Norm Kloosterman sums over $\mathbb{Z}[i]$

O. Savastru and S. Varbanets

Communicated by V. V. Kirichenko

Abstract

Kloosterman sums over the ring of the Gaussian numbers investigate. Nontrivial estimates of these sums were obtained.

Introduction

The classical Kloosterman sums $K(a, b ; q)$ and their n-dimensional analogue $K_{n}\left(a_{0}, a_{1}, \ldots, a_{n} ; q\right)$ are important ingradients in problems contained with a distribution of arithmetic functions on the arithmetic progressions (see, [5], [6] and etc.). The sums of the Kloosterman sums studied in the works N.V. Kuznetsov [12], H. Iwaniec and I.-M. Deshouillers [7] and etc., have allowed to improve the error terms in additive problems of number theory. The same problems arise at the decision of the asymptotic tasks over the ring of integer numbers of the finite expansions of the rational field. For example, U. Zanbyrbaeva [11] obtained a nontivial estimate of error term in the problem of divisors of the Gaussian integers in an arithmetical progressions (see. also [9]), and in 2003 Bruggeman and Y. Motohashi [2] obtained the lower estimate for fourth moment of the zeta-function Hecke of the Gaussian field $\mathbb{Q}[i]$.

In 2008 was considered the norm Kloosterman sum over the ring of the Gaussian integers $\mathbb{Z}[i]$ (see. [8]). It permitted to find non-trivial asymptotic formula for the divisor function $\tau(\alpha)$ with norm in an arithmetical progression.

In present paper we study n-dimensional norm Kloosterman sums over the ring of the Gaussian integers.

1. Preliminaries

In this section we fix some notations and gather some necessary facts that will be used in the sequel.
In the following, greek letters α, β, \ldots we denote the Gaussian integers; p denotes a prime rational number;
$S p(\alpha)$ is a trace α from $\mathbb{Q}[i]$ in \mathbb{Q}, i.e. $S p(\alpha)=2 \Re \alpha$;
$N(\alpha)$ is a norm $\alpha, N(\alpha)=\alpha \bar{\alpha}=|\alpha|^{2} ;$
\mathbb{Z}_{q} (respectively, \mathbb{Z}_{q}^{*}) is complete (respectively, reduced) system of residues modulo q in \mathbb{Z};
$R(q)$ (respectively, $R^{*}(q)$) is complete (respectively, reduced) system of residues modulo q in $\mathbb{Z}[i]$;
notation $\sum_{S(C)}$ means, that summation passes under the condition C, which we describe separately;
(a, b) means the greatest common divisor a and b in \mathbb{Z} (or in $\mathbb{Z}[i]$);
$e^{2 \pi i \frac{x}{q}}:=e_{q}(x), x \in \mathbb{R}$.
Let $q=p^{a}, a \in \mathbb{N}$. By \mathbf{k}_{m} denote the field with q^{m} elements, $m=1,2, \ldots ; \mathbf{k}_{1}:=\mathbf{k}$. Let X is N-dimensional vector $\in \mathbf{k}^{N}$. Denote by \mathbf{V}_{r} is an algebraic variety defined by polynomial $f(X) \in \mathbf{k}[X]$, i.e.

$$
\mathbf{V}_{r}=\left\{X \in \mathbf{k}_{r}^{N} \mid f(X)=0\right\}
$$

Let yet $\operatorname{Tr}(x), x \in \mathbf{k}_{n}$, be the trace transformation $\mathbf{k}_{n} \rightarrow \mathbf{k}$ defined by the Frobenius automorphism:

$$
\operatorname{Tr}(x):=x+x^{q}+\ldots+x^{q^{n-1}}, x \in \mathbf{k}_{n}
$$

Obviously that $\operatorname{Tr}(x) \in \mathbf{k}$. Put for $a \in \mathbf{k}^{*}, \mathbf{k}^{*}=\mathbf{k} \backslash\{0\}$,

$$
\begin{equation*}
S_{r}(f)=\sum_{X \in \mathbf{V}_{r}} e_{p}(a \operatorname{Tr}(f(X))) \tag{1}
\end{equation*}
$$

Introduce the function

$$
\begin{equation*}
\zeta(\mathbf{V}, t, f):=\exp \left(\sum_{r=1}^{\infty} \frac{S_{r}(f)}{r} t^{r}\right) \tag{2}
\end{equation*}
$$

which we call the zeta-function of an algebraic variety \mathbf{V} over the finite field \mathbf{k}.
B.Dwork [4] proved, that $\zeta(\mathbf{V}, t, f)$ is a rational function $\frac{h(t)}{g(t)}$, moreover the set of roots $\Omega=\left\{\omega^{-1}\right\}$ of the polynomials $h(t), g(t)$ describes the following lemmas:

Lemma 1 (Deligne [3]). For numbers $\omega_{j}^{-1} \in \Omega$ we have

$$
\left|\omega_{j}\right|=q^{\frac{m_{j}}{2}}, m_{j} \text { are nonnegative numbers. }
$$

Moreover, for every $\omega_{j}^{-1} \in \Omega$ all complex conjugate have equal modules. (The numbers call characteristic roots, and numbers m_{j} call the weights of $\left.\omega_{j}, \omega_{j}^{-1} \in \Omega\right)$.
Lemma 2. The cardinality of Ω does not exceed $(4 D+5)^{2 n+1}$, where $D:=\max (1+\operatorname{deg} \mathbf{V}, \operatorname{deg} f)$, i.e. depends only on n and f.

Taking a logarithm from LHS and RHS of (2) and comparing coefficients for the same powers t we obtain

$$
\begin{equation*}
S_{r}:=S_{r}(\mathbf{V}, f)=\sum_{\substack{i \\ h\left(\omega_{i}^{-1}\right)=0}}\left(\omega_{i}\right)^{r}-\sum_{\substack{j \\ g\left(\omega_{j}^{-1}\right)=0}}\left(\omega_{j}\right)^{r} \tag{3}
\end{equation*}
$$

Lemma 3. Let q be the number of elements of finite field \mathbf{k}. Then for the coefficients S_{r} associated with the zeta-function of algebraic variety over \mathbf{k} the following assertions:
(i) $\left|S_{r}\right|=O\left(q^{\frac{r t}{2}}\right)$ if $\left|S_{r}\right|=O\left(q^{r \theta}\right)$ for some $\theta>0$, where $t=[2 \theta]$,
(ii) if $t \in \mathbb{N}$ and $\left|S_{r}\right| \leqslant c q^{\frac{r t}{2}}$ for all sufficiently large r, then characteristic roots of zeta-function have the weight $m \leqslant t$, and the number of roots does not exceed c^{2},
hold.
Lemmas 2 and 3 were proved by E. Bombieri [1].
Define the algebraic variety \mathbf{V} over \mathbf{k} by the polynomial
$x_{1} \ldots x_{N}-a, a \in \mathbf{k}^{*}$, and the function f we define as $f=x_{1}+\ldots+x_{N}$. In this special case P . Deligne [3] proved that $\zeta(\mathbf{V}, t, f)$ has exactly N characteristic roots of the weight $(N-1)$, and hence

$$
\begin{equation*}
\left|S_{r}(\mathbf{V}, f)\right|=\left|S_{r}\right| \leqslant N q^{\frac{r(N-1)}{2}} \tag{4}
\end{equation*}
$$

Now we define the N-dimensional Kloosterman sum.
Let $q>1$ is a positive integer. Then $h \in \mathbb{N},(h, q)=1$, calls a norm residue modulo q, if there exist $\alpha \in \mathbb{Z}$, such that $N(\alpha) \equiv h(\bmod q)$.

Since for $(h, p)=1, p>2$ is a prime,

$$
\mathcal{J}_{p^{n}}(h):=\left\{x, y \in \mathbb{Z}_{p^{n}}: x^{2}+y^{2} \equiv h\left(\bmod p^{n}\right)\right\}=p^{n}\left(1-\frac{(-1)^{\frac{p-1}{2}}}{p}\right)
$$

we conclude that every $h \in \mathbb{Z}_{q}^{*}$ is a norm residue modulo q if $(q, 2)=1$.
For the Gaussian integers $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N}$ define the N-dimensional Kloosterman sum for $(h, q)=1$:

$$
\begin{equation*}
\widetilde{K}_{N}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N} ; q, h\right):=\sum_{S(C)} e_{q}\left(\Re\left(\alpha_{0} x_{0}+\ldots+\alpha_{N} x_{N}\right)\right), \tag{5}
\end{equation*}
$$

где

$$
C: x_{i} \in \mathbf{R}(q), i=0,1, \ldots, N ; N\left(x_{0} x_{1} \ldots x_{N}\right) \equiv h(\bmod q)
$$

For $q=q_{1} q_{2},\left(q_{1}, q_{2}\right)=1$, we have

$$
\begin{gather*}
\widetilde{K}_{N}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N} ; q, h\right)= \\
=\widetilde{K}_{N}\left(\alpha_{0} q_{2}, \ldots, \alpha_{N} q_{2} ; q_{1}, h\right) \widetilde{K}_{N}\left(\alpha_{0} q_{1}, \ldots, \alpha_{N} q_{1} ; q_{2}, h\right) \tag{6}
\end{gather*}
$$

Therefore in sequel we consider only case $q=p^{m}, p$ is a prime, $m \in \mathbb{N}$. From the definition of norm sum we have the trivial estimate

$$
\begin{equation*}
\left|\widetilde{K}_{N}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N} ; p^{m}, h\right)\right| \leqslant\left(\varphi\left(p^{m}\right)\right)^{2 N+1} \tag{7}
\end{equation*}
$$

where $\varphi(\cdot)$ is the Euler function.
From an estimate of the n-dimensional Kloosterman sum over $\mathbb{Z}[i]$ (see. [10]) we infer

$$
\left|\widetilde{K}_{N}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N} ; p^{m}, h\right)\right| \leqslant \epsilon_{p} \cdot N \cdot\left(\varphi\left(p^{m}\right)\right)^{2 N}
$$

where

$$
\epsilon_{p}(N)= \begin{cases}N, & \text { if } m \text { is even number } \\ \frac{N(N-1)}{2} \cdot p^{\frac{2-N}{2}}, & \text { if } m \text { is odd, } p \neq 2,3 \\ 4 N, & \text { if } m \text { is odd, } p=2 ; \\ 3 N, & \text { if } m \text { is odd, } p=3\end{cases}
$$

From main theorem which will prove below we obtain "the rooted estimate" for $\widetilde{K}_{N}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N} ; p^{m}, h\right)$ (i.e. an estimate is the square root out of trivial estimate) for the case $\left.\left(\alpha_{0} \ldots \alpha_{N}, p\right)=1\right)$.

2. Main result

Let $\gamma \in \mathbb{Z}[i]$. Denote $m_{\gamma}=\max \left\{m: p^{m} \mid \gamma\right\}$.
Theorem 1. Let h is a norm residue modulo p. Then

$$
\begin{equation*}
\widetilde{K}_{N}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N} ; p^{m}, h\right) \leqslant 2(4 N-1) p^{2 N(m-n)} I\left(\alpha_{1}, \ldots, \alpha_{N} ; p^{m}\right) \tag{8}
\end{equation*}
$$

where $I\left(\alpha_{1}, \ldots, \alpha_{N} ; p^{m}\right)$ is the number of solutions of the system of congruences (23);
moreover $I\left(\alpha_{1}, \ldots, \alpha_{N} ; p^{m}\right) \leqslant(4 N-1) p^{N(2 n-m)}$,
if $m_{\alpha_{1}}=\ldots=m_{\alpha_{N}}=0$.
(Here $n=\left[\frac{m+1}{2}\right],[x]$ denotes the biggest integer $\leqslant x$).
Proof. First let $m=1$. The case $m_{\alpha_{0}}=\ldots=m_{\alpha_{N}}=1$ is trivial, and so suppose α_{i} is coprime with p for some number i. Putting $\alpha_{j}=a_{j}+i b_{j}, j=0,1, \ldots, N$, infer $\left(a_{0}, \ldots, a_{N}, b_{0}, \ldots, b_{N}, p\right)=1$.
For $p \equiv 1(\bmod 4)$ we have

$$
\begin{equation*}
\widetilde{K}_{n}\left(\alpha_{0}, \ldots, \alpha_{N} ; p, h\right)=\sum_{S(C)} e_{p}\left(a_{0} x_{0}+\ldots+a_{N} x_{N}-b_{0} y_{0}-\ldots-b_{N} y_{N}\right) \tag{9}
\end{equation*}
$$

where
$C:\left\{x_{0}, \ldots, x_{N}, y_{0}, \ldots, y_{N} \in\{0,1, \ldots, p-1\} ; \prod_{j=0}^{N}\left(x_{j}^{2}+y_{j}^{2}\right) \equiv h(\bmod p)\right\}$.
Let ε_{0} is solution of the congruence $x^{2} \equiv-1(\bmod p)$.
Put

$$
\begin{equation*}
u_{j}=x_{j}+\varepsilon_{0} y_{j}, v_{j}=x_{j}-\varepsilon_{0} y_{j}, j=0,1, \ldots, N \tag{10}
\end{equation*}
$$

By $(h, p)=1$ and $u_{j} v_{j} \equiv x_{j}^{2}+y_{j}^{2} \not \equiv 0(\bmod p), j=0,1, \ldots, N$ we obtain that $u_{j}, v_{j} \in \mathbb{Z}_{p}^{*}$.
Therefore (by (10)):

$$
\left\{\begin{array}{l}
\widetilde{K}_{n}\left(\alpha_{0}, \ldots, \alpha_{N} ; p, h\right)=\sum_{S(C)} e_{p}\left(\sum_{j=0}^{N} A_{j} u_{j}+\sum_{j=0}^{N} B_{j} v_{j}\right) \tag{11}\\
C:\left\{u_{j}, v_{j} \in \mathbb{Z}_{p}^{*}, j=0,1, \ldots, N: \prod_{j=0}^{N} u_{j} v_{j} \equiv h(\bmod p)\right\}
\end{array}\right.
$$

Let among of $\alpha_{0}, \ldots, \alpha_{N}$ have exactly l nulls modulo p elements (for example, $\alpha_{0}=\ldots=\alpha_{l-1}=0, \alpha_{l+1} \ldots \alpha_{N} \not \equiv 0(\bmod p)$.
Then from (11) infer

$$
\left\{\begin{array}{l}
\widetilde{K}_{n}\left(\alpha_{0}, \ldots, \alpha_{N} ; p, h\right)=\sum_{u_{0}=1}^{p-1} \ldots \sum_{u_{l-1}=1}^{p-1} \sum_{S(C)} e_{p}\left(\sum_{j=l}^{N}\left(A_{j} u_{j}+B_{j} v_{j}\right)\right) \tag{12}\\
C:\left\{u_{j}, v_{j} \in \mathbb{Z}_{p}^{*}, j=l, \ldots, N ; \prod_{j=l}^{N} u_{j} v_{j} \equiv h \prod_{j=0}^{l-1}\left(u_{j} v_{j}\right)^{-1}(\bmod p)\right\}
\end{array}\right.
$$

Take into account that for $j=l, \ldots, N$.

$$
A_{j} \equiv \frac{1}{2}\left(a_{j}-\varepsilon_{0}^{-1} b_{j}\right), B_{j} \equiv \frac{1}{2}\left(a_{j}+\varepsilon_{0}^{-1} b_{j}\right), \varepsilon_{0} \varepsilon_{0}^{-1} \equiv 1(\bmod p) ;
$$

$$
A_{j} B_{j} \equiv \frac{1}{4}\left(a_{j}^{2}+b_{j}^{2}\right) \equiv \frac{1}{4} N\left(\alpha_{j}\right)(\bmod p)
$$

Hence $\left(A_{j}, p\right)=\left(B_{j}, p\right)=1$.
Now, the application of the P. Deligne estimate [3] (see, formula (4), the above) gives

$$
\begin{equation*}
\left|\widetilde{K}_{N}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N} ; p, h\right)\right| \leqslant(N-l+1) p^{2 N l} p^{\frac{2(N-l)-1}{2}}=(N-l+1) p^{N+l+\frac{1}{2}} \tag{13}
\end{equation*}
$$

In particular, for $l=0$ we obtain "the rooted estimate" $(N+1) p^{\frac{2 N+1}{2}}$.
Now consider the case $p \equiv 3(\bmod 4)$.
Let $\alpha_{0}, \ldots, \alpha_{l-1} \equiv 0(\bmod p), \alpha_{l} \ldots \alpha_{N} \not \equiv 0(\bmod p)$.
The complete system of residues modulo p in $\mathbb{Z}[i]$ is field $\mathbf{R}(p)$ from p^{2} elements.
Again we consider the algebraic variety \mathbf{V} over $\mathbf{k}=\mathbb{Z}_{p}$, generated by the polynomial

$$
x_{0} x_{1} \ldots x_{N}-h, \quad h \in \mathbf{k}^{*}
$$

and let $f\left(x_{0}, \ldots, x_{N}\right)=\alpha_{0} x_{0}+\ldots+\alpha_{N} x_{N}$.
For $p \equiv 3(\bmod 4)$ we have

$$
(u+v i)^{p} \equiv u^{p}-i v^{p} \equiv u-i v(\bmod p), \quad u, v \in \mathbb{Z}
$$

and, hence, in the field $\mathbf{R}(p)$:

$$
\begin{equation*}
S p(u+i v) \equiv \operatorname{Tr}(u+i v) \quad(\bmod p) \tag{14}
\end{equation*}
$$

where the function $S p(\cdot)$ (respectively, $\operatorname{Tr}(\cdot)$) we consider as a function of trace from the quadratic expansion $\mathbb{Q}[i]$ (respectively, from $\mathbf{k}_{2}=\mathbf{R}(p)$) in Q (respectively, in $\mathbf{k}=\mathbb{Z}_{p}$).
Hence, denoting by l the number of α_{i}, congruented with 0 modulo p, we can estimate $S_{2}(\mathbf{V}, f)$ by formula (4). And so we have

$$
\begin{equation*}
S_{2}(\mathbf{V}, f) \leqslant(N+1-l) p^{\frac{2(2 N+2-2 l-1)}{2}} p^{4 l}=(N+1-l) p^{2 N+2 l+1} \tag{15}
\end{equation*}
$$

Now from (3) follows that

$$
\begin{equation*}
S_{1}^{2}(\mathbf{V}, f) \sim N S_{2}(\mathbf{V}, f) \tag{16}
\end{equation*}
$$

Thereby in the case $p \equiv 3(\bmod 4)$ the assertion of theorem proved also. Since, the case $p=2$ is trivial we obtain the proof of theorem for $m=1$.

Put further $m>1$.
Without loss of generality, we can suppose that
$\left(p^{m_{\alpha_{0}}}, p^{m_{\alpha_{1}}}, \ldots, p^{m_{\alpha_{N}}}, p^{m}\right)=1$. Consequently, though one from numbers $a_{j}, j=0,1, \ldots, N$ is coprime whith $p . \operatorname{Let}\left(\alpha_{0}, p\right)=1$. Hence, $\left(a_{0}, b_{0}, p\right)=$

1, where $\alpha_{0}=a_{0}+i b_{0}$.
Denote $\xi_{j}=x_{j}+i y_{j}, j=0,1, \ldots, N$. We have

$$
\begin{gather*}
\widetilde{K}_{N}\left(\alpha_{0}, \ldots, \alpha_{N} ; p^{m}, h\right)= \\
=\frac{1}{p^{m}} \sum_{\substack{\xi_{j} \in \mathbf{R}\left(p^{m}\right) \\
j=0, \ldots, N}} \sum_{k=0}^{p^{m}-1} e_{p^{m}}\left(k\left(N\left(\xi_{0} \ldots \xi_{N}\right)-h\right)+\sum_{j=0}^{N} \Re\left(\alpha_{j} \xi_{j}\right)\right)= \tag{17}\\
\left.=\frac{1}{p^{m}} \sum_{S(C)} e_{p^{m}}\left(k \prod_{j=0}^{N}\left(x_{j}^{2}+y_{j}^{2}\right)-h\right)+\sum_{j=0}^{N} a_{j} x_{j}-\sum_{j=0}^{N} b_{j} y_{j}\right) \\
C:\left\{k \in \mathbb{Z}_{p^{m}}, x_{j}, y_{j} \in \mathbb{Z}_{p^{m}}, j=0,1, \ldots, N\right\} .
\end{gather*}
$$

We can suppose that $\xi_{j} \in \mathbf{R}^{*}\left(p^{m}\right), j=1, \ldots, N$, (else, the summation over k gives zero).
Next, for every $k \equiv 0(\bmod p)$ the summation over $x_{0}, y_{0}($ by $\left.\left(a_{0}, b_{0}, p\right)=1\right)$ gives zero.
Hence, from (14) obtain

$$
\begin{gather*}
\widetilde{K}_{N}\left(\alpha_{0}, \ldots, \alpha_{N} ; p^{m}, h\right)=\frac{1}{p^{m}} \sum_{k \in \mathbb{Z}_{p^{m}}^{*}} \sum_{\substack{\xi_{j} \in \mathbf{R}^{*}\left(p^{m}\right) \\
j=1, \ldots, N}} e_{p^{m}}(-k h) \times \\
\times \sum_{\xi_{0} \in \mathbf{R}\left(p^{m}\right)} e_{p^{m}}\left(\begin{array}{c}
\left.N N\left(\xi_{0}\right) \prod_{j=1}^{N} N\left(\xi_{j}\right)+\Re\left(\alpha_{0} \xi_{0}\right)+\sum_{j=1}^{N} \Re\left(\alpha_{j} \xi_{j}\right)\right)= \\
=\frac{1}{p^{m}} \sum_{k \in \mathbb{Z}_{p^{m}}^{*}} e_{p^{m}}(-k h) \times \\
\times \sum_{\substack{\xi_{j} \in \mathbf{R}^{*}\left(p^{m}\right) \\
j=1, \ldots, N}} \sum_{x_{0}, y_{0} \in \mathbb{Z}_{p^{m}}} e_{p^{m}}\left(k \prod_{j=1}^{N} N\left(\xi_{j}\right)\left(x_{0}^{2}+y_{0}^{2}\right)+a_{0} x_{0}-b_{0} y_{0}\right)= \\
=\sum_{k \in \mathbb{Z}_{p^{m}}^{*}} e_{p^{m}}(-k h) \sum_{\substack{\xi_{j} \in \mathbf{R}^{*}\left(p^{m}\right) \\
j=1, \ldots, N}} e_{p^{m}}\left(\Re\left(\alpha_{j} \xi_{j}\right)-4^{\prime} k^{\prime} \prod_{j=1}^{N} N\left(\xi_{j}\right)^{\prime}\left(a_{0}^{2}+b_{0}^{2}\right)\right),
\end{array},\right.
\end{gather*}
$$

where $4 \cdot 4^{\prime} \equiv 1\left(\bmod p^{m}\right), k \cdot k^{\prime} \equiv 1\left(\bmod p^{m}\right), N\left(\xi_{j}\right) \cdot N\left(\xi_{j}\right)^{\prime} \equiv 1\left(\bmod p^{m}\right)$, $j=1, \ldots, N$.
(We estimated the sums over x_{0}, y_{0} as the classical Gaussian sums).
Let $n:=\left[\frac{m+1}{2}\right]$. Put for $j=1,2, \ldots, N$:

$$
\begin{equation*}
\xi_{j}=\eta_{j}+p^{n} \zeta_{j} \quad \eta_{j} \in \mathbf{R}^{*}\left(p^{n}\right), \quad \zeta_{j} \in \mathbf{R}\left(p^{m-n}\right) \tag{19}
\end{equation*}
$$

Then

$$
\begin{equation*}
N\left(\xi_{j}\right)^{\prime}=N\left(\eta_{j}\right)^{\prime}\left(1-2 p^{n}\left(x_{j} u_{j}+y_{j} v_{j}\right) N\left(\zeta_{\eta}\right)^{\prime}\right) \tag{20}
\end{equation*}
$$

if we set

$$
\begin{equation*}
\eta_{j}=x_{j}+i y_{j}, \quad \zeta_{j}=u_{j}+i v_{j}, \quad x_{j}, y_{j} \in \mathbb{Z}_{p^{m}}, \quad u_{j}, v_{j} \in \mathbb{Z}_{p^{m-n}} \tag{21}
\end{equation*}
$$

And so, from (18) we find

$$
\begin{equation*}
=\left|\sum_{k \in \mathbb{Z}_{p^{m}}^{*}} e_{p^{m}}(-k h) \sum_{j=1}^{N} \sum_{\substack{x_{j}, y_{j} \in \mathbb{Z}_{p^{n}} \\\left(x_{j}^{2}+y_{j}^{2}, p\right)=1}} e_{p^{m}}\left(\Re\left(\alpha_{j} \eta_{j}\right)\right) \sum_{u_{j}, v_{j} \in \mathbb{Z}_{p^{m-n}}} e_{p^{m}}\left(G+p^{n} H\right)\right|, \tag{22}
\end{equation*}
$$

where

$$
\begin{gathered}
G=4^{\prime} k^{\prime}\left(a_{0}^{2}+b_{0}^{2}\right) \prod_{j=1}^{N}\left(x_{j}^{2}+y_{j}^{2}\right)^{\prime}:=4^{\prime} k^{\prime}\left(a_{0}^{2}+b_{0}^{2}\right) D . \\
H=\sum_{j=1}^{N}\left\{-2^{\prime} k^{\prime}\left(a_{0}^{2}+b_{0}^{2}\right) \cdot D \cdot\left(x_{j} u_{j}+y_{j} v_{j}\right)+a_{j} u_{j}-b_{j} v_{j}\right\} .
\end{gathered}
$$

Note that now the summation over u_{j}, v_{j} gives zero if the system of congruences

$$
\left\{\begin{array}{c}
a_{j}-2 D^{2} N\left(\eta_{j}\right)^{\prime} x_{j} \equiv 0\left(\bmod p^{m-n}\right) \tag{23}\\
b_{j}+2 D^{2} N\left(\eta_{j}\right)^{\prime} y_{j} \equiv 0\left(\bmod p^{m-n}\right)
\end{array}\right.
$$

disturbs though for one $j, j=1,2, \ldots, N$. This system is equivalent to the system

$$
\left\{\begin{array}{cl}
a_{j} y_{j}+b_{j} x_{j} \equiv 0\left(\bmod p^{m-n}\right) \tag{24}\\
2^{\prime} k^{\prime} \prod_{j=1}^{N}\left(\left(x_{j}^{2}+y_{j}^{2}\right)^{2}\right)^{\prime} & \left(a_{0}^{2}+b_{0}^{2}\right) x_{j}+a_{j} \equiv 0\left(\bmod p^{m-n}\right) \\
& \text { if } a_{j} \not \equiv 0, b_{j} \not \equiv 0\left(\bmod p^{m-n}\right) \\
y_{j} \equiv 0, & \text { if } b_{j} \equiv 0\left(\bmod p^{m-n}\right) \\
x_{j} \equiv 0, & \text { if } a_{j} \equiv 0\left(\bmod p^{m-n}\right) \\
(j=1,2, \ldots, N) &
\end{array}\right.
$$

Let t is the number of $\alpha_{j}, j=1, \ldots, N$, which are coprime with p. If $t=N$, then from (23)-(24) we see that every x_{j} defines the single y_{j} modulo p^{m-n}, and, hence, there does not exceed $p^{n-(m-n)}=p^{2 n-m}$ the value y_{j}, corresponding to x_{j} modulo p^{n}.
Moreover the secondary congruence in (24) gives

$$
x_{j} \equiv a_{1}^{\prime} a_{j} x_{1}\left(\bmod p^{m-n}\right), \quad \text { if }\left(a_{1}, p\right)=1
$$

or

$$
y_{j} \equiv b_{1}^{\prime} b_{j} y_{1}\left(\bmod p^{m-n}\right), \quad \text { if }\left(b_{1}, p\right)=1
$$

Consequently, the value $x_{1}\left(\right.$ or y_{1}, if $\left.a_{1} \equiv 0(\bmod p)\right)$ defines the single y_{1} and the pairs $\left(x_{j}, y_{j}\right)$ modulo $p^{n-m}, j=2, \ldots N$. Moreover, N-tuple
$\left(x_{1}, y_{1}, \ldots, x_{N}, y_{N}\right)$ is the solution of the congruences (23). Next, from (24) one easily derives that x_{1} is the root of the congruence
$A x_{1}^{4 N+1} \equiv B\left(\bmod p^{m-n}\right)$. Consequently, the number of solutions of system (23) does not exceed $(4 N-1) p^{N(2 n-m)}$.

Hence, by (22) we have

$$
\left|\widetilde{K}_{N}\left(\alpha_{0}, \ldots, \alpha_{N} ; p^{m}, h\right)\right|=\sum_{\left(x_{1}, \ldots, y_{N}\right)} * \sum_{k \in \mathbb{Z}_{p}^{*} m}\left|e_{p^{m}}\left(-k h+k^{\prime} h_{1}\right)\right|,
$$

where the $(*)$ indicates that the summation passes over admissible $2 N$ tuples $\left(x_{1}, y_{1}, \ldots, x_{N}, y_{N}\right)$; and h_{1} is integer, depended from $\left(x_{1}, \ldots, y_{N}\right)$. Hence, using an estimate of the rational Kloosterman sum and the estimate of the number of admissible $2 N$-tuples, we obtain

$$
\begin{gather*}
\left|\widetilde{K}_{N}\left(\alpha_{0}, \ldots, \alpha_{N} ; p^{m}, h\right)\right| \leqslant 2 p^{\frac{m}{2}}(4 N-1) p^{N(2 n-m)} p^{2 N(m-n)}= \\
=2(4 N-1) p^{\frac{2 N+1}{2} m} . \tag{25}
\end{gather*}
$$

In general case, from (22)-(23)

$$
\begin{equation*}
\left|\widetilde{K}_{N}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N} ; p^{m}, h\right)\right| \leqslant 2 p^{\frac{m}{2}+2 N(m-n)} I\left(\alpha_{1}, \ldots, \alpha_{N} ; p^{m}\right) \tag{26}
\end{equation*}
$$

where $I\left(\alpha_{1}, \ldots, \alpha_{N} ; p^{m}\right)$ is the number of solutions of congruence (23). It is easy to see that

$$
I\left(\alpha_{1}, \ldots, \alpha_{N} ; p^{m}\right) \leqslant(4 N-1) p^{m_{\alpha_{1}}+\ldots+m_{\alpha_{N}}} .
$$

Conclusion

In conclusion note, that the estimate (25) is "the rooted estimate" and apparently in general case is best possible

References

[1] E. Bombieri, On exponential sums in finite fields,II, Invent. math., 47(1),1978, pp. 29-39.
[2] R. Bruggeman, Y. Motohashi, Sum formula for Kloosterman sums and fourth moment of the Dedekind zeta-function over the Gaussian number field, Functiones et Approximatio., XXXI(2003), pp. 23-92.
[3] P. Deligne, La conjecture de Weill, I, II, Publ. Math. IHES, 43(1974),pp. 273-307; 52(1980), pp. 137-252.
[4] B. Dwork, In the rationality of the zeta-function of an algebraic variety, Amer. J. Math. ,82(1960), pp. 631-648.
[5] D.R. Heath-Brown, The divisor function $d_{3}(n)$ in arithmetic progressions, Acta Arith.,XLVII(1986), pp. 59-86.
[6] C. Hooley, An asymptotic formula in the theory of numbers, Proc. London Math. Soc. (3), 7(1957), pp. 396-413.
[7] I.-M. Deshouillers, H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. math.,70(1982), pp. 219-288.
[8] S. P. Varbanets, General Kloosterman sum over ring of Gaussian integers,Ukr. Math. J., 59 (№ 9), 2007, pp. 1179-1201.
[9] O. Savastru, P. Varbanets, An additive divisor problem in $\mathbb{Z}[i]$, Algebra and discrete mathematics, N.1, 2003, pp. 103-110.
[10] S. Varbanets, O. Savastru, n-dimensional Kloosterman sums over the ring of the gaussian integers, Vestnik I.I. Mechnikov Odessa National University (to appear).
[11] U.B. Zanbyrbaeva, Asympotic problems of number theory in sector region, Dissertation, Odessa, 1993. (in Russian)
[12] N.V. Kuznetsov, Petterson hypothesis for the form with weight zero and Linnik hypothesis, Math. Sb., 3 (1980),pp. 334-383. (in Russian)

Contact information

O. Savastru ul.Dvoryanskaya 2, Dept. of computer algebra and discrete mathematics, Odessa national university, Odessa 65026, Ukraine
E-Mail: sav_olga@bk.ru

S. Varbanets

ul.Dvoryanskaya 2, Dept. of computer algebra and discrete mathematics, Odessa national university, Odessa 65026, Ukraine E-Mail: varb@sana.od.ua

Received by the editors: 14.03 .2011
and in final form 05.05.2011.

