cay(./\/l(Zg, {1}7 A? Pl)a {(07 L, 1)})
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@D Cay(M(Zs, {1}, A, P»), {(1,1,1),(0,1,2)})] and
(‘/27E2) = [Cay(M(Z37{2}7A7P1) {(O> 2_>1 }) N

@ Cay(M(Zs, {2}, A, P), {(1,2_ 1),(0,2,2)})].
Let (VllvEll) = Cay(M(Zg, {1}7A )7{(0a a}) )7
(‘/127 El?) = Cay(M(Z?n {1}’ A, P2)7 {(17 17 1)7 (0’ 72)})7
(Va1, Ba1) = Cay(M(Z3,{2}, A, P1),{(0,2,1)}),

and (Vag, Fag) = Cay(M(Zs, {2}, A, P»),{(1,2,1),(0,2,2)}).

Then we get that (Vi1, E11), (Vi2, E12), (Va1, E21) and (Vi2, E12) are right
group digraphs, and so (V1, E1) = (Vi1, E11) @ (Vie, E12)

and (Va, Eo) = (Va1, E21) @ (Viz, E12).

In the next lemmas, we describe the structure of Cayley graphs of a
completely simple semigroup with a one-element connection set, which
will be used in Theorem 4 and Theorem 5. By the proof of Theorem 3
(1-2), we have the following lemma.

Lemma 2. Let S = M(G,I,A, P) be a finite simple semigroup, I =
{1,2,...,n}, A = {1,2,...,m}, a = (9,5,8) € S, P; the i'" column
of P. Then Cay(S,{a}) is the disjoint union of n isomorphic strong

subdigraphs  Cay(S1,{(g,1,8)}), Cay(S2,{(9,2,6)}),-- -,

Cay(Sn, {(g,n,B)}) where S; = M(G,{i}, A, P;).

Lemma 3. Let S = M(G,I,A,P) be a finite simple semigroup,
I= {17 27 oo 7n}; A= {17 27 s 7m}7 G/<p,8]g> = {gl<pﬁjg>7g2<p,3]g>7 )
91(pgjg)} the set of all distinct left cosets of (pg;g) in G, a = (g,7,8) € S
and let My, = (gx(psjg) x {i} x {8}) U (Uass(9r(Pps9) g*lpgj1 x {i} x
{a})), where k € {1,2,...,t} and i € I. Then M;1, M;a,..., My are
disjoint.

Proof. Since {g1(pg;9), 92(p3;j9), - - -, 9:(ps;g) } is the set of all distinct left
cosets of (pg;g) in G, we get that M;y, M;a, ..., My are disjoint. O

Lemma 4. Let S = M(G,I,A,P) be a finite simple semigroup, I =
{1,2,....,n}, A ={1,2,...,m}, a = (9,7,8) € S, (M, Eir,) a strong
subdigraph of Cay(S, {a}) Then (M, Ei,) = (M, Ei,) for all
kl,kg 6{1 2 t}.

PTOOf We define f ( zk1aEik1) - (Mik27Eik2) by

(91 (P59)" 14, B) = (9 (Pps9)" 14, )
(981 (P339)" 9 Py 1 @) = (9k,(859) 9 Do) i) fora # B
Since, for all k € {1,2,...,t},0x(ps;9) = {9x(P5;9): 9x(P5j9)°,
gk(pgjg)|p5j9|}, f is a well defined bijection. Since we define the Cayley

graph with right action, f and f~! are homomorphisms. This means that
f is a digraph isomorphism. Hence (M;x,, Eix,) = (Miky, Eiks )- O
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Lemma 5. Let S = M(G,I,A,P) be a finite simple semigroup,
= {1,2,....,n}, A = {1,2,....m}, a = (g9,5,8) € S. Then
) =

Cay(‘gh{(g’i’ﬁ)} Uk 1( ik Zk?)

Proof. We ﬁrst show that S; = Uk 1 M. Since My, € S; for all k €
{1 2,...,t}, Uk 1My, c Si. We will show that S; C Uk 1 . Let x =

(g1 A) € S, we get g € G = Uk 1 9x(Ps;9), and thus g = gw(pﬁjg)”
for some v € N and w € {1,2,...,¢}. We need to consider the following
two cases.

(case 1) If A = 3, then = = (gu(psj9)"s i, B) € (9w (psig) x {i} x{B}) €
M © UZ:lM

(case 2) If X # B, then za = (gu(ps;9)".i:A)(9,7.8) = (9uw(ps;jg)"
prjg-isB).  Since gu(psj9)'prjg € G = Uiy 9e(psi9),
9w(PB;9)"Prj9 € gulpsjg) for so,me u € {1,2,...,t}, we get
that gu(pg;9)"Prjg = 9gu(psjg)’ for some ¥ € N, and thus
90(P;9)" = 9u(ps;9)’ 97'py; - Therefore = = (gu(ps;9)”,
i,A) = (9u(ps;9)"9 "0y} i, A) € (9ulpsig)g™'py; x {i} x

-t

{A}) € Miu € Up—y Mi,

v

Hence S; C Uk 1M;j.. Then we conclude that S; = Uk 1M
Since (M1, Ein), (M;o, Ezg) ., (M, Eyt) are strong subdlgraphs of

Cay(sia{(gaiaﬁ)}) (Uk 1( ik zk)) - E(C’ay(SZ,{(g,z,B)})) Let
r = (u1,i,\1) , y = (ug,i,A2) € S; and (z,y) be an arc in
Cay(Si, {(g,i,8)}). Therefore up = wipy,jg and Ao = [ by Proposi-
tion 1(2). Since S; = Uk 1M, v € My, and y € My, for some
bi,by € {1,2,...,t}. Hence y € (gb,(psjg) x {i} x {B}), and thus y =

(96, (P3j9)? ,i,ﬂ) for some d € {1,2,..., Ips;|}. Then us = gy, (pgjg)?
We need only consider two cases:

(casel) If Ay # B, then = € (g, (pgjg>g_1p;11j x {i} x {\1}). Hence
T = (gbl(pﬁjg)cg_lp)_\llj,i,)\1) for some ¢ € {1,2,...,|pg;gl}
and thus u; = gy, (pgjg)cgflp)_\llj. Since up = u1py, 9,

/

d -1, —1
96:(P3;9)" = 96 (P3;9)°9" Py, ;PN
= 96 (Ps;9)°

Then by = b, and thus =,y € M;,,. Hence (z,y) € Ey,. We
get that (z,y) is an arc in Uzzl(Mik,Eik).
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(case2) If Ay = B3, then x € (g5, (pgjg) x {i} x {B}). Hence
z = (9o, (gj9)° i, B) for some ¢ € {1,2,...,|pgjg|}, and so
uy = gv, (Pp;9)° - Since up = u1py,;9,

/ /

9, P3;9)" = g (Psig

Therefore by = by and thus z,y E My, . Hence (x,y) € Eg,.
We get that (z,y) is an arc in Uk: | (Mg, Eig;).

Hence E(Uk 1 ( zkszk)) = E(Cay(Si,{(g9,7,8)})). We conclude
that Cay(Siv{(gv ’ﬂ)}) Uk 1( ik Zk)' L

Lemma 6. Let S = M(G,1,A, P) be a finite simple semigroup, I =
{1,2,...,n}, A={1,2,....m}, a = (g9,5,8) € S. Then (M, Eir) =

Cay((pgjg> X Rm,{(pgjg,rg)}) where Ry, = {ri,r2,...,rm} is a right
Zero Semigroup.

Proof. We define f : (Mg, Ei) — Cay(<p5]g> X Ry, {(pﬁjgjrg)}) by

(9x(p3;9)%. 1, B) — (9r(pgjg)?,75)
(9x(pg9) %9 'pajir ) = (9k(pp;9)* " ra) fora # B.

Clearly, f is a well defined bijection.

We will show that f and f~! are digraph homomorphisms. For z,y €
My, let (z,y) € Ej. Then (x,y) is an arc in Cay(S,{a}), and thus
y = za. By Proposition 1(2), p3(y) = 8. Hence y € (gx(ps;j9) x {i} x {B}),
and so y = (gx(pg;9), %, B) for some ¢ € {1,2,...,|pgjg|}. We need only
consider two cases :

(case 1) If x € (gk<p5jg> x {i} x {B}), then = = (gk(pgjg)d,i,ﬁ) for
some d € {1,2,...,|pgjg|}. Since y = za, (gk(pgjg)c,i,ﬁ) =
(9 (ps;9)? ,Z,ﬁ) (9.4,8) = (9 (ps;9) pﬁggmﬂ)
Thus gx(p;9)° = gk(pﬁjg)dpﬁgg, and so

f(y) = f(gk(pﬁjg)cai’ﬂ)
= (9r(ps;9)°,78)
(96 (Pj9) 39, 75)
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(9x(p8j9)% 78) (P8s9:78)
= f(2)(psjg:7p)-

Therefore (f ) is an arc in C’ay((pﬁjg> X R,
{(psig:75)}).

(case 2) If x € (Ua;éﬁ(gk(pﬁjgm_lp;jl x {i} x {a})), then z =
(9x(psj9)? g_lp;jl,z’,a) for some a # B and d € {1,2,...,

Ipg;jgl}. Since y = za,
(9x(ps;9) 5. 8) = (9r(pss9)” 9~ 'pa) i) (9.5, )
= (9x(p8;9)" 9~ 'Ps) Pajg, 1, B)
= (gk(psj9)?, i,B).

Thus gx(ps;9)¢ = gk(ps;j9)¢ , and so

Fw) = (9x(psjg

—1
P3ig:T8)
T ra) (psi9.7m8)

Therefore (f(x), fy)) is an arc in Cay((pgjg> X R,
{(psjg,m5)})-

This means that f is a digraph homomorphism. Similarly, f~! is a digraph
homomorphism.

Hence (M, Ei) = Cay(<p,3]g> X Rm,{(pgjg,rﬁ)}) -

Example 2. Consider the finite simple semigroup S = M (Zs X Zo,

I,A, P),Zy x Zy = {00,01,10, 11} with T = {1,2}, A = {1,2},

00 10 00 10
F)—|:01 11:|,andthuSP1—|:01:|,P2—|:11:|.

Then we give the Cayley graph Cay(S,{(10,1,2)})
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0011 0012 0021 0022
.ﬁ 0t

In Fig. 4, we see that Cay(S,{(10,1,2)}) = Cay(S1,{(10,1,2)})
UC’ay(Sg, {(I(_)a 2, 2)}) where 51 = M(ZQ X Z27 {1}3Aa Pl)a Sy = M(ZQ X
Z9,{2}, A, P2). Then it is the union of right group digraphs.

We have (pg110) = {11,00}, Zs x Za/(p2110) = {g1(p2110), g2(p2110)}
where g; = 00, go = 01. Hence

My = {(11, 1, 2) (06, 1, 2), (61, 1, 1), (I(), 1, 1)},
Mo = {(10,1,2),(01,1,2),(00,1,1),(11,1,1)},
My = {(11,2,2), (00, 2,2), (01,2,1), (10,2, 1)},
My = {(01,2,2),(10,2,2),(00,2,1),(11,2,1)}.
We see that (Mll,En = (Mg, Er2) = (Mo, E21) (M227E22) =

Cay((pgli@XRg,{(pgli(j,rg)}) and Cay(S {a} Uz 1Uk 1 (Mg, Eir,)

where Ry = {71,732} is a right zero semigroup.

By Lemma 2-6, we get that a Cayley graph of a finite simple semi-
group M(G, I, A, P) with a one-element connection set {(g, j, 5)}, is the
disjoint union of ||t copies of Cay((pgjg) x Rja|» {(pgjg.73)}) where
t = |G/{pg;jg)|- Then |I]t is the number of connected components of
Cay(S,{a}).

In the next theorem, we give the conditions for two Cayley graphs of
finite simple semigroups Cay(S, {a}) and Cay(S, {b}) to be isomorphic.

Theorem 4. Let S = M(G, I, A, P) be a finite simple semigroup, I =
{1,2,...,n}, A = {1,2,....m},a = (9,4,0),b = (¢,i,\) € S. Then
Cay(S,{a}) = Cay(S,{b}) if and only if |pgjg| = |pxrig |-

Proof. (=) Suppose that Cay(S,{a}) = Cay(S,{b}). By Lemma 6, we
get that Cay((ps;g) X R, {(ps9,75)}) =
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Cay((prig') R, {(prig’,72)}). Therefore [(pg;g) x Ru| = [(pxig ) X Rl
and thus [(pg;g)| = [(pxig )|. Hence |pgig| = [prig |-

(<=) Assume that [pg;g| = [prig | = L.

By Lemma 2-6, we only need to show that

Cay((pgjg) * B, {(ps;9:75)}) = Cay((prig') ¥ By, {(prig ;72)}) where
Ry, ={ri,r2,...,rm} is a right zero semigroup. We define

£ Cay((psjg) X R {(pjg,78)}) — Cay({prig ) X Ry {(prig s 72)})

((PMQ:)T, ry)  ifp=p
by f((pb’jg)rﬂ'u) = ((PMQ )T,T’g) ifp=A
((pxig)"s7a)  otherwise

Since |pg;g| = lpaig |, f is an isomorphism. O

Now we give the conditions for a Cayley graph of a finite simple
semigroup with a one-element connection set to be connected.

Theorem 5. Let S = M(G,I,A,P) be a finite simple semigroup, a =
(9,74, 8) € S. Then Cay(S,{a}) is connected if and only if G = (pgjg) and
|I| =1, in particular this means that S is a right group.

Proof. (=) Let Cay(S,{a}) is connected. By Lemma 2, we get |I| = 1
and G = (pg;9)-

(<) Assume that G = (pgjg) and |[I| = 1. We will prove that
Cay(S,{a}) is connected. Let (g1,7, A1), (92,7, A2) € S. Hence g1,92 €
(psjg)- Therefore g1 = (pg;g)" and g2 = (pg;g)? for some r,q € {1,2, ...,
Ipg;igl}. Then r < qorr > q.

(case 1) For \y = Ay = 3. If r < ¢, then ¢ = r + ¢ for some t € NU {0}.
Then we get (gla i, A1) = ((pﬁjg)Tv i:/B)v ((pﬁjgydrl?ia 6)7 R
((pgjg)r+t,i,ﬁ) = (92,1, A2) is a path from (g1,4, A1) to
(92,1, A2) in Cay(S,{a}). Similarly, if » > ¢, there is a path
from (g2,7, A2) to (g1,%, A1) in Cay(S, {a}).

(C&SG 2) For A1 - 187>\2 7& ﬁ Then (927i7>‘2)(g7j75) = (QQP)\ngai76)7
and thus ((gg,i,)\g), (ggpAzjg,i,ﬁ)) is an arc in Cay(S, {a}).
Since G' = (pg;g) and gapx,;9 € G, g2pr,;9 = (pg;jg)" for some
we{l,2,...,|pgjg|}. By case 1, there is a path from (g1,, A1)
to (g2px.;9,1%, B) or from (gapyr,;9, %, B) to (g1,i, A1). Therefore
we have a semipath between (g1,4, A1) and (g2,17, A2).

(Case 3) For >\l # /Ba)‘Q = B Then (glaiaAl)(gvjvﬁ) = (glp)\ljgviwg)v
and so ((gl, i, A1), (9190159, 1, B)) isan arcin Cay(S, {a}). Since
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G = (pgjg) and gipyr,;j9 € G, g1pr,j9 = (pgjg)’ for some
ve{l,2,..,|pgjg|}. By case 1, there is a path from (g2, 7, A2)

to (g1px, 59,1, B) or from (gipx, 9,7, ) to (92,7, A2). Therefore
we have a semipath between (g1,4, A1) and (g2,1%, A2).

(case 4) For Ay # B,\a # B. Then (g1,4,\1)(9,5,8) = (91Px,39,%, B)
and (.925 7;3 )\2)(97].7 ﬁ) = (92p>\2j97i7ﬁ)~
Thus ((917 i )‘1)7 (glp)\ljg7 i B))and((g% i, )‘2>7 (92p/\2j97 i, 6))
are arcs in Cay(S,{a}). Since gipy,;9,92Pxr.j9 € G = (psj9),
9159 = (ppj9)" and gapx,j9 = (pg;jg)* for some w,z €
{1,2,...,|psjg|}. By case 1, there is a path from (g1py,;9,1, 3)

to (92p,j9. 1, B) or from (gap,;9,4, 8) to (91pxr,;9. i, B).
Therefore we have a semipath between (g1,4, A1) and

(927 ia )‘2)

By the above four cases we conclude that Cay(S,{a}) is connected. [
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