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Abstract. n-dimensional norm Kloosterman sums over the

ring of the Gaussian numbers investigate. Nontrivial estimates of

these sums were obtained.

Introduction

The classical Kloosterman sums K(a, b ; q) and their n-dimensional ana-
logue Kn(a0, a1, . . . , an ; q) are important ingradients in problems con-
tained with a distribution of arithmetic functions on the arithmetic pro-
gressions (see, [5], [6] and etc.). The sums of the Kloosterman sums studied
in the works N.V. Kuznetsov [12], H. Iwaniec and I.-M. Deshouillers [7]
and etc., have allowed to improve the error terms in additive problems
of number theory. The same problems arise at the decision of the asymp-
totic tasks over the ring of integer numbers of the finite expansions of
the rational field. For example, U. Zanbyrbaeva [11] obtained a nontivial
estimate of error term in the problem of divisors of the Gaussian integers
in an arithmetical progressions (see. also [9]), and in 2003 Bruggeman and
Y. Motohashi [2] obtained the lower estimate for fourth moment of the
zeta–function Hecke of the Gaussian field Q[i].

In 2008 was considered the norm Kloosterman sum over the ring of the
Gaussian integers Z[i] (see. [8]). It permitted to find non–trivial asymp-
totic formula for the divisor function τ(α) with norm in an arithmetical
progression.

In present paper we study n–dimensional norm Kloosterman sums
over the ring of the Gaussian integers.
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1. Preliminaries

In this section we fix some notations and gather some necessary facts that
will be used in the sequel.
In the following, greek letters α, β, . . . we denote the Gaussian integers; p
denotes a prime rational number;
Sp(α) is a trace α from Q[i] in Q, i.e. Sp(α) = 2ℜα;
N(α) is a norm α, N(α) = αα = |α|2;
Zq (respectively,Z∗

q) is complete (respectively, reduced) system of residues
modulo q in Z;
R(q) (respectively,R∗(q)) is complete (respectively, reduced) system of
residues modulo q in Z[i];
notation

∑
S(C)

means, that summation passes under the condition C, which

we describe separately;
(a, b) means the greatest common divisor a and b in Z (or in Z[i]);

e
2πix

q := eq(x), x ∈ R.

Let q = pa, a ∈ N. By km denote the field with qm elements,
m = 1, 2, . . . ; k1 := k. Let X is N -dimensional vector ∈ k

N . Denote by
Vr is an algebraic variety defined by polynomial f(X) ∈ k[X], i.e.

Vr =
{
X ∈ k

N
r | f(X) = 0

}
.

Let yet Tr(x), x ∈ kn, be the trace transformation kn → k defined by
the Frobenius automorphism:

Tr(x) := x+ xq + . . .+ xq
n−1

, x ∈ kn.

Obviously that Tr(x) ∈ k. Put for a ∈ k
∗, k∗ = k \ {0},

Sr(f) =
∑

X∈Vr

ep (a Tr (f(X))) . (1)

Introduce the function

ζ(V, t, f) := exp

(
∞∑

r=1

Sr(f)

r
tr

)
, (2)

which we call the zeta-function of an algebraic variety V over the finite
field k.

B.Dwork [4] proved, that ζ(V, t, f) is a rational function h(t)
g(t) , moreover

the set of roots Ω = {ω−1} of the polynomials h(t), g(t) describes the
following lemmas:
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Lemma 1 (Deligne [3]). For numbers ω−1
j ∈ Ω we have

|ωj | = q
mj

2 , mj are nonnegative numbers.

Moreover, for every ω−1
j ∈ Ω all complex conjugate have equal modules.

(The numbers call characteristic roots, and numbers mj call the weights
of ωj , ω

−1
j ∈ Ω).

Lemma 2. The cardinality of Ω does not exceed (4D + 5)2n+1, where
D := max(1 + degV, degf), i.e. depends only on n and f .

Taking a logarithm from LHS and RHS of (2) and comparing coeffi-
cients for the same powers t we obtain

Sr := Sr(V, f) =
∑

i
h(ω−1

i )=0

(ωi)
r −

∑

j

g(ω−1
j )=0

(ωj)
r. (3)

Lemma 3. Let q be the number of elements of finite field k. Then for the
coefficients Sr associated with the zeta-function of algebraic variety over
k the following assertions:

(i) |Sr| = O(q
rt
2 ) if |Sr| = O(qrθ) for some θ > 0, where t = [2θ],

(ii) if t ∈ N and |Sr| 6 cq
rt
2 for all sufficiently large r, then characteristic

roots of zeta-function have the weight m 6 t, and the number of
roots does not exceed c2,

hold.

Lemmas 2 and 3 were proved by E. Bombieri [1].
Define the algebraic variety V over k by the polynomial

x1 . . . xN − a, a ∈ k
∗, and the function f we define as f = x1 + . . .+ xN .

In this special case P. Deligne [3] proved that ζ(V, t, f) has exactly N

characteristic roots of the weight (N − 1), and hence

|Sr(V, f)| = |Sr| 6 Nq
r(N−1)

2 . (4)

Now we define the N -dimensional Kloosterman sum.
Let q > 1 is a positive integer. Then h ∈ N, (h, q) = 1, calls a norm
residue modulo q, if there exist α ∈ Z, such that N(α) ≡ h(mod q).

Since for (h, p) = 1, p > 2 is a prime,

Jpn(h) :=
{
x, y ∈ Zpn : x2 + y2 ≡ h (mod pn)

}
= pn

(
1−

(−1)
p−1
2

p

)
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we conclude that every h ∈ Z∗

q is a norm residue modulo q if (q, 2) = 1.

For the Gaussian integers α0, α1, . . . , αN define the N -dimensional
Kloosterman sum for (h, q) = 1:

K̃N (α0, α1, . . . , αN ; q, h) :=
∑

S(C)

eq (ℜ(α0x0 + . . .+ αNxN )) , (5)

где

C : xi ∈ R(q), i = 0, 1, . . . , N ; N(x0x1 . . . xN ) ≡ h (mod q).

For q = q1q2, (q1, q2) = 1, we have

K̃N (α0, α1, . . . , αN ; q, h) =

= K̃N (α0q2, . . . , αNq2; q1, h)K̃N (α0q1, . . . , αNq1; q2, h).
(6)

Therefore in sequel we consider only case q = pm, p is a prime, m ∈ N.
From the definition of norm sum we have the trivial estimate

|K̃N (α0, α1, . . . , αN ; pm, h)| 6 (ϕ(pm))2N+1, (7)

where ϕ(·) is the Euler function.

From an estimate of the n-dimensional Kloosterman sum over Z[i]
(see. [10]) we infer

|K̃N (α0, α1, . . . , αN ; pm, h)| 6 ǫp ·N · (ϕ(pm))2N ,

where

ǫp(N) =





N, if m is even number;
N(N−1)

2 · p
2−N

2 , if m is odd, p 6= 2, 3;
4N, if m is odd, p = 2;
3N, if m is odd, p = 3.

From main theorem which will prove below we obtain "the rooted estimate"
for K̃N (α0, α1, . . . , αN ; pm, h) (i.e. an estimate is the square root out of
trivial estimate) for the case (α0 . . . αN , p) = 1).

2. Main result

Let γ ∈ Z[i]. Denote mγ = max{m : pm|γ}.

Theorem 1. Let h is a norm residue modulo p. Then

K̃N (α0, α1, . . . , αN ; pm, h) 6 2(4N − 1)p2N(m−n)I(α1, . . . , αN ; pm), (8)



86 Norm Kloosterman sums over Z[i]

where I(α1, . . . , αN ; pm) is the number of solutions of the system of con-
gruences (23);
moreover I(α1, . . . , αN ; pm) 6 (4N − 1)pN(2n−m),
if mα1 = . . . = mαN

= 0.
(Here n =

[
m+1
2

]
, [x] denotes the biggest integer 6 x).

Proof. First let m = 1. The case mα0 = . . . = mαN
= 1 is trivial, and so

suppose αi is coprime with p for some number i. Putting
αj = aj + ibj , j = 0, 1, . . . , N , infer (a0, . . . , aN , b0, . . . , bN , p) = 1.
For p ≡ 1(mod 4) we have

K̃n(α0, . . . , αN ; p, h) =
∑

S(C)

ep(a0x0+. . .+aNxN−b0y0−. . .−bNyN ), (9)

where

C : {x0, . . . , xN , y0, . . . , yN ∈ {0, 1, . . . , p−1};
N∏

j=0

(x2j+y2j ) ≡ h (mod p)}.

Let ε0 is solution of the congruence x2 ≡ −1(mod p).
Put

uj = xj + ε0yj , vj = xj − ε0yj , j = 0, 1, . . . , N. (10)

By (h, p) = 1 and ujvj ≡ x2j + y2j 6≡ 0(mod p), j = 0, 1, . . . , N we obtain
that uj , vj ∈ Z∗

p.
Therefore (by (10)):





K̃n(α0, . . . , αN ; p, h) =
∑
S(C)

ep

(
N∑
j=0

Ajuj +
N∑
j=0

Bjvj

)
,

C : {uj , vj ∈ Z∗

p, j = 0, 1, . . . , N :
N∏
j=0

ujvj ≡ h (mod p)}.

(11)

Let among of α0, . . . , αN have exactly l nulls modulo p elements (for
example, α0 = . . . = αl−1 = 0, αl+1 . . . αN 6≡ 0(mod p).
Then from (11) infer




K̃n(α0, . . . , αN ; p, h) =
p−1∑
u0=1

. . .
p−1∑

ul−1=1

∑
S(C)

ep(
N∑
j=l

(Ajuj +Bjvj)),

C : {uj , vj ∈ Z∗

p, j = l, . . . , N ;
N∏
j=l

ujvj ≡ h
l−1∏
j=0

(ujvj)
−1(mod p)}.

(12)
Take into account that for j = l, . . . , N .

Aj ≡
1

2
(aj − ε−1

0 bj), Bj ≡
1

2
(aj + ε−1

0 bj), ε0ε
−1
0 ≡ 1 (mod p);
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AjBj ≡
1

4
(a2j + b2j ) ≡

1

4
N(αj) (mod p).

Hence (Aj , p) = (Bj , p) = 1.
Now, the application of the P. Deligne estimate [3] (see, formula (4), the
above) gives

|K̃N (α0, α1, . . . , αN ; p, h)| 6 (N−l+1)p2Nlp
2(N−l)−1

2 = (N−l+1)pN+l+ 1
2 .

(13)

In particular, for l = 0 we obtain "the rooted estimate" (N + 1)p
2N+1

2 .
Now consider the case p ≡ 3(mod 4).

Let α0, . . . , αl−1 ≡ 0(mod p), αl . . . αN 6≡ 0(mod p).
The complete system of residues modulo p in Z[i] is field R(p) from p2

elements.
Again we consider the algebraic variety V over k = Zp, generated by the
polynomial

x0x1 . . . xN − h, h ∈ k
∗

and let f(x0, . . . , xN ) = α0x0 + . . .+ αNxN .
For p ≡ 3(mod 4) we have

(u+ vi)p ≡ up − ivp ≡ u− iv (mod p), u, v ∈ Z,

and, hence, in the field R(p):

Sp (u+ iv) ≡ Tr (u+ iv) (mod p), (14)

where the function Sp(·) (respectively, Tr(·)) we consider as a function of
trace from the quadratic expansion Q[i] (respectively, from k2 = R(p)) in
Q (respectively, in k = Zp).
Hence, denoting by l the number of αi, congruented with 0 modulo p, we
can estimate S2(V, f) by formula (4). And so we have

S2(V, f) 6 (N + 1− l)p
2(2N+2−2l−1)

2 p4l = (N + 1− l)p2N+2l+1. (15)

Now from (3) follows that

S2
1(V, f) ∼ NS2(V, f). (16)

Thereby in the case p ≡ 3(mod 4) the assertion of theorem proved also.
Since, the case p = 2 is trivial we obtain the proof of theorem for m = 1.

Put further m > 1.
Without loss of generality, we can suppose that
(pmα0 , pmα1 , . . . , pmαN , pm) = 1. Consequently, though one from numbers
aj , j = 0, 1, . . . , N is coprime whith p. Let(α0, p) = 1. Hence, (a0, b0, p) =
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1, where α0 = a0 + ib0.
Denote ξj = xj + iyj , j = 0, 1, . . . , N . We have

K̃N (α0, . . . , αN ; pm, h) =

= 1
pm

∑
ξj∈R(pm)
j=0,...,N

pm−1∑
k=0

epm

(
k(N(ξ0 . . . ξN )− h) +

N∑
j=0

ℜ(αjξj)

)
=

= 1
pm

∑
S(C)

epm

(
k

N∏
j=0

(x2j + y2j )− h) +
N∑
j=0

ajxj −
N∑
j=0

bjyj

)
,

(17)

C : {k ∈ Zpm , xj , yj ∈ Zpm , j = 0, 1, . . . , N}.

We can suppose that ξj ∈ R
∗(pm), j = 1, . . . , N , (else, the summation

over k gives zero).
Next, for every k ≡ 0(mod p) the summation over x0, y0 (by
(a0, b0, p) = 1) gives zero.
Hence, from (14) obtain

K̃N (α0, . . . , αN ; pm, h) = 1
pm

∑
k∈Z∗

pm

∑
ξj∈R

∗(pm)
j=1,...,N

epm(−kh)×

×
∑

ξ0∈R(pm)

epm

(
kN(ξ0)

N∏
j=1

N(ξj) + ℜ(α0ξ0) +
N∑
j=1

ℜ(αjξj)

)
=

= 1
pm

∑
k∈Z∗

pm

epm(−kh)×

×
∑

ξj∈R
∗(pm)

j=1,...,N

∑
x0,y0∈Zpm

epm

(
k

N∏
j=1

N(ξj)(x
2
0 + y20) + a0x0 − b0y0

)
=

=
∑

k∈Z∗

pm

epm(−kh)
∑

ξj∈R
∗(pm)

j=1,...,N

epm

(
ℜ(αjξj)− 4′k′

N∏
j=1

N(ξj)
′(a20 + b20)

)
,

(18)
where 4·4′ ≡ 1(mod pm), k ·k′ ≡ 1(mod pm), N(ξj)·N(ξj)

′ ≡ 1(mod pm),
j = 1, . . . , N .
(We estimated the sums over x0, y0 as the classical Gaussian sums).

Let n := [m+1
2 ]. Put for j = 1, 2, . . . , N :

ξj = ηj + pnζj ηj ∈ R
∗(pn), ζj ∈ R(pm−n). (19)

Then
N(ξj)

′ = N(ηj)
′(1− 2pn(xjuj + yjvj)N(ζη)

′), (20)

if we set

ηj = xj + iyj , ζj = uj + ivj , xj , yj ∈ Zpm , uj , vj ∈ Zpm−n (21)
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And so, from (18) we find

|K̃(α0, . . . , αN ; pm, h)| =

= |
∑

k∈Z∗

pm

epm(−kh)
N∑
j=1

∑
xj ,yj∈Zpn

(x2
j+y2j ,p)=1

epm(ℜ(αjηj))
∑

uj ,vj∈Zpm−n

epm(G+ pnH)|,

(22)
where

G = 4′k′(a20 + b20)
N∏

j=1

(x2j + y2j )
′ := 4′k′(a20 + b20)D.

H =
N∑

j=1

{
−2′k′(a20 + b20) ·D · (xjuj + yjvj) + ajuj − bjvj

}
.

Note that now the summation over uj , vj gives zero if the system of
congruences

{
aj − 2D2N(ηj)

′xj ≡ 0 (mod pm−n),
bj + 2D2N(ηj)

′yj ≡ 0 (mod pm−n),
(23)

disturbs though for one j, j = 1, 2, . . . , N . This system is equivalent to
the system





ajyj + bjxj ≡ 0 (mod pm−n),

2′k′
N∏
j=1

(
(x2j + y2j )

2
)
′

(a20 + b20)xj + aj ≡ 0 (mod pm−n),

if aj 6≡ 0, bj 6≡ 0 (mod pm−n);
yj ≡ 0, if bj ≡ 0 (mod pm−n);
xj ≡ 0, if aj ≡ 0 (mod pm−n),
(j = 1, 2, . . . , N).

(24)

Let t is the number of αj , j = 1, . . . , N , which are coprime with p. If
t = N , then from (23)-(24) we see that every xj defines the single yj
modulo pm−n, and, hence, there does not exceed pn−(m−n) = p2n−m the
value yj , corresponding to xj modulo pn.
Moreover the secondary congruence in (24) gives

xj ≡ a′1ajx1 (mod pm−n), if (a1, p) = 1,

or
yj ≡ b′1bjy1 (mod pm−n), if (b1, p) = 1.

Consequently, the value x1 (or y1, if a1 ≡ 0(mod p)) defines the single
y1 and the pairs (xj , yj) modulo pn−m, j = 2, . . . N . Moreover, N -tuple
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(x1, y1, . . . , xN , yN ) is the solution of the congruences (23). Next, from
(24) one easily derives that x1 is the root of the congruence
Ax4N+1

1 ≡ B(mod pm−n). Consequently, the number of solutions of system
(23) does not exceed (4N − 1)pN(2n−m).
Hence, by (22) we have

|K̃N (α0, . . . , αN ; pm, h)| =
∑

(x1,...,yN )

∗
∑

k∈Z∗

pm

|epm(−kh+ k′h1)|,

where the (∗) indicates that the summation passes over admissible 2N -
tuples (x1, y1, . . . , xN , yN ); and h1 is integer, depended from (x1, . . . , yN ).
Hence, using an estimate of the rational Kloosterman sum and the estimate
of the number of admissible 2N -tuples, we obtain

|K̃N (α0, . . . , αN ; pm, h)| 6 2p
m
2 (4N − 1)pN(2n−m)p2N(m−n) =

= 2(4N − 1)p
2N+1

2
m.

(25)

In general case, from (22)-(23)

|K̃N (α0, α1, . . . , αN ; pm, h)| 6 2p
m
2
+2N(m−n)I(α1, . . . , αN ; pm), (26)

where I(α1, . . . , αN ; pm) is the number of solutions of congruence (23).
It is easy to see that

I(α1, . . . , αN ; pm) 6 (4N − 1)pmα1+...+mαN .

Conclusion

In conclusion note, that the estimate (25) is "the rooted estimate" and
apparently in general case is best possible
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