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ABSTRACT. In this paper we prove that if R is a (not nec-
essarily finite) set of words satisfying certain small cancellation
condition in a hyperbolic group G then the normal closure of R is
free. This result was first presented (for finite set R) by T. Delzant
[Delz] but the proof seems to require some additional argument.
New applications of this theorem are provided.

1. Introduction

In the founding paper |Gro|] M. Gromov defined the notion of hyperbolic
groups and outlined a number of research directions in this (now well
established) area. In particular, one finds the following Statement 5.3E
in [Gro:

There exists a constant m = m(k,d) such that for every k hyperbolic
elements x1,...,xp in a word 6—hyperbolic group G the normal subgroup
generated by x{", ..., x,"* is free for all m; > m.

Although not correct in full generality (as a counter-example in the
appendix to |Delz| shows) the following theorems are true:

Theorem 1.1 (Delzant [Delz|, Theoreme I). Let G be a non-elementary
hyperbolic group. There exists an integer N such that for any elements

Fioeeos fu such that [[f]] = [[f;]] > 10008 (where [[f]] = Limp oo L0,

the normal subgroup N ( fN, ooy JENY s free for every k. Moreover, (for

every k) the group G /N (fFN, ..., fENY is hyperbolic.
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The Theorem 1.1 is obtained in [Delz| from Theorem 1.2 by arguing
that for sufficiently large N (independent of choice f;) the system of
relations f{V,..., f& can be completed to that satisfying small cancellation
C’' (1) (see definition 2.9).

Theorem 1.2 (Delzant [Delz|, Theoreme II). Let R be a finite set of
elements satisfying the the small cancellation condition C'(p). A normal

subgroup N (R) generated by R is free. The quotient G/ N (R) is hyperbolic.

However we think that the proof of Theorem 1.2 requires some addi-
tional arguments. To be more precise, the proof of the Theorem 2.1 (iii)
[Delz] pp 677-678 (stating that if a (finite) system R satisfies condition
C’(u), p < 1/8 then the normal subgroup N (R) generated by R is free)
is incomplete. We provide a proof of essentially the same fact in somewhat
different setting (in particular, the set R can be infinite) using both tech-
niques of Delzant (such as Lemmas 2.11, 2.15) and diagram techniques
of A. Olshanskii from [Olsh]|, [Olsh93]. We would like to note that the
Lemma 5.10 of this paper provides justification for the formula on top
of page 678 of [Delz]. One may replace Theorem 1.2 with the following
statement:

Theorem 1.3. There exists po > 0 such that for any p < po there are €
and p such that if R is a set of geodesic words satisfying C (e, u, p—condition
(see Definition 3.9) in the hyperbolic group G then:

(i) the normal subgroup N = N (R) is free;

(i1) if G is non-elementary and R is finite then G/N(R) is non-

elementary hyperbolic.
As a corollary we get:

Theorem 1.4. Let G be a non-elementary hyperbolic group. For any finite

set of elements x1,...,xy there exists an integer N such that the normal
closure N' = /\/’(wilN, oo ximNY n G of elements x‘;lN, oy wimN s free

for any integer s; > 0 and the quotient G /N is non-elementary hyperbolic.

Let us note that in our result 1.4, the choice of constant N depends
on the elements zy,...,z, rather then being an absolute constant as
in Theorem 1.1. On the other hand we do not assume any significant
restrictions on the set of elements z1,..., Z:,.

The following corollary somewhat strengthens the theorem proved by
T. Delzant and A. Olshanskii independently (see |Delz|, [Olsh95|) stating
that every non-elementary hyperbolic group is SQ—universal.

Corollary 1.5. Let G be a hyperbolic group. Then:
(i) there exists a free normal subgroup N of G of rank greater then 1;
(ii) for any free normal subgroup N of rank greater then 1 and any
countable group H there exists a free subgroup M < N, M <G such that
H embeds in quotient G/M.
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In conclusion we would like to mention the following

Open problem ([Kour]|, 15.69). Does every hyperbolic group G have a
free normal subgroup N such that the quotient G/N is a torsion group of
bounded exponent?

The above problem is motivated by the result of Ivanov and Olshanskii
[IvOl] stating that for every non-elementary hyperbolic group G there is
a number n = n(G) such that the quotient group G/G"™ is infinite.

2. Hyperbolic spaces and hyperbolic groups

Hyperbolic Spaces. We recall some definitions and properties from
the founding article of Gromov [Gro|. Let (X, | |) be a metric space. We
sometimes denote the distance |x — y| between z,y € X by d(z,y). We
assume that X is geodesic, i.e. every two points can be connected by a
geodesic line. We refer to a geodesic between some point z,y of X as
[, y]. For convenience we denote |z| distance |z — yp| to some fixed point
yo (usually the identity element of the group).

For a path v in X we denote the initial (terminal) vertex of v by
~v— (v4), denote by ||| the length of path v and by |vy| the distance
|7+ — v—|. Recall that if 0 < A < 1 and ¢ > 0 then a path v in X is called
(A, ¢)—quasigeodesic if for every subpath 71 of v the following inequality is
satisfied:

Il < 5 Il +e.

We call the path v geodesic up to ¢, if it is (1, ¢)-quasigeodesic.

Define a scalar (Gromov) product of x,y with respect to z by formula

1
(@) = S(lz =2l + |y — 2] = |z —yl).

We call the space X d—hyperbolic if there exists a non-negative integer
0 such that the following inequality holds:

Va,y,z,t € X, (z,y), > min({(z,t),, (y,t),) — 9.

We will need a few properties of hyperbolic groups and Gromov prod-
ucts:

Lemma 2.1 ([Delz|, Lemma 1.3.3). Let K be a nonnegative real number,
[z,y] and [2',y] — two segments in a d—hyperbolic space of length at least
2K + 200 and suppose that |z — 2’| < K, |y — /| < K. Choose points u
and v on [z,y] at distance K 4 26 from x and y respectively. Then every
point P on [u,v] is in the 65-neighborhood of the segment [/, y'].

Lemma 2.2 ([Ghys|, Chapter 3, §17). For any three points x,y,z in a
d—hyperbolic space X, we have d(z, [y, z]) —§ < (y,z), < d(x, [y, z]).
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We will use the following easy remark.

Remark 2.3. Let X be a hyperbolic space. Then:

(i) In the notations of Lemma 2.1 it is immediate that the segment
[z,y] is within K + 26 4+ 65-neighborhood of [z, y/].

(i) Suppose 7 is a path, geodesic up to some ¢ > 0 in X, and o is an
arbitrary point on . Then

(7)o < /2. &
Combining the previous inequality with Lemma 2.2 we get that:
d(O, h/*a ’Y+]) -9 < C/2 (2)

We recall the notion of the metric tree T (|Ghys|, Chapter 2, §1).
Let T' be a tree (i.e. graph without cycles), we construct the geometric
realization T in the following way. For every edge a of T” we choose a
real positive number [(a). Then there exists a unique (up to isometry)
metric d on T" maximal with respect to the following condition: edge a is
isometric to interval [0,[(a)] on the real line. Then 7" with the metric d is
a metric tree.

Various versions of the following Gromov’s theorem provide an ap-
proximation of a finite set of geodesics in hyperbolic space by metric
trees:

Theorem 2.4 (|Ghys|, Chapter 2, Theorem 12). Let F' be a §-hyperbolic
metric space. Suppose that F' = U | F;, where each F; = [w,w;] is a
geodesic and n < 2F.

Then there exists a metric tree T' and function ® : FF — T such that

(1)|[®(x), D(w)]| = |[z,w]|, V& € F;

(ii)|x —y| = 2(k +1)6 < [®(z) — (y)| < |z —y| for allz,y € F.

It is clear that if = is some vertex in a metric graph 7" in the theorem
above then either

(i) there exist some indexes i,j such that the images of F; and F)
under ® depart at z: ®([w, w;]) N ®([w, w;]) = [P(w),z] (in this case we
call vertex = a branching point), or

(ii) there exists some index 4 such that ®(w;) = z or ®(w) = z. In
this case we call = a leaf (because it is adjacent to a single vertex).

When we talk about an approximation tree for a set of vertices
w,wi,...,Ww, in the hyperbolic space X, we mean an approximation
of the set F' = U} | F; in the sense of the previous theorem.

By a tripod we mean a metric tree with one branching point (center
0) and three edges (pods).
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Remark 2.5 ([Ghys| Chapter 2, §1). Let z,y,z be some points in a
d—hyperbolic space X, and 01 be a point on [z, y] at distance s < (y, 2),
from x, 09 be on [z, 2] at distance s from x. Then there exists a tripod T
and a map ® : [z,y] U [z, z] — T such that:

(i) a restriction of the map ® on each segment [z, y|, [z, 2] is an isometry
which sends x,y, z to different ends of pods of 7" and ®(01) = ®(02);

(ii) @, T satisfies the previous theorem.

Hyperbolic Groups. Let G be a finitely presented group with pre-
sentation gp(S|D). We consider G as a metric space with respect to the
distance function |g — h| = ’gh_1| for every g and h. We denote by |g]
the length of a minimal (geodesic) word with respect to the generators S
equal to g. The notation (g, h) is the Gromov product (g, h), with respect
to the identity vertex 1.

We denote the (right) Cayley graph of the group by Cay(G). Graph
Cay(G) has a set of vertices G, and a pair of vertices g, g2 is connected
by an edge of length 1 labeled by s if and only if gl_lgg = s in G for
some s € ST1. We define a label function on paths in Cay(G). By a path
in Cay(G) we mean a path p = py...p,, where p; is an edge between
some g;, gi+1 for every 1 <i < n. We can define a label lab(p) (a word in
alphabet S*') by:

lab(p) = lab(py) ... lab(py).

It is clear that Clay(G) may be considered as a geodesic space: we may
identify every edge of Cay(G) with interval [0, 1] and choose a maximal
metric d which agrees with metric on every edge.

We have assigned a unique word lab(p) to the path p in Cay(G). On
the other hand for every word w in alphabet S*! there exists a unique path
p in Cay(G) starting from the identity vertex with label w. Hence there
is a one-to-one correspondence between paths with initial vertex 1 (the
identity vertex in G') and words in alphabet ST, so we will not distinguish
between a word in the alphabet S*! and it’s image in Cay(G) — a path
starting from the identity vertex. Thus, when considering some words
XY, Z in the alphabet S*!, we can talk about the path v = XY Z in the
Cayley graph of G originating in the identity vertex 1. To distinguish a
path Y with initial vertex 1 from the subpath of v with label Y we denote
the latter as Y (similar notations will be used for paths in van Kampen
diagrams, see Section 3). We will talk about values | X]|, || X for a word
X in alphabet over S*! meaning these values on corresponding paths in
Cay(G).

A group G is called §-hyperbolic for some § > 0, if it’s Cayley graph is
d-hyperbolic. It is well known that hyperbolicity of the group does not
depend on choice of a finite presentation of the group G (while § does
depend on presentation).
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In this section we recall some definitions and lemmas from [Delz], but
with certain modifications. We would like to formulate all the statements
in the language of (geodesic) and cyclically reduced words rather then
group elements and cyclically reduced group elements (element g of the
group G is called a cyclically reduced element if g has a minimal length in
it’s conjugacy class in ). The proofs of these lemmas can be repeated
while changing the terminology.

We first recall the following lemmas:

Lemma 2.6 (|Delz|, Lemma 1.2.1). Let V,W be geodesic words in G;
their scalar product is an integer or % times integer. If V.= AB such that
|A| = [(V,W)1] and C is defined by equality AC = W in G then the path
AC' is geodesic up to constant 26 (we denote by [x] a maximal integer
smaller or equal to x).

Lemma 2.7 ([Delz| Lemma 1.5.1). Let V' be a geodesic word in G which
is shortest in it’s conjugacy class and of length no less then 200. Assume
that W is conjugate to V. Then there exists a geodesic word U and a
cyclic conjugate V' of V' such that W = UV'U~! and the path UV'U~!
1s geodesic up to 1090.

Let us mention the following property of metric trees with finite
number of vertices. If a metric tree 7" is a union of n segments U}" ; [lo, [;]
originating from a fixed vertex wy, it is easy to see that an addition of a
new segment [lo, l,+1] to T’ can increase the number of edges by at most 2.
To be more precise we can prove by induction on n that |E(T)| < 2n — 1,
where E(T) is a set of edges in T

The proposition below provides a "pull-back" of the tree approximation
T for the set F' in the situation of Theorem 2.4 in the original hyperbolic
space X. It will be formulated for hyperbolic groups. In order to formulate
this proposition we need to add some edges of zero length to E(T"). The
reason for this adjustment is that a trivial edge in 7" may correspond to
a nontrivial group word ("edge in the pullback tree") in the Proposition
2.8. For every k < n we consider a subtree Ty = ®(U_, [wo, ws]). For
every i < n, if ®(w;) € T;_1, then we add to the set of edges E(T) a
new edge of zero length [®(w;), ®(w;)]. The inequality |E(T)| < 2n — 1
still holds if we take into account edges of zero length. We choose an
(arbitrary) orientation on every edge o € E(T). When we consider a
segment [®(w;), ®(w;)] = agl ...a5" (as, € E(T)) in Proposition 2.8
such that a zero length edge was defined for i (for j), we assume that as,
is the edge [®(w;), ®(w;)] (respectively, a,, is the edge [®(w;), D(w;)]).
After described conventions, we may formulate the following:

Proposition 2.8 (|Delz| Lemma 1.3.2). Let go, g1,--.,9n be elements
in G, n <2F and let ®, T be the corresponding approzimation tree and
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function provided by Theorem 2.4. Denote by E(T) = {a1,...,a2,—1}
the set of edges of T'. Let W be a geodesic word such that W = galgl
in G. Then there exist geodesic words A1, ..., Aoyn_1 in G satisfying the
following properties:

(i)l|ci| = |Ail| < 26(k +1) + 2.

(ii) If the geodesic [®(g;), ®(g;)] is a path ol ... a5 in the tree T,
then(gi_(lgj :)Ag ) A in G, e = £1 and AS) ... AT is geodesic up
to n(20(k +1) +2).

(iii) The word AS ... A" defined in (ii) for 9o ‘g1 is geodesic and
W= Ag .. Agm.

Small cancellation properties on the Cayley graph of hyperbolic
groups. The following definitions can be found in [LSch|. We call the
set of words R symmetrized if it is a set of freely cyclically reduced words
in alphabet S*!, i.e.

i) RER = R 'eR,

(i) R€e R,R=R1R2 — RaR; € R.

We will sometimes talk about cyclic word R meaning R or one of
it’s cyclic conjugates. Denote by G the factor group G/N(R) of G by
the normal closure (in G) of the set R. For a pair of words X,Y in the
alphabet S*! let us denote by X = Y a letter-by-letter equality of X
and Y.

Definition 2.9. Let R be a symmetrized set of geodesic words in the
d—hyperbolic group G and p < 1/8. Assume furthermore that every R €
R is a cyclically reduced element of G. The family R satisfies a small
cancellation condition C'(p) if:

(i) For every words A,B in G , |A|,|B| < 1006, YRi,Rs € R, if
(AR1B, Ry) > pumin(|R1|,|Ral|), then Ry = AR1A™! in G;

(1) minger (|R|) > 50006/ (1 — 8u).

The previous definition is essentially the same as that in [Delz|, 2.1
up to some adjustment of constants (the difference between them is that
b =1 in [Delz|).

Definition 2.10 (|Delz|). We say that a geodesic word U of G contains
more then half of a relation if there exists R = riro from R such that
(i) R = riry is geodesic, |ri| > |re| + 600 and
(11) U equals to the word UyriUs in G, which is geodesic up to 500.
We denote the set of all geodesic words U which do not contain more
then half of a relation by U.

Lemma 2.11 (|Delz|, Lemma 2.2). Consider the set X of words URU ™1
geodesic up to 100 in G such that U does not contain more then half of a
relation from R. Then every element g in the normal closure N'(R) is a
product of words from X .
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Figure 1:
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The proof of the Lemma 2.11 follows immediately from the remark
below.

Remark 2.12. (i) Suppose that a geodesic word U contains more then
half of a relation (i.e. U = UyrUs for some geodesic words Uy, Us,rq
satisfying Definition 2.10). Then

URU™' = (UyryrUy Y [(Urry *U2) R(Uyry 'U) = (UrryreUp ) ™! in
G and, evidently,

\Uir3 'USH L 01| < (U

(ii) Suppose that R € R, and URU " is not geodesic up to 105. Then
by Lemma 2.7 there exists R’ € R (so |R| = |R/|) and a geodesic word V
such that URU~! = VR'V~! in G and VR'V~! is geodesic up to 100.

We introduce some notation and conventions. Let g be an element in
the normal closure of R, choose n minimal such that

g=URU .. U,RU, ! with UR,U ™ € .

Then we denote: g9 = 1, g1 = UlRlUl_l,...,gn = g. Also we set a; =
gi—1U; and b; = a; R; = g;U;.

Assume that for some indices i < j the approximation tree 7" for
for vertices a;,b;, a;,b; is of shape on the Figure 1 (7" is provided by
Gromov’s theorem 2.4 where w = a;,k = 2, n = 3). For convenience we
label vertices of the tree on Figure 1 by corresponding group elements.
Proposition 2.8 provides us with with five geodesic words X,Y, Z, U,V
such that R; = XY Z, where XY 7 is geodesic and R; = U~lY 'V, where
U~Y =1V is geodesic up to 3(2 - 35 + 2) = 185 + 6. We label edges of
the tree T" with X, Y, Z, U,V for convenience of the reader. Note that ®
and T' determine the exponents of X,Y, Z,U,V in equalities for R;, R;
uniquely.

The following lemma is an application of the small cancellation, we
provide a proof of it (following [Delz|) for future references.



26 ON THE GENERATORS OF THE KERNELS

Lemma 2.13 ([Delz|, Lemma 2.3). Suppose that a fized element g is
equal to a word W = UlRlUfl . ..UanUn_1 mn G and that for some
indices i < j the tree approximation of vertices a;, b;,a;,b; in Cay(G)
(with geodesic words X,Y,Z, U,V provided by Proposition 2.8) has the
shape on Figure 1.

(i) Assume that n is a minimal possible number among all words W
equal to g. Then the following inequality holds:

Y| < pmin(| Ry |Ry]) + 106 + 3. (3)

(i) If the equality (3) is violated then n is not minimal and the following
equality holds in G:

Ui+1Ri+1Uijrll - Uj—le—lUj_,ll = UiRiUi_l L. UjRjUj_l. (4)

Proof. Assume that the inequality (3) does not hold. In notations used
in Figure 1 we have R; = XY Z and XY Z is geodesic, R; = U-ly-lv,
where the right-hand side is geodesic up to 3(2 - 36 + 2) = 18§ + 6.
We consider the conjugate R, = YZX of R;, which is also geodesic:
|R| > |R;| (since R; is a cyclically reduced geodesic word), but on the
other hand |R}| < |Y|+ |Z| + |X| = |R;|. Consider also the conjugate
R = YUV~! of R;l which is geodesic up to 3(2-30 + 2) = 185 + 6 (we
have |R;| < (R;. Y|+ |U| + V] < |R;| + 185 + 6).

By Lemma 2.7, there exists a geodesic word R” = AR;-A_1 cyclically
conjugate to R; such that 2 |A| +|R"| < ’R} + 108 and |R"| = |R;|. Now
the computation

2|A| + |R"| < |R)| +106 < |R;| + 285 + 6

implies that |A| < 146 + 3. We also have that R” € R: it is a cyclic
conjugate of R;.
By definition of hyperbolicity, we have that

(RL,R) > min((Y, RS), (R, Y)) ~ 6

Both Gromov products on the right side of the last equation are not greater
then |Y| and the second is actually equal to |Y| because R, = Y ZX is
geodesic. So (R}, R)) > (Y, R}) — 6 = |Y| =6 — (1, R})y, where the last
equality follows from (Y, R;->1 + <1,R3->y = |Y|. Since R; =YUV~!is
geodesic up to 180 4+ 6 we have by inequality (1) that (1, R;-)y <95+3
and finally

(Ri, R;) > Y| —106 — 3.

We hence obtained that (AR"A™Y Rl) > umin(|R;|;|R;|) and by the
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condition C'(u) we get that A~'R"A = YUV~! = Rl = YZX. Thus
UV~ =ZX, hence Z7'U = XV and so bi_laj = a;lbj, which in turn is
equivalent to U;lgiflgj,lUj = U;lg;_llngj and hence g;lgj,l = g;_llgj.
Rewriting the last equality in the explicit form, we get precisely equation
(4).

The left-hand side of the last equality contains fewer elements of X
contrary to the minimality of number n for g. Contradiction. L

The following definition utilizes the lemma

Definition 2.14 (|Delz|). A word (or, equivalently, a path in Cay(G))
UlRlUfl U RyUY is called reduced if for every pair of indices i < j
such that the approximating tree for a;, b;, a;, b; is of shape on Figure 1, the
inequality (3) holds. If for a pair of indexes i < j the tree approzimation
is of shape on Figure 1, the inequality (3) is violated, then we call i < j a
reducible pair of indexes.

Note that if we switch the labels a; and b; on Figure 1, the pair ¢ < j
will no longer be a reducible pair. The following corollary summarizes
[Delz| Lemma 2.4.

Lemma 2.15. Suppose G is hyperbolic and R satisfies C'(u), p < 1/8.
Let v =i, UZRZ-UZ-_1 be a reduced path in Cay(G), UZ-RiUi_1 € X and
denote by 7 some geodesic between v_,~vy. Then there exist an index

1 <ig < n, a subsegment x of geodesic segment ,R;, such that x is in
300-neighborhood of  and |z| > (1 — 3u) |R;,| — 150006.

3. Diagrams and small cancellation

Suppose we are given a hyperbolic group G with a combinatorial presen-
tation G = gp(S|D). For technical purposes we assume that D contains
all relations of the group G.

For € > 0 a subword U is called an e-piece of a word R in a symmetrized
set R with respect to G if there exists a word R’ € R such that

(i) R=UV, R =U'V' for some U, V', V;

(ii) U =YUZ in G for some words Y, Z where |[Y]|, || Z| < ¢

(iii) YRY ~! # R in the group G.

We say that the system R satisfies the C(e, i, p)—condition (with
respect to G) for some € >0, >0, p> 0 if

(MIIR] = p for any R € R;

(ii) any word R € R is geodesic;

(iii) for any e-piece of any word R € R the inequalities ||U]|, ||U’|| <
|| R]| hold (using notations of the definition of the e-piece).
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Definition 3.1. Consider a finite, two dimensional complex A with di-
rected edges such that:

(i) The underlying topological space of complex M is a disc with a
boundary P.

(ii) For any path in A there defined a label function ¢(x). If x is an
edge in A, ¢(x) € SUS LU and ¢(z~ 1) = ¢(z)~L. For a path q in A,
4 = q1.--Gn, where q; is an edge for every i, we define ¢(q) = &(q1)-.-P(qn)-
If q is a simple closed path we choose a base verter o and read off the
labels of edges in the clockwise direction.

(iii) A boundary label of any 2-cell of M 1is either an element of R
(then we call it an R-face) or has a label D where D =1 in the hyperbolic
group G (D-face).

We call the triple (M, ¢(x), P) a (disc) diagram A with respect to
gp(S|DUR) with a boundary path P.

Similarly we may define notions of annular or spherical diagrams.

For convenience we often fix a base point o of the diagram A — a vertex
on one of the boundary components of A. We may also choose a base
point o1 on the boundary of a face II and write J,,II = r where r is a
simple closed boundary path of II with a initial (terminal) vertex oy.

Consider a path v in A as a path in the underlying topological space
M. We say that v is a simple path in A if for every open set U in M
containing ~ there exists a homotopy (in U) from 7 to a simple curve
v =4/(U). A simple closed path v in A bounds a subdiagram A; with
boundary A = ~ consisting of all edges, vertices and faces which are
inside the simple closed curve 7/ = +/(U) for every open set U containing
~. Subdiagrams A1, Ay are called disjoint if for every neighborhood of
0A1UOAs (in the underlying space for A) there exists a homotopy inside
U of DA to a simple 1 such that Ay Ny = 0.

The following operations (and their inverses) are referred to as ele-
mentary transformations of diagram A over Gi:

1. Let 11,11y be D-faces in A with a common boundary subpath p.
Then we can erase p making 111,11y into a single D-face.

2. Let p be a simple path in A. Then we cut the diagram A along p
(i.e. consider the path pp~' as a new boundary component) and glue in a
D-face labeled by ¢(p)p(p)~".

It is clear that elementary transformations define an equivalence rela-
tion on the set of all reduced diagrams over GG1. We say that A is equivalent
to A’ if there exists a finite sequence of elementary transformations starting
from A and ending with A’.

Definition 3.2 ([OIsh93|). Let 111,11y be different R-faces of a diagram
A having boundary labels Ry, Ry reading in a clockwise direction, starting
from wertices o1, 09 Tespectively. Suppose also that there exists a simple
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path t in A such that t_ = o1,t4 = 09. Call 111,11y opposite (with respect
to the path t) if the following equality holds:

o(t) "Rip(t)Ry = 1 in G. (5)

If a diagram A contains no opposite faces then we call it reduced.

Lemma 3.3 (van Kampen, see |Olsh93|). Let wg be an nonempty word
in the alphabet S. Then wo =1 in Gy if and only if there exists a reduced
disc diagram over gp(S|D U R) with boundary label equal to wy.

Let p be a path in A over G, define [lp|| = 4(p)] and |p| = |6(p)].
We call a path p geodesic if ||p|| = |p| (recall that |p| equals the distance
lp+ —p-| in G).

One can define a map ¢’ (see [Olsh93], §5) from a disc diagram A over
G with the base point o to Caley graph Cay(G). Set ¢'(0) = 1, where 1
is the identity vertex of Cay(G). For an arbitrary vertex a in A we define
¢ (a) to be the vertex of Cay(G) labeled by the geodesic word ¢(p) where
p is a path in A connecting o and a (it follows from the van Kampen
Lemma that ¢'(a) does not depend on the choice of p). If p is an edge in
A labeled by s € ST, then define ¢(p) to be the edge labeled by s in
Cayley graph Cay(G) with vertices ¢'(p—), ¢’ (p+). If ¢(p) = 1 for an edge
p of A then ¢/(p) = ¢/(p-) = ¢'(p+). One can verify that [p| = [¢'(p)],
llpll = [|¢'(p)|| for any path p in diagram A over G (|Olsh93|, Lemma 5.1).

When A is a diagram over G; we still use functions ||p||, |p|, where p
is a path in A.

In the following remark we translate some hyperbolic properties of
Cay(G) into the context of diagrams over G.

Remark 3.4. (i) Suppose A is a reduced diagram over G, p; and py are
disjoint paths in A, vertices (p;)+ are on the boundary dA. Then there
exists a diagram A’ equivalent to A, such that A" = OA, vertices (p;)+
are connected by a geodesic path p, for i = 1,2, and paths pi, p, are
disjoint. Furthermore, a point z of the path p} is on JA’ if and only if it
is an initial or terminal vertex of pl.

(ii) Suppose I' is a diagram over G, OI' = p1q1p2q2, where g; are geodesic
in G and ||p;|| < K, |¢;| > 2K 4 206 for i = 1,2 and some K > 0. Then
(after elementary transformations) there exists a subdiagram I in I with
boundary oI = p/ ¢} phgs such that ||p}|| < 66, ¢} are geodesic subpaths
of ¢; and [(q1)+ — (¢1)+] = [(a1)- — (¢})-| = K 4 20. In particular,

41| = a1| — 2K — 40.

(iii) If a subdiagram I satisfies the conditions of part (ii), then every
vertex x of ¢ is at distance not greater then K + 86 from ¢ (i.e. there
exist a vertex y on g2 such that |z —y| < K + 89).



30 ON THE GENERATORS OF THE KERNELS

Proof. (i) Consider the map ¢’ from diagram A to Cay(G). For i = 1,2
we pick a geodesic in Cay(G) with label P! between vertices ¢/ (p;+) in
Cay(G). We apply an elementary transformation of type (ii) to p;: cut A
along p; to get a new boundary component p;p;, ¢(p;) = ¢(p;) ' in G and
glue inside a D-face II; with boundary p;p;. Then apply the inverse type
(ii) to II;: replace it with a pair of faces Il;1, II;2 with common subpath
p}; labeled by P! (011;; = pip/; Lol = Pipi). We have constructed the
desired diagram A’. It remains to notice that no vertex belongs to both
closed paths p1py and popo since p;, p; are copies of disjoint paths p; in A.
Also, all vertices of p) except for p}, are interior in a subdiagram bounded
by p;p;, and the remark is proved completely.

(ii) We consider ¢/(T"), and apply Lemma 2.1 to the pair of geodesic
paths ¢'(q1), ¢'(g2) in Cay(G) to find the subpath ¢f of ¢’(g1) such that
1(¢)+ — &' ((¢}))+)] = K + 25 and vertices (¢})+ are in 65—neighborhood
of geodesic ¢'(gqz2). Define a subpath ¢ of ¢'(¢}) so that the inequality
1(¢])+ — (¢5)+] < 66 holds. It remains to choose a subpath ¢, on g¢;
satisfying equality ¢'(¢}) = ¢/’. Now apply part (i) to two pairs of points
(g5)+,(q1)— and (q})+, (¢5)— in I' which provides paths p] and observe
that the path p}¢}phq) bounds the desired diagram I".

(iii) Follows from remark 2.3 and properties of the mapping ¢’. [

We will need the following:

Lemma 3.5. Suppose we have a diagram A consisting of cells 111,115, a
simple path t between them such that 111,11y is pair of opposite cells with
respect to a path t. Then, for any vertices 01,09 on Olly, Olly respectively,
there exists a path sitse such that ¢(sitsa) = Pp(a) in G, where |a| <
$1010s|, P is a geodesic word and |P| < |t| + 85, s; is a subpath of O1I;
(i =1,2), a is a subpath of Olly and si— = o1, s24 = 03. Moreover, the
following equality holds in G:

(P(a) ™ ¢(06,I11) (P(a))$(o,I12) = 1 in G. (6)

Proof. We denote 11 to be the boundary path 9;,_IIy, 73 to be the boundary
path 0y II5. By definition of an opposite pair (bounded by ritrot~!) and
the van-Kampen Lemma, there exists a diagram I' over G with boundary
ritraty !, where ¢(t1) = ¢(t). Since each path 7; is geodesic, by Remark
3.4 (iii) the distance between a vertex on 71 and 3 is not greater then
|t| + 80, hence there exists a vertex o} on r9 such that |01 — o}| < |t| + 8.
Consider a subpath of the form s;¢'s}, on OT', where s; is a subpath of
rfcl, sh is a subpath of rgﬂ, (s1)— = o1, (sh)4 = o, ' is either ¢ or ¢;.
Let P be a geodesic word equal in G to the label of the path s1¢'s}, so
|P| < |t| 4+ 83. Now we consider s1t's}, as a subpath of boundary 0A, so t’
is t. We choose a path a on 9l between o] and o9 satisfying inequality
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Figure 2:

U2
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la| < 1 |0I0y|. Define the path sy to be sha after elimination of returns,
hence ¢(sha) = ¢(s2) in a free group generated by S. Since the boundary
labels of A and T' are the same, we may consider the path s1t's}, as a path
sitsh, in A. We have that ¢(sitsh) = P in G, and so the following first
two equalities hold in the free group generated by S while the last one
holds in G:

d(s1tse) = (s1t'shs) = d(s1tsy)p(a) = Po(a).

To establish (6), we observe that the path (s;'9,,TT151)t(s000,TIas5 1)t~}
coincide with (9;_II;)t(9;, o)t " after the elimination of returns. Thus

A (57" Doy 151 )t (5205, g5 )t ~) = (0, )0, M)t~ = 1in G,

which after conjugation provides ¢—1(s1t52)p(9, I11)B(s1t52) (0o, I1o) = 1
in G providing (6).0

The following notion of e-contiguity subdiagram will be used exten-
sively. Let A be a diagram over 1. Let u; and ug be a pair of paths in A
with subpaths ¢; and g9 respectively, such that there exists a pair of simple
paths p1, pa, [p1|, [p2| < € and suppose that a path p;q1p2ge bounds a disc
diagram I' which does not contain any R—faces (see Figure 2). Then we
call I' an e-contiguity subdiagram between paths u; and ue. When we talk
about the contiguity subdiagram I' between u; and us we use the formula
O(u1, T, ug) = p1qip2ge to define notation for arcs of I'. In this case g1, g2
are referred to as contiguity arcs and p1,po as side arcs of the e-contiguity
subdiagram I'. We usually consider contiguity subdiagrams between a
pair of R—faces or between an R—face and a boundary path (i.e. up is the
boundary path of R—face II; and wus is the boundary path of R—face Il
or is a subpath of the boundary of A). If u; is the boundary of an R—face
ITy, ug is a path of a boundary of an R—face Ils with e-contiguity diagram
I' described above then we define the degree of contiguity of 11 to Ily to

be (I;, T, II) = ||||f1111|||| (or, if ug is a boundary subpath of A, the degree of

contiguity of II; to the boundary subpath ug to be (II1, T, ug) = |‘|‘1?111|\|\ ).
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The next two lemmas provide the basic connection between the notions
of small cancellation and diagrams over hyperbolic groups.

Lemma 3.6 (|Olsh93], Lemma 5.2). (i) If the symmetized system R
satisfies the C(e, p, p)—condition, then for any reduced diagram A and any
e-contiguity subdiagram I' of a face 111 to another face 11y the following
iequalities hold:

]l < pl|OTIL[ s [lgall < g [|OTa]],

where (111, T, Ils) = p1qip2qe for any reduced diagram A over Gj.
(i) Suppose a diagram A has a pair of R—faces 111,11y and an e-
contiguity subdiagram T' (O = p1q1p2qa) such that

maz{(Ily, T, 10y), (I, T, 1)} > p.

Then 111,115 are opposite with respect to each of the paths p1,ps.

Note that part 2 of the above lemma is an immediate corollary of
small cancellation property. O

Lemma 3.7 (|OlOsSa|, Lemma 4.6). For any hyperbolic group G there
exists po > 0 such that for any 0 < p < pg there are € > 0 and p (it is
suffice to choose p > %66) with the following property:

Let the symmetized system R satisfy the C(e, u, p)-condition and fur-
thermore let A be a reduced disc diagram over G1 whose boundary OA
is decomposed into geodesic sections q',...,q", where 1 <1 < 12. Then,
provided A has an R—face, there exists a reduced diagram A’ equivalent
to A, an R—face Il in A and disjoint e-contiguity subdiagrams I'y,..., Ty
(some of them can be absent) of Il to q*, ..., q" respectively such that

(ILTy,q) + -+ (ILT,,q) >1—23pu.
The following lemma is a special case of that in [Olsh93]:

Lemma 3.8. ([Olsh93], Lemmas 6.7, 7.4) Let G be a non-elementary
hyperbolic group. There exists pg > 0 such that for any 0 < p < pg there
exists € > 0 such that for every N > 0 there exists p > 0 with the following
property:

if R is finite and satisfies C(€, u, p) then Gy is a non-elementary
hyperbolic group and W =1 in Gy iff W =1 in G for every word W with
W] <N.

Definition 3.9. We say that a system R of geodesic words satisfies the

C(e, p, p—condition if R is symmetrized, satisfies C(e, , p)—condition and
consists of words which represent cyclically reduced elements in G.
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Figure 3: C'(e,u, p) => C'(2p)

11

q1

4. Condition C'(x) and connection to C(e, i, p)—condition

Remark 4.1. Suppose the system of geodesic words R satisfies C'(e, i, p—

condition, p < 1/100, € > €y > 66, p > #(?(E)gu)’ Then R satisfies C'(2u).

Proof. Take arbitrary words Ri, Rs € R. We denote by M the mini-
mum min(|Ry|,|Rz|). To check the condition C’(2u) we assume that
(aR1b, Ra) > 2uM for some a,b € G such that |al, |b] < 1004.

We denote by W a geodesic equal to aR1b, by v a path Ry and by v
a path aR;b in the Cayley graph Cay(G).

Consider vertices o2 on v and o3 on the geodesic W at distance [2pM ]
from identity vertex 1. By Remark 2.5 (part 1), we have that ®(02) = ®(03)
and (by part 2) oy — 03] < 49. Now we may apply Lemma 2.1 (for
K = 1000) to segments R, W and hence there exists a subsegment
[u,v] of W such that |u — e| <1026, |[v — 4| < 1026 and [u,v] is within
60-neighborhood of ,R;. Vertex o3 lies on [u,v] because on one hand
log — €| = [2uM] > 2K + 200 and on the other hand

o5 — 74 = |Ru| = la] — [b] — [21M] = (1 = 3u)M > 2K + 200,

We get that os is within 66—neighborhood of some vertex o; on path
AR

We consider two subsegments [e,02] and [(ya)4+,01] of v and Ry
respectively and apply Lemma 2.1 to get that there exists a subsegment
q2 of Ry between e and 09 such that

lg2| > [2uM] — 2008 — 45 > %MM + 206

which is within 65-neighborhood from ,R;. Now define g1 to be a subseg-
ment of o Ry with |g1— — g2, g1+ — g2+| < 60.
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We have that
3 .
lgi| > 5umm(|R1| ,|Ral|) for i=1,2. (7)

Define p; (p2) to be a geodesic path between ga—, g1— (q1+, g2+ ), see
Figure 3. To justify the Figure 3, we must show that |(ya)y+ — (¢1)—-| <
|(va)+ — (q1)+] (this inequality follows from [Olsh93] Lemma 1.10, but we
include the argument here). By triangle inequality and definition of ¢,
we have that

[(va)+ — (q1)-| < laf + |p1] + |e — (q1)~| < 1005 + 66 + 1020 = 2080;

on the other hand,
[(va)+ = (q)+| = le = (a2)+] = |p2| — la] = |e = (q2)-| + [q2| — |p2| —[a] =

3
1026 + 5 +208 — 1006 — 66 > piM > 5005

and hence we got |(ya)+ — (¢1)-| < |(ya)+ — (q1)+]|, as desired.

We denote labels of ¢; and p; as Q; and P; respectively. Define four
subpaths 755, i,j € {1,2} by equalities yR1 = 711712, ¥ = 721722 and
(r11)+ = (p1)4, (r21)+ = (p1)—. Define words R;;,Q’, Q" by equalities
lab(rij) = Rij, Ri2R11 = Q1Q’, RaaRo1 = Q2Q". We have that Qo =
PiQ1P, !, |P|| < 66, and taking into account the inequality (7) we
conclude by C’(e, i, p-condition that PyRisR11P~' = Rgo Ry, which in
turn is equivalent to (R21P1R1_11)(R11R12)(R11P1_1R2_11) = R21R22. It
remains to observe that a = (RglPlRl_ll) and so aR1a~! = Rs. O

Corollary 4.2. Suppose R satisfies C’(e, 1, p—condition and n > 1,

[T UxReUt =1 in G, where UpRy U € X (8)
k=1

Then (i) There exists a reducible pair i < j in the sense of Definition
2.14 and

Ui+1Ri+1Ui:_11 PN UjfleflUji_ll == UiRiUfl PN UjRjUjil’L”n G. (9)

(i1) For every reducible pair i < j in (8), there exists a van-Kampen
diagram A’ over G with the boundary ' labeled by the word
U1R1U1_1 ... UanUn_1 and a subdiagram T in A" with boundary pi1q1p2q2
such that q is a subpath of v R;, g2 is a subpath of v R;, |p;| < 110 + 3

and mam(%, %) > 2 — MTJF?’. The only vertices of paths p; that are

on the boundary of A are initial and terminal vertices p;4.



V. CHAYNIKOV 35

(11i) Consider the diagram A" from part (i) and let v/ be any of the
four paths given by the formula v/ = Vl(Ufl)slpfls%/(Ufl), where s1 1
a subpath of 1 R;, s2 is a subpath of y+R;. Then

Jj—c
(U s1py sa(yUF)) = [ UnRiU; ' in G,
k=i+d

where ¢, d take values 0 or 1 depending on the path v/ and (c,d) # (0,0).
Moreover, depending on values ¢ and d, the word H = i;i.lﬂ, UkRkUk_1
conjugates UiRiUifl to UjRjﬂU;l, namely:

H'URU'H = UjRjUj_l, where e € {£1}.

Proof. By Remark 4.1, C(e, j1, p-condition implies the condition C”(2).
The product [];_, UkRkUk_1 equals to identity in G so by Lemma 2.15
it is not reduced in the sense of Definition 2.14. Hence there exists a
reducible pair ¢ < j (in particular, we have that |R;| = |R;|) such that the
approximation tree for a;, b;, aj,b; is of shape on Figure 1 and by Lemma
2.13 the corresponding geodesic word Y satisfies:

Y| > 2uM + 106 + 3, where M = |R;]. (10)
Lemma 2.13 also provides the equation (4) and thus (i) is proved.

Diagram A’ over G with boundary ' labeled by [[;_; U Ri U, ! exists
by van-Kampen Lemma. Consider the map ¢’ : A’ — Cay(G). We denote
¢'(7') as 7" (a path in Cay(G) with label [[}_, UxRiU, '). We adopt
notations from the definition of a reducible pair ¢ < j and Figure 1.
Consider a geodesic path « in Cay(G) starting from a; with label XY Z
(hence it ends at b;) and a geodesic up to 189+ 6 path 5 in Cay(G) starting
from a; with label U='Y =1V (it ends at b;). By definition of X,Y, Z, U, V,
we have (oY) ™! =5 Y 1. From the fact that XY Z is geodesic, it follows
from Remark 2.3 (ii) that there exists a subpath ¢} of ,»R; such that:

‘aY— - qll—

JaYs —d| <6, 1)

which implies that:
| > Y] —20. (12)

Similarly, we consider the path § geodesic up to 185 + 6 and apply
again Remark 2.3 (ii) to obtain that there exists a subpath ¢, of v R;
such that:

}aY— - qé-}-‘ ’ ‘aY—F - qé—‘ < (95 + 3) + 57 (13)



36 ON THE GENERATORS OF THE KERNELS

and hence :
5| > Y| — 205 — 6. (14)

The inequalities (11), (13) imply also that |q¢j_ — —qh_| <
116 + 3.

Consider subpaths ¢ of yR; and g2 of 4 R; in the boundary 9A’ such
that ¢'(gi—) = ¢;_, ¢'(¢i+) = ¢;. The Remark 3.4 implies that (after
some elementary transformations) there exists a subdiagram I" in A" with
boundary p1q1p2q2, vertices of p; are interior except for initial and terminal

ones and |p;| < 116 + 3. Equations (12), (14), (10) provide that:

lai| g2l [V|-206—6  2uM+106+3—205—6 10643
maz(jpr (g 2 a2 = > 9y — 10043 pay

(ii) is proved.

To justify part (iii) we look at each of the 4 options for the path
V. For example, if v/ = (,V/Ui)slpIISQ(,y/Ujfl) then ¢’ maps the vertex
v = (,Ui)- of A’ to the vertex g;i—1 = [[4 UxRxU, " in Cay(G),

vV, = (V/Ujfl)+ to the vertex g; = Hi:l UkRkUlzl in Cay(G). Hence

lab(¢/(V)) = g; 195 = Hk _URGU

A direct computation using the relation (9) yields that for every
possible value of ¢ and d the word H conjugates UiRiUifl to UjRJilUjfl
For example, H = Ui+1R,-+1UZ-111 e UjRjUj_1 conjugates UiRiUi_l
UjR; U

Ui Rinn Uy - UiR U UG R U (U R U, U R U T =

Uit Ria U - Uj—le—lUj:l (Ui Ria UL - UjRjUj_l)_l—

UiRU; ' .. . UR;U (Ui Rip U - UjRU ) ™ = Ui iU,

where the last inequality holds by (9). It remains to notice that by relation
(9), in the word H the parameters ¢ = d = 0 may be replaced by ¢ = d =
1. O

Definition 4.3. For every reducible pair i < j consider the diagram
A" from Corollary 4.2, identify each edge of +Us with corresponding
edge of 7/Us_l and fill in the R-faces Il to get a van-Kampen diagram
A over Gy which has a (11§ + 3)-contiguity subdiagram T such that
max{(I1;,I1;), (I1;, 11;) } > 2pu— 105+3 We will refer to a described diagram

A as a standard dzagmm for relatzon (8). We denote the image of v in A
by .

By definition, the standard diagram is a spherical diagram, but for
convenience we draw it on Figure 4 as a disc diagram with boundary label
1.
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Figure 4: Standard Diagram
1

0]

Remark 4.4. According to the identifications made in the definition of
the standard diagram A, any of the four paths v/ in A’ corresponds to a
closed path in A with label v = (,U;)ripirs (,YU;l), where r; correspond
to s;. One can observe that different paths v/ have different images in A,
but we will not use this fact later. Note that the subpaths (,/U;)*! and
(v Uj)jEl of v/ in A’ correspond respectively to subpaths ,U; and ,U; of v.

5. Generators of a free normal subgroup in ¢

In this section we assume that the set R satisfies C (€, u, p—condition,
where the parameters e, i1, p are chosen according to Lemma 3.7 and
satisfy inequalities € > ey = 196 + 3, p < 1/100, p > %.

It is well known (see [Gro|2.2A) that a hyperbolic group contains only
finitely many conjugacy classes of torsion elements. So, given a group G,
we may choose the constant p to be larger then the length of shortest
representative in each conjugacy class of torsion elements. Thus we will

assume in the sequel that for values of p large enough:
Remark 5.1. The set R consists of elements of infinite order.

Definition 5.2. We call a (reduced) diagram A an octagon diagram if
OA = 1171 . ..1l4js, where l; are geodesic in G, and ||j;|| < e.

Definition 5.3. Consider an octagon reduced diagram A with boundary
OA = l1j1...14js and pick a number 0 < k < 1. We say that an arc ;
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satisfies the condition Un (k) if for every diagram A equivalent to A and
every R—face 11 in A’ such that there is a contiguity subdiagram T" between
IT and l;, we have the inequality (I, T, ;) < k.

It is clear that if [; has a subpath [ which is a boundary arc of some
subdiagram A; of A then [ satisfies Ua, (k) as well.

Lemma 5.4. Let A be an arbitrary octagon diagram and ¢(ly) =U € U,
then (in notations of Definition 5.2) Iy satisfies Ua(5 + 1)

Proof. Note that by definition of p we have that 2“7:’45 < é . We suppose
that there exists an octagon diagram A, with boundary arc Iy, ¢(l1) =
U € U. Assume that (after elementary transformations) there exists an
R—face IT in A and a corresponding subdiagram I" between I and [y with
boundary O(II,T",11) = p1q1p2qe such that (II, T, 1) > % + 26%’45.

Now we may apply Remark 3.4(ii) to the diagram I' and conclude that
(after elementary transformations) there exists a subdiagram I'' of T with
boundary p}¢}phg, such that ¢} are subpaths of ¢; and:

[pi] <66, [ai] = laa| — 26 — 46. (15)

By definition of ¢f, we have |¢j| = |q1| — 2¢ — 46 > }[0II| + 305 and
it’s complement ¢} (91 = ¢|q}) satisfies |¢3| < 5 [OII| — 306. Thus the
condition (i) of definition 2.10 is satisfied.

We define paths I’,1” such that I; = I'¢hl”. The equality U = ¢(l;) =
o'\ qiphl") holds in G, moreover, by inequalities (15), we have:

(V] + P3|+ ||+ [ + |17 < [V +2 |pa | + [aa| +2 [ + || < [11]+-4-66.

Hence the condition (ii) of definition 2.10 is checked for the factorization
P(I'p1)(q1)p(p5l") of the word U.

By Definition 2.10, the word U does contain more then half of a relation
and thus U ¢ U contrary to our assumption. O

Definition 5.5. Consider a reduced octagon diagram A with boundary
111 ...luja. Denote for simplicity of notation v = 1y and v™' = I3,
a = j3laja, b = jilaja and define the base point of A to be o = (I1)—. Con-
sider an R—face 11 and disjoint contiguity subdiagrams Iy, Ty, of I1 to bound-
ary arcs u,v, define boundary arcs of I'y, Ty by O(IL, Ty, u) = pruqrupoudu,
O(IL, Ty, v) = proqrvpequ and define qi, g2 by equality 11 = g1l q1aa g2
(see Figure 5). We say that a subdiagram Ay = Ao(A,II) with a bound-
ary path pPauGuPiuq2P2uquP1vql  (u,v)-bond (through II) if both values
(IL, Ty, u), (II,Ty,v) are greater then u. We define subdiagrams Ay =
A1(ATD), Ay = Ay(AID) of A with boundaries ulpzzblqlpi}vfla and
quvQ_1192_vlq2_1pl_u1 respectively, where uy (v1) is an initial subpath of u (v)
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Figure 5: Bond Between u And v
v

qiv

and ve (ug) is a terminal subpath of v (u) (recall that the orientation of
the boundary is clockwise).

For an arbitrary reduced octagon diagram A, OA = 1l1j1 ...1474, where
l; are geodesic in G, || ;|| < €, there exist a pair of (possibly empty) sets V' =
{I1;, .. . II,;,} of R—faces and £(A) = {T'1,u; 105+, Dius Do } of disjoint
e-contiguity subdiagrams, where I'; ,,,I'; , are contiguity subdiagrams such
that Ag(IL;) =1I; UL, ULy, is a (u, v)-bond. We call a pair (V,2(A)) a

system of bonds between u and v.

Remark 5.6. (i) It is clear that in a non-empty system of (u,v)-bonds
(V,3(A)) for a reduced diagram A there exists a unique face II in V' such
that the associated (see definition 5.5) paths u; and v; are the longest.
Moreover, any other face II' € V' belongs to A (II).

(ii) For every face Il in V' we have that

lur| < |u| — (IL, Ty, w) |OI1] 4+ 2¢, |v1| < |v| — (I, Ty, v) |OII| + 2¢. (16)

The following remark will allow us to extend systems of bonds of
subdiagrams A; to the diagram A.

Remark 5.7. Consider a reduced octagon diagram A over G and as-
sume that there is a (u,v)-bond Ag(Il) = TUT, UT, in A satisfying
(I, Ty, w), (II, Ty, v) > p and two systems of (u;,v;)—bonds (Vi, X(A;))
in A; = A;(II,A), ¢ = 1,2. Then the sets V = V; U V5 U {II} and
Y(A) =X(A1) UX(A) U{l',, Ty} comprise the system of (u,v)-bonds
(V,2(A)) in A.
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Lemma 5.8. Let A be a reduced octagon diagram with at least one R—face
with boundary OA = ajiujabjsv='js, where u,v,a satisfy the condition
Un(3 + 1), b satisfies Ua(p) and |ji| < € for every k.

(i) Then A has a non-empty system of (u,a)—, (v,a)— or (u,v)-bonds.

(i1) Assume in addition that A does not have (u,a)- or (v,a)-bonds.
Then, for the set V' consisting of all R—faces, there exists a system of
(u,v)-bonds (V,3(A)) such that for every R—face II in A there exist
subdiagrams 'y, Ty, € X(A) satisfying:

(IL Ty u) + (IL Ty 0) > 1 — 2650 (17)
1

maz[(IL Ly, u), (IL, Ty, v)] > 5 — 134 (18)
1

min[(IL, Ty, w), (I, Ty, v)] > 5~ 271 (19)

Proof. (i) On the one hand we may consider an R—face II satisfying Lemma

3.7 such that (I, T, @)+ (IL, Ty, b) 4 (IT, Ty, )+ (I, Ty, ) > (1-23) — 555

(note that (IT,T';;, j;) |01I] < 3€ because |j;| < €). Together with condition
on b it means that

4 -3¢

(IL,Tay @) + (I, T w) + (I, 0) > (1= 240) = 157

(20)

On the other hand each summand on the left-hand side of (21) is
smaller then % + &. Hence at least two of them are larger then 12y.

(ii) We continue the considerations in the proof of part (i). We cannot
have (II,I'y,a) > p because at least one of the other summands in (20)
is larger then 124 and we would get a (u,a)— or (v,a)-bond involving a
which is impossible. Hence we get that

(I, Ty ) + (I, Ty ) > (1 — 25p2) — Z’la'lf)’”e (21)

and so the inequality (17) holds for II. The inequality

1 25 2 3e
mazx[(IL, Ty, u), (I, Ty, v)] > L o]

follows immediately since p < 1/100, while for

1 1
min[(IL, Ty, w), (I, Ty, v)] > 5 265,u

it is enough to recall that |qu|,|gu| < (3 + £p)|0I|. We have proved

the formulas (17)—(19) for the face IT satisfying Lemma 3.7, taking into

account that (by definition of p): fg%ﬁ < % < tp.
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When n =1, the diagram A has a single R—face II and we are done
by the argument above.

We induct on a number n of R-faces in the octagon diagram A with
base n = 1. If n > 1 we consider subdiagrams A; = A;(A,II) for the face
IT (we follow notations of Definition 5.5 here). It is clear that diagrams A;
satisfy the induction assumption. Each has a number of R—faces strictly
less then n because neither contains the face II, the arcs p;y, piry on the
boundary of A; are not longer then e. The boundary arcs ¢; of A; satisfy
the condition Ua, (1) by Lemma 3.6 because they are boundary arcs of
the R—face Il in the reduced diagram A. As we mentioned before the
proof of the lemma, conditions Un, (1) for ¢; imply that there are no bonds
involving ¢; in A;. The induction assumption is now checked for A;, hence
there exist systems of (u;,v;)-bonds (V;,X(A;)) in A, satisfying the
conclusion of the lemma. Finally we are in position to apply the Lemma
5.7 to A relative to the bond Ag(II): we obtain a system of (u,v)-bonds
(V,2(A)) such that V' contains all R-faces and the set ¥(A) is comprised
of ¥(A;) for i = 1,2 and I'y, I'y. The inequalities (17)-(19) hold for every
R—face in A except for the face IT by induction assumption, and for the
face II we have obtained them above. O

We denote words URU ™! by Ag . If u is a path in some diagram A,
we write Agy for Ag (-

Definition 5.9. Define a weight of a word Ary by Y(Aryv) = |R|+4|U].

Lemma 5.10. Let A be a reduced diagram over the group G1 with bound-
ary ujrajov™t, where u,v,a satisfy the condition UA(% +£), 1gil <€ for
i = 1,2 and there are no (u,a)- or (v,a)-bonds. Then ¢(ujiajv—1) =
I, Ap,ur in G, where maxlgjgnw(ARj,U]’.) < 4dmaz(|ul, [v]).

Proof. We proceed by induction on the number n of R—faces in A. The
conclusion of the lemma holds for k = 0 because ¢(ujiajov=!) =1 in G
and there are no Agy’s.

Assume that the lemma is true for n — 1. Consider a face II satisfying
the Remark 5.6. By Lemma 5.8(ii), the R—face II of A is in the set V for
some system of (u,v)-bonds (V,3(A)), and inequalities (17)—(19) hold
for II. We recall the inequality (18) and assume that

(I, ) > (5 = 130), 22)

in the other case proof is the same.

By the choice of II, we have that every other R—face of A is in the
subdiagram A (A; = A;(A,II)) and the subdiagram Aj is a diagram over
G (we are using notations from Definition 5.5 and the reader can refer to
Figure 5 in the sequel of the proof). We consider a system of (u,v)-bonds
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provided by Lemma 5.8. Denote a subdiagram of A consisting of Ag, Ag
by A’. It contains a single R—face II, so we get the following equations in
the group G:

¢(6u1+A/) = ¢(aU1+A0) = ¢(p§1} (8p2u71_[)p2u). (23>

Now notice that paths 9, A and ug (0y,, A )uy (9, A1) coinside after
the elimination of returns in the latter path, so their labels are equal in
the free group generated by S. We get that

GO A) = ¢(u1(Duyy A'Yuy (9 A1) = dlur(Duyy A'Yuy (D Aé)’ |
24
and taking into account (23),

B(u1py ) 3O (ppny M P(urpsy ) ¢(0u_A1) = 11in Gy,

where the number of faces in the diagram Aj, bounded by the path
ulpgjqflpl_vlvl_l, is n — 1. For convenience we denote ¢(9,,,)_II) by R;.
By induction assumption, we have the following equality in G for the
boundary of A’:

n
¢<U1p2_ul%_1plv7)1_1) - H ARJ‘ JUj o
=2

where for every 1 < j <n we have {(Ag, ;) < 4max(|u1l,|v1]).

By Remark 5.6 part (ii), we have that max(|u1], |v1]) < maz(|ul, |v]).
By inequalities (16) and (22), we have ‘ulpgul‘ < Ju| — (I, Ty, w) |OII] +
2+ € < |u| — (3 — 13u) |011| + 3¢ < |u| — 1 |OI1|, hence

U(Ag, uypst) = O11] + 4 luipy, | < 0TI + 4 u| — |01 =4 |u|. O

Remark 5.11. Let A be a reduced octagon diagram with boundary
OA = l1j1...1474. Assume that ¢(l1) is a subword of some R € R and
1] < 3 |R|. Then [y satisfies Ua(3 + £).

Proof. Suppose on the contrary, there exists an R—face Il and a contiguity
subc}iagram I such that (IT,T',1;) > % + £, O(IL,T',11) = p1g1p2q2- Then,
by C'(e, u, p—condition, R and ¢(9II) are conjugate so |0II| = |R|. Hence
we get

1 1 pu
—|0II| > [I1| > —2¢> (= +—) |01
1011 = [1] 2 aa| = 2 = (5 + £y om]

which is a contradiction. O
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For technical reasons we introduce a notation
Nru = gp{Ar | V(Ar vr) < Y(ArU))-

We say that Ap v is equivalent (=) to Apy iff Y(Ap ) = V(Ary)
and there exists a word H in Ng ¢ such that HAleU/H_l =Apy in G.
To prove that the relation = is a correctly defined equivalence it is enough
to notice that Nr = Np/ 7 whenever ¢(Ap ) = (Agv). It is clear
that equivalence classes with respect to = are finite.

Definition 5.12. Let A be a maximal set of words Ay where R €
R, U € U such that

(i) Aru ¢ Nru;
(ii) if Aprpr = AﬁlU, then at most one of them belongs to A.

Lemma 5.13. (i) Suppose that some geodesic word U contains more then
half of a relation, then for every R € R we have that Apy € Ny .

(ii) If U RU ! is not geodesic up to 108 then there exists a geodesic up to
106 word VR'V = such that Apy = Apy in G and v(Aru) > V(Ap ).

(11i) A is a subset of X from Lemma 2.11.

(iv) A generates N'(R), moreover every Ar y is a product of elements
of AL with weights not larger then ¥(Ar ).

Proof. Pick some word Ag .
(i) Assume that U contains more then half of a relation, then (using
notations and statement of Remark 2.12(i)) we have

AR,U = ATITQ»UlAR,Ulrz_lUgA;llrg,U17 where U = UyriUs, rr3 € R, (25)
and the following inequalities hold:
|ri| + |U1| 4+ |Ua| < |U|+ 500, |r1] > |ra| + 600. (26)

It follows from 2.12(i) that ¥ (Ap, U1T51U2) < Y(Ary). Now we use in-
equalities (26) to estimate:

V(Aryro,n) = [r1re] + 4 |Ur| = |r1| + [ra| +4|Un] <

2|+ 4|Uy| = 2(|r1| + |UL]) + 2|Uy| <
< 2(|U| + 5068) + 2(|U| + 508 — |r1|) < 4|U| 42006 — p < 4|U].

Hence Ap is equal to the product (25) such that both ¥(Ar ., ;)
and (A 1, ! u,) are strictly less then ¢)(Agy) and we conclude that

Ary € Npry. Contradiction with Definition 5.12. Hence, if Appy € A
then U does not contain more then half of a relation.
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(ii) Suppose that Ag  is not geodesic up to 106. The Remark 2.12
(ii) implies that then there exists R’ € R and a geodesic word V such
that URU™! = VR'V~! in G. By the same remark, the word VR'V ™!
is geodesic up to 100 and |R| = |R’| and so |U| > |V|. Thus we have got
inequality ¥ (AR ) > 1(Ag v) contradicting the choice Ay € A again.

(iii) Follows from (i) and (ii) by definition of X in Lemma 2.11.

(iv) By Lemma 2.11, if g € A then g = [[I_, UsR,U; ! for some
UsR,U;! € X. Hence it is enough to show that every Apy € X is equal
to a product of elements of A. We proceed by induction on possible values
of k = (x) on the set X.

If Ag,1 € X has minimal weight ¢)(Apr, 1), we have that Np, 1 = {1}
and so Ary1 ¢ Ngy1. By max1mahty of the set A, the exists a word
A RéU/ € A such that Ag, 1 ~ Atl R which implies that Ag, 1 = Aﬁ, U
in

Now pick Ar € X such that ¢(Ag) = k. There are two cases.

CASE 1. Apy € Ngy. In this case Agy is a product of words
Apr o such that Y(Ap 1) < Y(Agry) and we are done by the induction
assumption.

CASE 2. Ay ¢ Ngy. Consider all words Ags 7 such that Aps 17 &
Apry. Clearly, Ap 7 ¢ Npy = Ng . By maximality of the set A, there
exists a word Ap v € A and by Corollary 4.2 (iii) we have that there
exists H € Ngy such that HA o H™ I = = Agpy in G. By induction
assumption, H is a product of elements of A with weights smaller then

’(ﬁ(ARU), Wlllle l/J(AR’U) ¢(AR’,U’)' O

Lemma 5.14. Let A be a reduced diagram over the group G1 with bound-
ary upav—t where |p| <€, ¢p(u),p(v) €U , p(a)TA' = R € R for some
word A’ and |¢(a)| < % |R).

(i) Suppose that there exist an R—face I1 and contiguity subdiagrams
[y, Ty such that (I1,Tq,a), (I, Ty,v) > . Then Ag, ¢ A*L.

(11) Suppose that there exist an R—face I1 and disjoint contiguity sub-
diagrams T, Ty, such that (II, Ty, a), (I, Ty, u) > p. In addition assume
that ¢(p)A'¢(a)"tp(p)~t = R’ in G for some R' € R. Then Apr,, ¢ A*L.

Proof. (i) We define arcs of I'y, ', by equalities O(II, Ty, v) =
PLoqvP20qu, O(IL, Lo, @) = p1aqriap2a9a and define g1, g2 by equality OI1 =
qﬁiqlqﬁiqg. We also define v1,v2 by equality v = viq, 'vs (see Figure 6).
Consider a subdiagram A’ with boundary pgvlqg lpfalagv; L Observe
that g9 satisfies Un/ (1) by Lemma 3.6 (because it is a boundary subpath of
the R—face II in the reduced diagram A), |p1y], [p1a| < € and ag, vy satisfy
Un (5 +%) (they are subpaths of a,v and a satisfies Ua (4 + £) by Lemma
5.11). Choose (a2)_ as a base point of A. By Lemma 5.8, there exists a
system of (a,v)-bonds (V,X(A’)) such that V contains all R—faces of A’
and (assuming there are R—faces in A’), by Remark 5.6, there exists a
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Figure 6:

face I such that the diagram Ay (I, A’) does not have R—faces. The face
IT" is in V so in order to simplify the notation we assume that II' = II and
A itself is a diagram over G (i.e. it does not contain R—faces).

Consider an R-face IT disjoint from A and glue II and A together
along a. Define 911 = a™~'a’ so that ¢(a™'a’) = R. Since (I, Ty, a) > p1 we
have that II, IT comprise a pair of opposite faces with respect to pi, hence

O((Opr0), DP1a (Oge), Dp1a) = 1 in G. (27)

Now notice that ¢(p14) = ¢(agvglqvp1vqnvq;1) in the group G because
it bounds the diagrams A’ and T, over G. We plug in the latter expression
into the equation (27) and then conjugate by qﬁ(ph,qnvq;l) to obtain

d(P1olamnds ' (Opan), D @2amalP1, @0 'v2las (9, Mazlvy 'qy) =1 in G.

The paths in the square brackets are equal after elimination of returns
to O(p,,), 1T and 0, IT respectively. Denote R’ = ¢(9y,,, IT), recall that
R = ¢(8,,II). Thus we have obtained that Ags ,, A =1in G and,

conjugating by v, we get:

P1v

Ry va

AR’,vlp1UAR,U =1in G (28)
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But on the other hand we have that |R| = |R'| (because they are labels
of opposite R—faces in A) and, using inequality (16),

[vipto] < |o1] + [p1o| = [v] = |go| = |v2| + |p1o] <

< |v| = ((IL, Ty, v) |OI1] — 2¢) + € < |v].

Hence we get ¥(Arr v, py,) < ¥(Agy) and so Ag, ¢ A*L
Proof of part (ii) repeats part (i) with obvious changes in notation. [

Recall that in the beginning of section 5 we chose constants €, u, p
according to Lemmas 3.7, 3.8. Hence part (ii) of Theorem 1.3 follows imme-
diately from aforementioned lemmas (and is due to Olshanskii [Olsh93]).
We prove part (i) below:

Theorem 5.15. The subgroup N' = N(R) is freely generated by the set A.

Proof. A generates N by lemma 5.13(iv).
We have to show that the set A generates N freely. We define
a partial short-lex ordering on all words in alphabet A*!. Let W =

AR vy AR, (6 € £1), W= A;i/l o ...fl;é“,' yr » we say that W -
El El El k/? k/

W' if either
(i) k >k or

(i) length of W is equal to length of W’ (k = k') and there exists mg <
k such that ¢(Ag,, v,.) = ¢(/~1R;1,U{ﬂ) for any m < mo and ¢(ARr,,, Uy, ) >
V(Ag, s, )-

Let W(A) = Ay p, --- A%y, be a nontrivial freely reduced word
(in alphabet A) such that W =1 in G, assume that it is minimal with
respect to the above ordering . We are in position to apply Corollary
4.2 and consider the corresponding standard diagram A for the word W,
a reducible pair of indexes ¢ < j, the standard contiguity subdiagram I'
between II; and II; with |p;| < 11§ + 3. We apply Lemma 3.5 to faces
I1;, II;, path p; and vertices 01 = (,U;)4, 02 = (yUj)+. It provides the path
s1p1S2 in A such that ¢(sip1s2) = P¢(a) in G with |P| < 116 + 3 + 89,
la| < 1 |011;], a is a subpath of 9II; and (using formula (6)) provides the
equality (ng)(a))_lRfi(P(;S(a))R;j = 1in G or, equivalently,

PR Plp(a)R ¢(a) '] =11in G, (29)

where the the word [qb(a)R;jgzb_l(a)] is a cyclic conjugation of R;j S0
R;j = ¢~ (a)A’ for some A’
We have that the path 7U1-51pl(92(7Uj)_1 is closed in the standard

diagram A by Remark 4.4 and we have chosen s1p;so so that

¢ Uisiprsa,U; 1) = UiP(a)U; . (30)
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Consider a reduced diagram A with boundary upa;v~" such that ¢(u) =
Ui, (p) = P, ¢(a1) = A, where A = ¢(a), a € A, ¢(v) = U;. We will
show that in fact it satisfies conditions of Lemma 5.10. We first check
conditions of Lemma 5.14: we have that paths u,v are in U, thus they
satisfy condition L{A(% + £) by Lemma 5.4 and so does the path a; by
Lemma 5.11. We also have that qﬁ(v)R;-j #~(v) € A*! by definition of v
and R = PA'¢~1(a1)P~! by equation (29), so Lemma 5.14 provides us
that there are no (u,a;)- or (v,a;)-bonds in A. We have just checked the
conditions of Lemma 5.10 for the diagram A and conclude that:

k
p(uaysvt) = H Ap proin G,

m=1

where mazi<m<x(Ar:, v ) < 4maz(|ul,|v]).

The last relation together with (30) implies that ¢(,U;s1p152,U.
belongs to at least one of the groups Nr, v,, Nr, v, By Corollary 4. 2(7111 ),
we have that ¢(,Uisip1s2/U; 'Y = H in G (where H = Hk itd Rk Uy
(¢,d) # (0,0), ¢,d € {0,1}) and that

H_IA%Z_ v, H = Ag, v, in G for some e € {£1}. (31)

Suppose that Ag, v, = Ag, u,, then both words H and Ag; y, belong to
Nr, v, Hence Ag, v, € Ng, v,, contradiction.

It remains consider the case when (Ag, v,) = ¥ (AR, v,)- By equation
(31), Ag, v, = AR U and since they are both in A we have that U; = Uj,
R; = R;. Thus we can glue together the paths u and v of the boundary of
A and obtain a diagram with boundary pa; (we will also call it A) For
every R—face I in A we now have that (IL,T), p) < 3e because |p| < €
and (I, Ty, a1) < 3 + $p thus

1
(IL Tay 1) + (IL Ty p) < 5 + & + 36 < 1 - 23y,

which contradicts Lemma 3.7. Hence there are no R-faces in A and
H = ¢(pa1) =1 in G. But the word H = Hk —i+a ARyU, 1s a subword
of W which is strictly shorter then W so W = H and H = 1 in G. By
minimality of W, we have equality H = 1 which can only happen if
i1+1=jso AR U A;::l Upir is a subword of W, U; = U;, R; = R; and
by the relation (9) in G:

Ulez UiilUi+1RZ:11 U’H-ll UZRZEZ Uiil UZR:erl Uifl -1

€it+€i+1

which is equivalent to R; = 1 in G and, taking into account the
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. . — € €it+1 _
Remark 5.1, we have that ¢; + ¢;41 = 0. Hence ARi,UiARH-l,UH—l =

A%i U, AIZL:‘"UZ, is a subword of W. Contradiction with choice of W. O

Following [Olsh93|, we call a pair of elements z,y of infinite order
in G non-commensurable if ¥ is not conjugate to y* for any non-zero
integers k,s. A group G is called non-elementary if it contains a finite
index subgroup isomorphic to Z.

In order to deduce Theorem 1.4 we will use the following remark.

Remark 5.16 (|Swe| Theorem 13). (i) For every element x in a hyperbolic
group G there exists n > 0 and a straight word Y, (i.e. a word Y, such
that Y,? is geodesic for every s) such that Y, is conjugate to x".

(ii) Given a set of geodesic words words X, ..., X,, we will denote
by Ry, = R(X7*, ..., X, n) asystem of all cyclic permutations of R;H
where R; = X" If Xy,..., X, are straight pairwise non-commensurable
words in G, then for every p > 0, € > ¢y and p > 0 there exists a number
n > 0 such that R, satisfies C(e, i, p)—condition independent of a choice
of non-zero integers si,..., Sp.

(iii) If Y is a straight word in G then for every integer m the word
Y™ has a minimal length in it’s conjugacy class.

Proof. Proof of part (ii) up to minor modifications repeats the proof of
lemma 4.1 in [Olsh93] which states the same property for m = 1.

Part (iii). Assume that V¥ = TZT~! for some T and that | Z| < |Y*|—1
then for every k we have that

k|Z|+k < k(Y®|-1)+k = k(|]Y?]) = ‘YSI“

< 2|T]+‘Zk‘ <2|T|+k|Z|,
which implies that & < 2|T'|. Contradiction. O

Proof of Theorem 1.4. Let us first consider a set of pairwise non-commen-
surable elements x1, ..., x,, of infinite order. By remark 5.16 (i), for each
x; there exists a straight word Y, conjugate to z;" for some n; > 0. Define
no = [11<;<,, 7. Clearly words Y, = Y;ﬁo, e Yy, = Ymnrg are pairwise
non-commensurable and, by parts (ii) and (iii) remark 5.16, there exists an
integer K > 0 such that the system Ry = R(Y}™",...,Y, s, K) satisfies
é’(e, 1, p—condition for any choice of positive s, ..., $p. By Theorem 1.3,
the group N (Rx) is free and the quotient G/N (R ) is non-elementary

hyperbolic.

Now consider an arbitrary set of elements x1,...,z,, in G. If some of
the elements x; have finite orders n;,,...,n;, we define ng = n;, ...n,,
and replace the set z1,..., 2, with «7°, ..., 20 (which after deletion of

identity elements contains only the elements of infinite order). Hence we
can assume that all elements z1,...,z,, are of infinite order. For every
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pair z;,x; (i < j) define a pair of nonzero integers k;;, kj; such that xf”
is conjugate to a:f“ if z;, x; are commensurable and let k;; = kj; = 1 if
the pair x;, z; is not commensurable. Define Ko = [, j<m kij and let
Ky =1if m = 1. We show by induction on m that

there exists an integer N such that N' = N (x5 70N | gsmEKoNy g
free for any choice of integers s1,..., Sm.
We have showed that the statement holds if the elements z1, ..., z,, are

pairwise non-commensurable and in particular if m = 1. Hence, in order
to prove the induction step, we may assume that (after reenumeration of
x;’s) x1 is commensurable to z5. Using the normality of A and the fact
that for every = € G a subgroup generated by z%, 2? is the equal to the
one generated by 29°4@b) we get that

K
k1251 %N

N (5Bl gseBoN - gpsm KONy — Af(z, A
ko151 2LN ey ged(kars1 12,55 K0)N o o KON
N (z, 2 2t = Nz, 12 R N D

Thus N is generated by m — 1 elements and we may apply the induction
assumption completing the proof of theorem 1.4. O

We recall the notions of an SQ-universal group and a CEP-subgroup.
A group G is said to be SQ-universal if every countable group K embeds
in a quotient of G. Let H be a subgroup of G, then H is said to have
a congruence extension property (CEP) if for every subgroup K, K < H
there exists a subgroup Ki, K1 <G, such that K1 N H = K. It is easy to
see that if the group G has a free infinitely generated CEP-subgroup then
G is SQ-universal (see, for example, Proposition [Olsh95]).

Proof of Corollary 1.5. (i) If G is non-elementary, there exists a pair of
non-commensurable straight words X, X in G (see for example [Olsh93],
Lemma 1.14). By Remark 5.16, there exists a number n such that R =
R(X1, X2, n) satisfies the small cancellation property C'(e, u, p—condition
for sufficiently small 4 and hence N (R) is a free group by Theorem 1.4.
The rank NV (R) is greater then 1 because X, Xy are non-commensurable.
(ii) It is a result of Olshanskii [Olsh95]| that
(*) inside every non-elementary subgroup of G there exists a free
countably generated CEP-subgroup in G (Theorem 4, [Olsh95]);
Consider a free normal subgroup N in G of rank greater then 1. There
exists a free infinite rank CEP-subgroup N7 in G, Ny < A by (*). Hence
for every countable group H there exists M; < Ny such that H = Ny /M;.
By congruence extension property, the (normal in G) subgroup M = MlG
satisfies M N H = My, so H embeds in G/M. Clearly M = MIG is free
(being a subgroup of a free group N'), and thus (ii) is proved. O



50

ON THE GENERATORS OF THE KERNELS

References

[Delz] T. Delzant, Sous Groupes Distingues et Quotients des Groupes Hyper-
boliques. Duke Math. J. 83, No.3, 1996.

[Ghys| E. Ghys, P. de la Harpe, Sur Les Groupes Huperboliques D’apres Mikhael
Gromov. Birkh&user, 1990.

[Gro] M. Gromov, Hyperbolic Groups. Essays in group theory, MSRI Publica-
tions, Springer, 1987.

[Kour]| Edited by V. D. Mazurov and E. I. Khukhro, The Kourovka Notebook.
Russian Academy of Sciences Siberian Division, Institute of Mathematics,
Novosibirsk, No. 15, 2002.

[LSch] M. Lyndon,P. Schupp, Combinatorial group theory. Springer, 1977.

[Olsh] A. Yu. Olshanskii, Geometry of defining relations in groups. Kluwer, 1991.

[Olsh93| A. Yu. Olshanskii, On residualizing homomorphisms and G-subgroups of
hyperbolic groups. IJAC, Vol.3, No.4, 1993.

[O1sh95] A. Yu. Olshanskii, SQ-universality of hyperbolic groups. Mat. Sbornik,
Vol.186, No. 8 (1995) 119-132. (in Russian).

[IvO]] S. V. Ivanov, A. Yu. Olshanskii , Hyperbolic groups and their quotients of
bounded exponents. Trans. Amer. Math. Soc. 348 (1996), pp 2091-2138.

[Ol0sSa| Alexander Yu. Olshanskii, Denis V Osin and Mark V Sapir, Lacunary
hyperbolic groups. Geometry & Topology 13, 2009, pp. 2051-2140.

[Swe] E. Swenson, Hyperbolic elements in negatively curved groups. Geometriae
Dedicada Volume 55, Number 2, pp 199-210.

CONTACT INFORMATION
V. Chaynikov Department of Mathematics, 1326 Stevenson

Center, Vanderbilt University Nashville, TN
37240
E-Mail: viadimir.v.chaynikov@vanderbilt.edu

Received by the editors: 12.11.2010
and in final form 12.11.2010.



