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Abstract. In this paper we prove that if R is a (not nec-
essarily finite) set of words satisfying certain small cancellation
condition in a hyperbolic group G then the normal closure of R is
free. This result was first presented (for finite set R) by T. Delzant
[Delz] but the proof seems to require some additional argument.
New applications of this theorem are provided.

1. Introduction

In the founding paper [Gro] M. Gromov defined the notion of hyperbolic
groups and outlined a number of research directions in this (now well
established) area. In particular, one finds the following Statement 5.3E
in [Gro]:

There exists a constant m = m(k, δ) such that for every k hyperbolic
elements x1, . . . , xk in a word δ–hyperbolic group G the normal subgroup
generated by xm1

1 , . . . , xmk

k is free for all mi ≥ m.
Although not correct in full generality (as a counter-example in the

appendix to [Delz] shows) the following theorems are true:

Theorem 1.1 (Delzant [Delz], Theoreme I). Let G be a non-elementary
hyperbolic group. There exists an integer N such that for any elements

f1, . . . , fn such that [[fi]] = [[fj ]] ≥ 1000δ (where [[f ]] = limn→∞
|fn|
n

),

the normal subgroup N (fkN1 , . . . , fkNn ) is free for every k. Moreover, (for
every k) the group G/N (fkN1 , . . . , fkNn ) is hyperbolic.
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The Theorem 1.1 is obtained in [Delz] from Theorem 1.2 by arguing
that for sufficiently large N (independent of choice fi) the system of
relations fN1 , . . . , f

N
n can be completed to that satisfying small cancellation

C ′(µ) (see definition 2.9).

Theorem 1.2 (Delzant [Delz], Theoreme II). Let R be a finite set of
elements satisfying the the small cancellation condition C ′(µ). A normal
subgroup N (R) generated by R is free. The quotient G/N (R) is hyperbolic.

However we think that the proof of Theorem 1.2 requires some addi-
tional arguments. To be more precise, the proof of the Theorem 2.1 (iii)
[Delz] pp 677-678 (stating that if a (finite) system R satisfies condition
C ′(µ), µ < 1/8 then the normal subgroup N (R) generated by R is free)
is incomplete. We provide a proof of essentially the same fact in somewhat
different setting (in particular, the set R can be infinite) using both tech-
niques of Delzant (such as Lemmas 2.11, 2.15) and diagram techniques
of A. Olshanskii from [Olsh], [Olsh93]. We would like to note that the
Lemma 5.10 of this paper provides justification for the formula on top
of page 678 of [Delz]. One may replace Theorem 1.2 with the following
statement:

Theorem 1.3. There exists µ0 > 0 such that for any µ < µ0 there are ǫ
and ρ such that if R is a set of geodesic words satisfying C̃(ǫ, µ, ρ–condition
(see Definition 3.9) in the hyperbolic group G then:

(i) the normal subgroup N = N (R) is free;
(ii) if G is non-elementary and R is finite then G/N (R) is non-

elementary hyperbolic.

As a corollary we get:

Theorem 1.4. Let G be a non-elementary hyperbolic group. For any finite
set of elements x1, . . . , xm there exists an integer N such that the normal
closure N = N (xs1N1 , . . . , xsmN

m ) in G of elements xs1N1 , . . . , xsmN
m is free

for any integer si > 0 and the quotient G/N is non-elementary hyperbolic.

Let us note that in our result 1.4, the choice of constant N depends
on the elements x1, . . . , xm rather then being an absolute constant as
in Theorem 1.1. On the other hand we do not assume any significant
restrictions on the set of elements x1, . . . , xm.

The following corollary somewhat strengthens the theorem proved by
T. Delzant and A. Olshanskii independently (see [Delz], [Olsh95]) stating
that every non-elementary hyperbolic group is SQ–universal.

Corollary 1.5. Let G be a hyperbolic group. Then:
(i) there exists a free normal subgroup N of G of rank greater then 1;
(ii) for any free normal subgroup N of rank greater then 1 and any

countable group H there exists a free subgroup M < N , M ⊳G such that
H embeds in quotient G/M .
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In conclusion we would like to mention the following

Open problem ([Kour], 15.69). Does every hyperbolic group G have a
free normal subgroup N such that the quotient G/N is a torsion group of
bounded exponent?

The above problem is motivated by the result of Ivanov and Olshanskii
[IvOl] stating that for every non-elementary hyperbolic group G there is
a number n = n(G) such that the quotient group G/Gn is infinite.

2. Hyperbolic spaces and hyperbolic groups

Hyperbolic Spaces. We recall some definitions and properties from
the founding article of Gromov [Gro]. Let (X, | |) be a metric space. We
sometimes denote the distance |x− y| between x, y ∈ X by d(x, y). We
assume that X is geodesic, i.e. every two points can be connected by a
geodesic line. We refer to a geodesic between some point x, y of X as
[x, y]. For convenience we denote |x| distance |x− y0| to some fixed point
y0 (usually the identity element of the group).

For a path γ in X we denote the initial (terminal) vertex of γ by
γ− (γ+), denote by ‖γ‖ the length of path γ and by |γ| the distance
|γ+ − γ−|. Recall that if 0 < λ ≤ 1 and c ≥ 0 then a path γ in X is called
(λ, c)–quasigeodesic if for every subpath γ1 of γ the following inequality is
satisfied:

‖γ1‖ ≤ 1
λ
|γ1|+ c.

We call the path γ geodesic up to c, if it is (1, c)-quasigeodesic.
Define a scalar (Gromov) product of x, y with respect to z by formula

〈x, y〉z =
1

2
(|x− z|+ |y − z| − |x− y|).

We call the space X δ–hyperbolic if there exists a non-negative integer
δ such that the following inequality holds:

∀x, y, z, t ∈ X, 〈x, y〉z ≥ min(〈x, t〉z, 〈y, t〉z)− δ.

We will need a few properties of hyperbolic groups and Gromov prod-
ucts:

Lemma 2.1 ([Delz], Lemma 1.3.3). Let K be a nonnegative real number,
[x, y] and [x′, y′] – two segments in a δ–hyperbolic space of length at least
2K + 20δ and suppose that |x− x′| ≤ K, |y − y′| ≤ K. Choose points u
and v on [x, y] at distance K + 2δ from x and y respectively. Then every
point P on [u, v] is in the 6δ-neighborhood of the segment [x′, y′].

Lemma 2.2 ([Ghys], Chapter 3, §17). For any three points x, y, z in a
δ–hyperbolic space X, we have d(x, [y, z])− δ ≤ 〈y, z〉x ≤ d(x, [y, z]).
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We will use the following easy remark.

Remark 2.3. Let X be a hyperbolic space. Then:
(i) In the notations of Lemma 2.1 it is immediate that the segment

[x, y] is within K + 2δ + 6δ–neighborhood of [x′, y′].
(ii) Suppose γ is a path, geodesic up to some c ≥ 0 in X, and o is an

arbitrary point on γ. Then

〈γ−, γ+〉o ≤ c/2. (1)

Combining the previous inequality with Lemma 2.2 we get that:

d(o, [γ−, γ+])− δ ≤ c/2. (2)

We recall the notion of the metric tree T ([Ghys], Chapter 2, §1).
Let T ′ be a tree (i.e. graph without cycles), we construct the geometric
realization T in the following way. For every edge a of T ′ we choose a
real positive number l(a). Then there exists a unique (up to isometry)
metric d on T maximal with respect to the following condition: edge a is
isometric to interval [0, l(a)] on the real line. Then T with the metric d is
a metric tree.

Various versions of the following Gromov’s theorem provide an ap-
proximation of a finite set of geodesics in hyperbolic space by metric
trees:

Theorem 2.4 ([Ghys], Chapter 2, Theorem 12). Let F be a δ-hyperbolic
metric space. Suppose that F = ∪n

i=1Fi, where each Fi = [w,wi] is a
geodesic and n ≤ 2k.

Then there exists a metric tree T and function Φ : F → T such that
(i)|[Φ(x),Φ(w)]| = |[x,w]| , ∀x ∈ F ;
(ii)|x− y| − 2(k + 1)δ ≤ |Φ(x)− Φ(y)| ≤ |x− y| for all x, y ∈ F .

It is clear that if x is some vertex in a metric graph T in the theorem
above then either

(i) there exist some indexes i, j such that the images of Fi and Fj

under Φ depart at x: Φ([w,wi]) ∩ Φ([w,wj ]) = [Φ(w), x] (in this case we
call vertex x a branching point), or

(ii) there exists some index i such that Φ(wi) = x or Φ(w) = x. In
this case we call x a leaf (because it is adjacent to a single vertex).

When we talk about an approximation tree for a set of vertices
w,w1, . . . , wn in the hyperbolic space X, we mean an approximation
of the set F = ∪n

i=1Fi in the sense of the previous theorem.
By a tripod we mean a metric tree with one branching point (center

o) and three edges (pods).
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Remark 2.5 ([Ghys] Chapter 2, §1). Let x, y, z be some points in a
δ–hyperbolic space X, and o1 be a point on [x, y] at distance s ≤ 〈y, z〉x
from x, o2 be on [x, z] at distance s from x. Then there exists a tripod T
and a map Φ : [x, y] ∪ [x, z] −→ T such that:

(i) a restriction of the map Φ on each segment [x, y], [x, z] is an isometry
which sends x, y, z to different ends of pods of T and Φ(o1) = Φ(o2);

(ii) Φ, T satisfies the previous theorem.

Hyperbolic Groups. Let G be a finitely presented group with pre-
sentation gp(S|D). We consider G as a metric space with respect to the
distance function |g − h| =

∣

∣gh−1
∣

∣ for every g and h. We denote by |g|
the length of a minimal (geodesic) word with respect to the generators S
equal to g. The notation 〈g, h〉 is the Gromov product 〈g, h〉e with respect
to the identity vertex 1.

We denote the (right) Cayley graph of the group by Cay(G). Graph
Cay(G) has a set of vertices G, and a pair of vertices g1, g2 is connected
by an edge of length 1 labeled by s if and only if g−1

1 g2 = s in G for
some s ∈ S±1. We define a label function on paths in Cay(G). By a path
in Cay(G) we mean a path p = p1 . . . pn, where pi is an edge between
some gi, gi+1 for every 1 ≤ i ≤ n. We can define a label lab(p) (a word in
alphabet S±1) by:

lab(p) = lab(p1) . . . lab(pn).
It is clear that Cay(G) may be considered as a geodesic space: we may

identify every edge of Cay(G) with interval [0, 1] and choose a maximal
metric d which agrees with metric on every edge.

We have assigned a unique word lab(p) to the path p in Cay(G). On
the other hand for every word w in alphabet S±1 there exists a unique path
p in Cay(G) starting from the identity vertex with label w. Hence there
is a one-to-one correspondence between paths with initial vertex 1 (the
identity vertex in G) and words in alphabet S±1, so we will not distinguish
between a word in the alphabet S±1 and it’s image in Cay(G) – a path
starting from the identity vertex. Thus, when considering some words
X,Y, Z in the alphabet S±1, we can talk about the path γ = XY Z in the
Cayley graph of G originating in the identity vertex 1. To distinguish a
path Y with initial vertex 1 from the subpath of γ with label Y we denote
the latter as γY (similar notations will be used for paths in van Kampen
diagrams, see Section 3). We will talk about values |X| , ‖X‖ for a word
X in alphabet over S±1 meaning these values on corresponding paths in
Cay(G).

A group G is called δ-hyperbolic for some δ ≥ 0, if it’s Cayley graph is
δ-hyperbolic. It is well known that hyperbolicity of the group does not
depend on choice of a finite presentation of the group G (while δ does
depend on presentation).
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In this section we recall some definitions and lemmas from [Delz], but
with certain modifications. We would like to formulate all the statements
in the language of (geodesic) and cyclically reduced words rather then
group elements and cyclically reduced group elements (element g of the
group G is called a cyclically reduced element if g has a minimal length in
it’s conjugacy class in G). The proofs of these lemmas can be repeated
while changing the terminology.

We first recall the following lemmas:

Lemma 2.6 ([Delz], Lemma 1.2.1). Let V,W be geodesic words in G;
their scalar product is an integer or 1

2 times integer. If V ≡ AB such that
|A| = [〈V,W 〉1] and C is defined by equality AC =W in G then the path
AC is geodesic up to constant 2δ (we denote by [x] a maximal integer
smaller or equal to x).

Lemma 2.7 ([Delz] Lemma 1.5.1). Let V be a geodesic word in G which
is shortest in it’s conjugacy class and of length no less then 20δ. Assume
that W is conjugate to V . Then there exists a geodesic word U and a
cyclic conjugate V ′ of V such that W = UV ′U−1 and the path UV ′U−1

is geodesic up to 10δ.

Let us mention the following property of metric trees with finite
number of vertices. If a metric tree T is a union of n segments ∪n

i=1[l0, li]
originating from a fixed vertex w0, it is easy to see that an addition of a
new segment [l0, ln+1] to T can increase the number of edges by at most 2.
To be more precise we can prove by induction on n that |E(T )| ≤ 2n− 1,
where E(T ) is a set of edges in T .

The proposition below provides a "pull-back" of the tree approximation
T for the set F in the situation of Theorem 2.4 in the original hyperbolic
space X. It will be formulated for hyperbolic groups. In order to formulate
this proposition we need to add some edges of zero length to E(T ). The
reason for this adjustment is that a trivial edge in T may correspond to
a nontrivial group word ("edge in the pullback tree") in the Proposition
2.8. For every k ≤ n we consider a subtree Tk = Φ(∪k

s=1[w0, ws]). For
every i ≤ n, if Φ(wi) ∈ Ti−1, then we add to the set of edges E(T ) a
new edge of zero length [Φ(wi),Φ(wi)]. The inequality |E(T )| ≤ 2n − 1
still holds if we take into account edges of zero length. We choose an
(arbitrary) orientation on every edge α ∈ E(T ). When we consider a
segment [Φ(wi),Φ(wj)] = αǫ1

s1
. . . αǫm

sm (αsi ∈ E(T )) in Proposition 2.8
such that a zero length edge was defined for i (for j), we assume that αs1

is the edge [Φ(wi),Φ(wi)] (respectively, αsm is the edge [Φ(wj),Φ(wj)]).
After described conventions, we may formulate the following:

Proposition 2.8 ([Delz] Lemma 1.3.2). Let g0, g1, . . . , gn be elements
in G, n ≤ 2k and let Φ, T be the corresponding approximation tree and
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function provided by Theorem 2.4. Denote by E(T ) = {α1, . . . , α2n−1}
the set of edges of T . Let W be a geodesic word such that W = g−1

0 g1
in G. Then there exist geodesic words A1, . . . , A2n−1 in G satisfying the
following properties:

(i)||αi| − |Ai|| ≤ 2δ(k + 1) + 2.
(ii) If the geodesic [Φ(gi),Φ(gj)] is a path αǫ1

s1
. . . αǫm

sm in the tree T ,

then g−1
i gj = Aǫ1

s1
. . . Aǫm

sm in G , ǫi = ±1 and Aǫ1
s1
. . . Aǫm

sm is geodesic up
to n(2δ(k + 1) + 2).

(iii) The word Aǫ1
s1
. . . Aǫm

sm defined in (ii) for g−1
0 g1 is geodesic and

W ≡ Aǫ1
s1
. . . Aǫm

sm .

Small cancellation properties on the Cayley graph of hyperbolic

groups. The following definitions can be found in [LSch]. We call the
set of words R symmetrized if it is a set of freely cyclically reduced words
in alphabet S±1, i.e.

(i) R ∈ R =⇒ R−1 ∈ R,
(ii)R ∈ R, R ≡ R1R2 =⇒ R2R1 ∈ R.
We will sometimes talk about cyclic word R meaning R or one of

it’s cyclic conjugates. Denote by G1 the factor group G/N (R) of G by
the normal closure (in G) of the set R. For a pair of words X,Y in the
alphabet S±1 let us denote by X ≡ Y a letter-by-letter equality of X
and Y .

Definition 2.9. Let R be a symmetrized set of geodesic words in the
δ–hyperbolic group G and µ < 1/8. Assume furthermore that every R ∈
R is a cyclically reduced element of G. The family R satisfies a small
cancellation condition C ′(µ) if:

(i) For every words A,B in G , |A| , |B| ≤ 100δ, ∀R1, R2 ∈ R, if
〈AR1B,R2〉 > µmin(|R1| , |R2|), then R2 = AR1A

−1 in G;
(ii) minR∈R(|R|) ≥ 5000δ/(1− 8µ).

The previous definition is essentially the same as that in [Delz], 2.1
up to some adjustment of constants (the difference between them is that
b = 1 in [Delz]).

Definition 2.10 ([Delz]). We say that a geodesic word U of G contains
more then half of a relation if there exists R ≡ r1r2 from R such that

(i) R ≡ r1r2 is geodesic, |r1| ≥ |r2|+ 60δ and
(ii) U equals to the word U1r1U2 in G, which is geodesic up to 50δ.
We denote the set of all geodesic words U which do not contain more

then half of a relation by U .

Lemma 2.11 ([Delz], Lemma 2.2). Consider the set X of words URU−1

geodesic up to 10δ in G such that U does not contain more then half of a
relation from R. Then every element g in the normal closure N (R) is a
product of words from X .
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Figure 1:
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The proof of the Lemma 2.11 follows immediately from the remark
below.

Remark 2.12. (i) Suppose that a geodesic word U contains more then
half of a relation (i.e. U = U1r1U2 for some geodesic words U1, U2, r1
satisfying Definition 2.10). Then

URU−1 = (U1r1r2U
−1
1 )[(U1r

−1
2 U2)R(U1r

−1
2 U2)

−1](U1r1r2U
−1
1 )−1 in

G and, evidently,
∣

∣U1r
−1
2 U−1

2

∣

∣ , |U1| < |U |.
(ii) Suppose that R ∈ R, and URU−1 is not geodesic up to 10δ. Then

by Lemma 2.7 there exists R′ ∈ R (so |R| = |R′|) and a geodesic word V
such that URU−1 = V R′V −1 in G and V R′V −1 is geodesic up to 10δ.

We introduce some notation and conventions. Let g be an element in
the normal closure of R, choose n minimal such that

g = U1R1U
−1
1 . . . UnRnU

−1
n with UiRiU

−1
i ∈ X .

Then we denote: g0 = 1, g1 = U1R1U
−1
1 , . . . , gn = g. Also we set ai =

gi−1Ui and bi = aiRi = giUi.
Assume that for some indices i < j the approximation tree T for

for vertices ai, bi, aj , bj is of shape on the Figure 1 (T is provided by
Gromov’s theorem 2.4 where w = ai, k = 2, n = 3). For convenience we
label vertices of the tree on Figure 1 by corresponding group elements.
Proposition 2.8 provides us with with five geodesic words X,Y, Z, U, V
such that Ri = XY Z, where XY Z is geodesic and Rj = U−1Y −1V , where
U−1Y −1V is geodesic up to 3(2 · 3δ + 2) = 18δ + 6. We label edges of
the tree T with X,Y, Z, U, V for convenience of the reader. Note that Φ
and T determine the exponents of X,Y, Z, U, V in equalities for Ri, Rj

uniquely.
The following lemma is an application of the small cancellation, we

provide a proof of it (following [Delz]) for future references.
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Lemma 2.13 ([Delz], Lemma 2.3). Suppose that a fixed element g is
equal to a word W = U1R1U

−1
1 . . . UnRnU

−1
n in G and that for some

indices i < j the tree approximation of vertices ai, bi, aj , bj in Cay(G)
(with geodesic words X,Y, Z, U, V provided by Proposition 2.8) has the
shape on Figure 1.

(i) Assume that n is a minimal possible number among all words W
equal to g. Then the following inequality holds:

|Y | ≤ µmin(|Ri| ; |Rj |) + 10δ + 3. (3)

(ii) If the equality (3) is violated then n is not minimal and the following
equality holds in G:

Ui+1Ri+1U
−1
i+1 . . . Uj−1Rj−1U

−1
j−1 = UiRiU

−1
i . . . UjRjU

−1
j . (4)

Proof. Assume that the inequality (3) does not hold. In notations used
in Figure 1 we have Ri = XY Z and XY Z is geodesic, Rj = U−1Y −1V ,
where the right-hand side is geodesic up to 3(2 · 3δ + 2) = 18δ + 6.
We consider the conjugate R′

i = Y ZX of Ri, which is also geodesic:
|R′

i| ≥ |Ri| (since Ri is a cyclically reduced geodesic word), but on the
other hand |R′

i| ≤ |Y | + |Z| + |X| = |Ri|. Consider also the conjugate
R′

j = Y UV −1 of R−1
j which is geodesic up to 3(2 · 3δ + 2) = 18δ + 6 (we

have |Rj | ≤
∣

∣

∣
R′

j

∣

∣

∣
≤ |Y |+ |U |+ |V | ≤ |Rj |+ 18δ + 6).

By Lemma 2.7, there exists a geodesic word R′′ = AR′
jA

−1 cyclically

conjugate to Rj such that 2 |A|+ |R′′| ≤
∣

∣

∣
R′

j

∣

∣

∣
+10δ and |R′′| = |Rj |. Now

the computation

2 |A|+
∣

∣R′′
∣

∣ ≤
∣

∣R′
j

∣

∣+ 10δ ≤ |Rj |+ 28δ + 6

implies that |A| ≤ 14δ + 3. We also have that R′′ ∈ R: it is a cyclic
conjugate of Rj .

By definition of hyperbolicity, we have that

〈R′
i, R

′
j〉 ≥ min(〈Y,R′

j〉, 〈R
′
i, Y 〉)− δ.

Both Gromov products on the right side of the last equation are not greater
then |Y | and the second is actually equal to |Y | because R′

i = Y ZX is
geodesic. So 〈R′

i, R
′
j〉 ≥ 〈Y,R′

j〉 − δ = |Y | − δ − 〈1, R′
j〉Y , where the last

equality follows from 〈Y,R′
j〉1 + 〈1, R′

j〉Y = |Y |. Since R′
j = Y UV −1 is

geodesic up to 18δ + 6 we have by inequality (1) that 〈1, R′
j〉Y ≤ 9δ + 3

and finally
〈R′

i, R
′
j〉 ≥ |Y | − 10δ − 3.

We hence obtained that 〈AR′′A−1, R′
i〉 ≥ µmin(|Ri| ; |Rj |) and by the
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condition C ′(µ) we get that A−1R′′A = Y UV −1 = R′
i = Y ZX. Thus

UV −1 = ZX, hence Z−1U = XV and so bi
−1aj = a−1

i bj , which in turn is
equivalent to U−1

i g−1
i gj−1Uj = U−1

i g−1
j−1gjUj and hence g−1

i gj−1 = g−1
i−1gj .

Rewriting the last equality in the explicit form, we get precisely equation
(4).

The left-hand side of the last equality contains fewer elements of X
contrary to the minimality of number n for g. Contradiction.

The following definition utilizes the lemma

Definition 2.14 ([Delz]). A word (or, equivalently, a path in Cay(G))
U1R1U

−1
1 . . . UnRnU

−1
n is called reduced if for every pair of indices i < j

such that the approximating tree for ai, bi, aj , bj is of shape on Figure 1, the
inequality (3) holds. If for a pair of indexes i < j the tree approximation
is of shape on Figure 1, the inequality (3) is violated, then we call i < j a
reducible pair of indexes.

Note that if we switch the labels aj and bj on Figure 1, the pair i < j
will no longer be a reducible pair. The following corollary summarizes
[Delz] Lemma 2.4.

Lemma 2.15. Suppose G is hyperbolic and R satisfies C ′(µ), µ ≤ 1/8.
Let γ =

∏n
i=1 UiRiU

−1
i be a reduced path in Cay(G), UiRiU

−1
i ∈ X and

denote by γ̄ some geodesic between γ−, γ+. Then there exist an index
1 ≤ i0 ≤ n, a subsegment x of geodesic segment γRi0 such that x is in
30δ-neighborhood of γ̄ and |x| ≥ (1− 3µ) |Ri0 | − 1500δ.

3. Diagrams and small cancellation

Suppose we are given a hyperbolic group G with a combinatorial presen-
tation G = gp(S|D). For technical purposes we assume that D contains
all relations of the group G.

For ǫ ≥ 0 a subword U is called an ǫ-piece of a word R in a symmetrized
set R with respect to G if there exists a word R′ ∈ R such that

(i) R ≡ UV, R′ ≡ U ′V ′ for some U ′, V ′, V ;

(ii) U ′ = Y UZ in G for some words Y, Z where ‖Y ‖ , ‖Z‖ ≤ ǫ;

(iii) Y RY −1 6= R′ in the group G.

We say that the system R satisfies the C(ǫ, µ, ρ)–condition (with
respect to G) for some ǫ ≥ 0, µ ≥ 0, ρ ≥ 0 if

(i)‖R‖ ≥ ρ for any R ∈ R;

(ii) any word R ∈ R is geodesic;

(iii) for any ǫ-piece of any word R ∈ R the inequalities ‖U‖ , ‖U ′‖ <
µ ‖R‖ hold (using notations of the definition of the ǫ-piece).
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Definition 3.1. Consider a finite, two dimensional complex ∆ with di-
rected edges such that:

(i) The underlying topological space of complex M is a disc with a
boundary P .

(ii) For any path in ∆ there defined a label function φ(∗). If x is an
edge in ∆, φ(x) ∈ S ∪ S−1 ∪ 1 and φ(x−1) = φ(x)−1. For a path q in ∆,
q = q1...qn, where qi is an edge for every i, we define φ(q) = φ(q1)...φ(qn).
If q is a simple closed path we choose a base vertex o and read off the
labels of edges in the clockwise direction.

(iii) A boundary label of any 2-cell of M is either an element of R
(then we call it an R-face) or has a label D where D = 1 in the hyperbolic
group G (D-face).

We call the triple (M,φ(∗), P ) a (disc) diagram ∆ with respect to
gp(S|D ∪ R) with a boundary path P .

Similarly we may define notions of annular or spherical diagrams.
For convenience we often fix a base point o of the diagram ∆ – a vertex

on one of the boundary components of ∆. We may also choose a base
point o1 on the boundary of a face Π and write ∂o1Π = r where r is a
simple closed boundary path of Π with a initial (terminal) vertex o1.

Consider a path γ in ∆ as a path in the underlying topological space
M . We say that γ is a simple path in ∆ if for every open set U in M
containing γ there exists a homotopy (in U) from γ to a simple curve
γ′ = γ′(U). A simple closed path γ in ∆ bounds a subdiagram ∆1 with
boundary ∂∆1 = γ consisting of all edges, vertices and faces which are
inside the simple closed curve γ′ = γ′(U) for every open set U containing
γ. Subdiagrams ∆1,∆2 are called disjoint if for every neighborhood of
∂∆1 ∪ ∂∆2 (in the underlying space for ∆) there exists a homotopy inside
U of ∂∆1 to a simple γ1 such that ∆2 ∩ γ1 = ∅.

The following operations (and their inverses) are referred to as ele-
mentary transformations of diagram ∆ over G1:

1. Let Π1,Π2 be D-faces in ∆ with a common boundary subpath p.
Then we can erase p making Π1,Π2 into a single D-face.

2. Let p be a simple path in ∆. Then we cut the diagram ∆ along p
(i.e. consider the path pp−1 as a new boundary component) and glue in a
D-face labeled by φ(p)φ(p)−1.

It is clear that elementary transformations define an equivalence rela-
tion on the set of all reduced diagrams over G1. We say that ∆ is equivalent
to ∆′ if there exists a finite sequence of elementary transformations starting
from ∆ and ending with ∆′.

Definition 3.2 ([Olsh93]). Let Π1,Π2 be different R–faces of a diagram
∆ having boundary labels R1, R2 reading in a clockwise direction, starting
from vertices o1, o2 respectively. Suppose also that there exists a simple
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path t in ∆ such that t− = o1, t+ = o2. Call Π1,Π2 opposite (with respect
to the path t) if the following equality holds:

φ(t)−1R1φ(t)R2 = 1 in G. (5)

If a diagram ∆ contains no opposite faces then we call it reduced.

Lemma 3.3 (van Kampen, see [Olsh93]). Let w0 be an nonempty word
in the alphabet S. Then w0 = 1 in G1 if and only if there exists a reduced
disc diagram over gp(S|D ∪ R) with boundary label equal to w0.

Let p be a path in ∆ over G, define ‖p‖ = ‖φ(p)‖ and |p| = |φ(p)|.
We call a path p geodesic if ‖p‖ = |p| (recall that |p| equals the distance
|p+ − p−| in G).

One can define a map φ′ (see [Olsh93], §5) from a disc diagram ∆ over
G with the base point o to Caley graph Cay(G). Set φ′(o) = 1, where 1
is the identity vertex of Cay(G). For an arbitrary vertex a in ∆ we define
φ′(a) to be the vertex of Cay(G) labeled by the geodesic word φ(p) where
p is a path in ∆ connecting o and a (it follows from the van Kampen
Lemma that φ′(a) does not depend on the choice of p). If p is an edge in
∆ labeled by s ∈ S±1, then define φ′(p) to be the edge labeled by s in
Cayley graph Cay(G) with vertices φ′(p−), φ

′(p+). If φ(p) ≡ 1 for an edge
p of ∆ then φ′(p) = φ′(p−) = φ′(p+). One can verify that |p| = |φ′(p)|,
‖p‖ = ‖φ′(p)‖ for any path p in diagram ∆ over G ([Olsh93], Lemma 5.1).

When ∆ is a diagram over G1 we still use functions ‖p‖ , |p|, where p
is a path in ∆.

In the following remark we translate some hyperbolic properties of
Cay(G) into the context of diagrams over G.

Remark 3.4. (i) Suppose ∆ is a reduced diagram over G, p1 and p2 are
disjoint paths in ∆, vertices (pi)± are on the boundary ∂∆. Then there
exists a diagram ∆′ equivalent to ∆, such that ∂∆′ = ∂∆, vertices (pi)±
are connected by a geodesic path p′i for i = 1, 2, and paths p′1, p

′
2 are

disjoint. Furthermore, a point x of the path p′i is on ∂∆′ if and only if it
is an initial or terminal vertex of p′i.

(ii) Suppose Γ is a diagram overG, ∂Γ = p1q1p2q2, where qi are geodesic
in G and ‖pi‖ ≤ K, |qi| ≥ 2K + 20δ for i = 1, 2 and some K ≥ 0. Then
(after elementary transformations) there exists a subdiagram Γ′ in Γ with
boundary ∂Γ′ = p′1q

′
1p

′
2q

′
2 such that ‖p′i‖ ≤ 6δ, q′i are geodesic subpaths

of qi and |(q1)+ − (q′1)+| = |(q1)− − (q′1)−| = K + 2δ. In particular,

∣

∣q′1
∣

∣ = |q1| − 2K − 4δ.

(iii) If a subdiagram Γ satisfies the conditions of part (ii), then every
vertex x of q1 is at distance not greater then K + 8δ from q2 (i.e. there
exist a vertex y on q2 such that |x− y| ≤ K + 8δ).
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Proof. (i) Consider the map φ′ from diagram ∆ to Cay(G). For i = 1, 2
we pick a geodesic in Cay(G) with label P ′

i between vertices φ′(pi±) in
Cay(G). We apply an elementary transformation of type (ii) to pi: cut ∆
along pi to get a new boundary component pip̃i, φ(p̃i) = φ(pi)

−1 in G and
glue inside a D-face Πi with boundary pip̃i. Then apply the inverse type
(ii) to Πi: replace it with a pair of faces Πi1,Πi2 with common subpath

p′i labeled by P ′
i (∂Πi1 = pip

′−1
i , ∂Πi2 = p′ip̃i). We have constructed the

desired diagram ∆′. It remains to notice that no vertex belongs to both
closed paths p1p̃1 and p2p̃2 since pi, p̃i are copies of disjoint paths pi in ∆.
Also, all vertices of p′i except for p′i± are interior in a subdiagram bounded
by pip̃i, and the remark is proved completely.

(ii) We consider φ′(Γ), and apply Lemma 2.1 to the pair of geodesic
paths φ′(q1), φ

′(q2) in Cay(G) to find the subpath q′′1 of φ′(q1) such that
|(q′′1)± − φ′((q′1)±)| = K + 2δ and vertices (q′1)± are in 6δ–neighborhood
of geodesic φ′(q2). Define a subpath q′′2 of φ′(q′1) so that the inequality
|(q′′1)± − (q′′2)±| ≤ 6δ holds. It remains to choose a subpath q′i on qi
satisfying equality φ′(q′i) = q′′i . Now apply part (i) to two pairs of points
(q′2)+, (q

′
1)− and (q′1)+, (q

′
2)− in Γ which provides paths p′i and observe

that the path p′1q
′
1p

′
2q

′
2 bounds the desired diagram Γ′.

(iii) Follows from remark 2.3 and properties of the mapping φ′.

We will need the following:

Lemma 3.5. Suppose we have a diagram ∆ consisting of cells Π1,Π2, a
simple path t between them such that Π1,Π2 is pair of opposite cells with
respect to a path t. Then, for any vertices o1, o2 on ∂Π1, ∂Π2 respectively,
there exists a path s1ts2 such that φ(s1ts2) = Pφ(a) in G, where |a| ≤
1
2 |∂Π2|, P is a geodesic word and |P | ≤ |t|+ 8δ, si is a subpath of ∂Πi

(i = 1, 2), a is a subpath of ∂Π2 and s1− = o1, s2+ = o2. Moreover, the
following equality holds in G:

(Pφ(a))−1φ(∂o1Π1)(Pφ(a))φ(∂o2Π2) = 1 in G. (6)

Proof. We denote r1 to be the boundary path ∂t−Π1, r2 to be the boundary
path ∂t+Π2. By definition of an opposite pair (bounded by r1tr2t

−1) and
the van-Kampen Lemma, there exists a diagram Γ over G with boundary
r1tr2t

−1
1 , where φ(t1) = φ(t). Since each path ri is geodesic, by Remark

3.4 (iii) the distance between a vertex on r1 and r2 is not greater then
|t|+ 8δ, hence there exists a vertex o′1 on r2 such that |o1 − o′1| ≤ |t|+ 8δ.

Consider a subpath of the form s1t
′s′2 on ∂Γ, where s1 is a subpath of

r±1
1 , s′2 is a subpath of r±1

2 , (s1)− = o1, (s
′
2)+ = o′1, t

′ is either t or t1.
Let P be a geodesic word equal in G to the label of the path s1t

′s′2, so
|P | ≤ |t|+ 8δ. Now we consider s1t

′s′2 as a subpath of boundary ∂∆, so t′

is t. We choose a path a on ∂Π2 between o′1 and o2 satisfying inequality
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Figure 2:

Γ

q2

q1

p1p2

u2

u1

|a| ≤ 1
2 |∂Π2|. Define the path s2 to be s′2a after elimination of returns,

hence φ(s′2a) = φ(s2) in a free group generated by S. Since the boundary
labels of ∆ and Γ are the same, we may consider the path s1t

′s′2 as a path
s1ts

′
2 in ∆. We have that φ(s1ts

′
2) = P in G, and so the following first

two equalities hold in the free group generated by S while the last one
holds in G:

φ(s1ts2) = φ(s1t
′s′2s) = φ(s1ts

′
2)φ(a) = Pφ(a).

To establish (6), we observe that the path (s−1
1 ∂o1Π1s1)t(s2∂o2Π2s

−1
2 )t−1

coincide with (∂t−Π1)t(∂t+Π2)t
−1 after the elimination of returns. Thus

φ((s−1
1 ∂o1Π1s1)t(s2∂o2Π2s

−1
2 )t−1) = (∂t−Π1)t(∂t+Π2)t

−1 = 1 in G,

which after conjugation provides φ−1(s1ts2)φ(∂o1Π1)φ(s1ts2)φ(∂o2Π2) = 1
in G providing (6).�

The following notion of ǫ-contiguity subdiagram will be used exten-
sively. Let ∆ be a diagram over G1. Let u1 and u2 be a pair of paths in ∆
with subpaths q1 and q2 respectively, such that there exists a pair of simple
paths p1, p2, |p1| , |p2| ≤ ǫ and suppose that a path p1q1p2q2 bounds a disc
diagram Γ which does not contain any R–faces (see Figure 2). Then we
call Γ an ǫ-contiguity subdiagram between paths u1 and u2. When we talk
about the contiguity subdiagram Γ between u1 and u2 we use the formula
∂(u1,Γ, u2) = p1q1p2q2 to define notation for arcs of Γ. In this case q1, q2
are referred to as contiguity arcs and p1, p2 as side arcs of the ǫ-contiguity
subdiagram Γ. We usually consider contiguity subdiagrams between a
pair of R–faces or between an R–face and a boundary path (i.e. u1 is the
boundary path of R–face Π1 and u2 is the boundary path of R–face Π2

or is a subpath of the boundary of ∆). If u1 is the boundary of an R–face
Π1, u2 is a path of a boundary of an R–face Π2 with ǫ-contiguity diagram
Γ described above then we define the degree of contiguity of Π1 to Π2 to

be (Π1,Γ,Π2) =
‖q1‖
‖Π1‖

(or, if u2 is a boundary subpath of ∆, the degree of

contiguity of Π1 to the boundary subpath u2 to be (Π1,Γ, u2) =
‖q1‖
‖Π1‖

).
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The next two lemmas provide the basic connection between the notions
of small cancellation and diagrams over hyperbolic groups.

Lemma 3.6 ([Olsh93], Lemma 5.2). (i) If the symmetized system R
satisfies the C(ǫ, µ, ρ)–condition, then for any reduced diagram ∆ and any
ǫ-contiguity subdiagram Γ of a face Π1 to another face Π2 the following
inequalities hold:

‖q1‖ < µ ‖∂Π1‖ , ‖q2‖ < µ ‖∂Π2‖ ,

where ∂(Π1,Γ,Π2) = p1q1p2q2 for any reduced diagram ∆ over G1.
(ii) Suppose a diagram ∆ has a pair of R–faces Π1,Π2 and an ǫ-

contiguity subdiagram Γ (∂Γ = p1q1p2q2) such that

max{(Π1,Γ,Π2), (Π2,Γ,Π1)} ≥ µ.

Then Π1,Π2 are opposite with respect to each of the paths p1, p2.

Note that part 2 of the above lemma is an immediate corollary of
small cancellation property.

Lemma 3.7 ([OlOsSa], Lemma 4.6). For any hyperbolic group G there
exists µ0 > 0 such that for any 0 < µ ≤ µ0 there are ǫ ≥ 0 and ρ (it is

suffice to choose ρ > 106ǫ
µ

) with the following property:

Let the symmetized system R satisfy the C(ǫ, µ, ρ)-condition and fur-
thermore let ∆ be a reduced disc diagram over G1 whose boundary ∂∆
is decomposed into geodesic sections q1, . . . , qr, where 1 ≤ r ≤ 12. Then,
provided ∆ has an R–face, there exists a reduced diagram ∆′ equivalent
to ∆, an R–face Π in ∆ and disjoint ǫ-contiguity subdiagrams Γ1, . . . ,Γr

(some of them can be absent) of Π to q1, . . . , qr respectively such that

(Π,Γ1, q1) + · · ·+ (Π,Γr, qr) > 1− 23µ.

The following lemma is a special case of that in [Olsh93]:

Lemma 3.8. ([Olsh93], Lemmas 6.7, 7.4) Let G be a non-elementary
hyperbolic group. There exists µ0 > 0 such that for any 0 < µ ≤ µ0 there
exists ǫ ≥ 0 such that for every N > 0 there exists ρ > 0 with the following
property:

if R is finite and satisfies C(ǫ, µ, ρ) then G1 is a non-elementary
hyperbolic group and W = 1 in G1 iff W = 1 in G for every word W with
‖W‖ ≤ N .

Definition 3.9. We say that a system R of geodesic words satisfies the
C̃(ǫ, µ, ρ–condition if R is symmetrized, satisfies C(ǫ, µ, ρ)–condition and
consists of words which represent cyclically reduced elements in G.
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Figure 3: C(ǫ, µ, ρ) => C ′(2µ)

a

r11
q1 aR1

aR1b
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p2

q2

p1

r21

4. Condition C ′(µ) and connection to C(ǫ, µ, ρ)–condition

Remark 4.1. Suppose the system of geodesic words R satisfies C̃(ǫ, µ, ρ–
condition, µ < 1/100, ǫ ≥ ǫ0 ≥ 6δ, ρ > 500δ

µ(1−8µ) . Then R satisfies C ′(2µ).

Proof. Take arbitrary words R1, R2 ∈ R. We denote by M the mini-
mum min(|R1| , |R2|). To check the condition C ′(2µ) we assume that
〈aR1b, R2〉 > 2µM for some a, b ∈ G such that |a| , |b| ≤ 100δ.

We denote by W a geodesic equal to aR1b, by ν a path R2 and by γ
a path aR1b in the Cayley graph Cay(G).

Consider vertices o2 on ν and o3 on the geodesic W at distance [2µM ]
from identity vertex 1. By Remark 2.5 (part 1), we have that Φ(o2) = Φ(o3)
and (by part 2) |o2 − o3| ≤ 4δ. Now we may apply Lemma 2.1 (for
K = 100δ) to segments γR1,W and hence there exists a subsegment
[u, v] of W such that |u− e| ≤ 102δ, |v − γ+| ≤ 102δ and [u, v] is within
6δ–neighborhood of γR1. Vertex o3 lies on [u, v] because on one hand
|o3 − e| = [2µM ] > 2K + 20δ and on the other hand

|o3 − γ+| ≥ |R1| − |a| − |b| − [2µM ] ≥ (1− 3µ)M > 2K + 20δ.

We get that o3 is within 6δ–neighborhood of some vertex o1 on path

γR1.

We consider two subsegments [e, o2] and [(γa)+, o1] of ν and γR1

respectively and apply Lemma 2.1 to get that there exists a subsegment
q2 of R2 between e and o2 such that

|q2| ≥ [2µM ]− 200δ − 4δ >
3

2
µM + 20δ

which is within 6δ–neighborhood from γR1. Now define q1 to be a subseg-
ment of γR1 with |q1− − q2−| , |q1+ − q2+| ≤ 6δ.
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We have that

|qi| >
3

2
µmin(|R1| , |R2|) for i=1,2. (7)

Define p1 (p2) to be a geodesic path between q2−, q1− (q1+, q2+), see
Figure 3. To justify the Figure 3, we must show that |(γa)+ − (q1)−| <
|(γa)+ − (q1)+| (this inequality follows from [Olsh93] Lemma 1.10, but we
include the argument here). By triangle inequality and definition of q1,
we have that

|(γa)+ − (q1)−| ≤ |a|+ |p1|+ |e− (q1)−| ≤ 100δ + 6δ + 102δ = 208δ;

on the other hand,

|(γa)+ − (q1)+| ≥ |e− (q2)+| − |p2| − |a| = |e− (q2)−|+ |q2| − |p2| − |a| ≥

102δ +
3

2
µM + 20δ − 100δ − 6δ > µM ≥ 500δ

and hence we got |(γa)+ − (q1)−| < |(γa)+ − (q1)+|, as desired.
We denote labels of qi and pi as Qi and Pi respectively. Define four

subpaths rij , i, j ∈ {1, 2} by equalities γR1 = r11r12, ν = r21r22 and
(r11)+ = (p1)+, (r21)+ = (p1)−. Define words Rij , Q

′, Q′′ by equalities
lab(rij) = Rij , R12R11 ≡ Q1Q

′, R22R21 ≡ Q2Q
′′. We have that Q2 =

P1Q1P
−1
2 , ‖Pi‖ ≤ 6δ, and taking into account the inequality (7) we

conclude by C̃(ǫ, µ, ρ–condition that P1R12R11P
−1 = R22R21, which in

turn is equivalent to (R21P1R
−1
11 )(R11R12)(R11P

−1
1 R−1

21 ) = R21R22. It
remains to observe that a = (R21P1R

−1
11 ) and so aR1a

−1 = R2.

Corollary 4.2. Suppose R satisfies C̃(ǫ, µ, ρ–condition and n ≥ 1,

n
∏

k=1

UkRkU
−1
k = 1 in G, where UkRkU

−1
k ∈ X . (8)

Then (i) There exists a reducible pair i < j in the sense of Definition
2.14 and

Ui+1Ri+1U
−1
i+1 . . . Uj−1Rj−1U

−1
j−1 = UiRiU

−1
i . . . UjRjU

−1
j in G. (9)

(ii) For every reducible pair i < j in (8), there exists a van-Kampen
diagram ∆′ over G with the boundary γ′ labeled by the word
U1R1U

−1
1 . . . UnRnU

−1
n and a subdiagram Γ in ∆′ with boundary p1q1p2q2

such that q1 is a subpath of γ′Ri, q2 is a subpath of γ′Rj, |pi| ≤ 11δ + 3

and max( |q1||Ri|
, |q2|
|Rj |

) ≥ 2µ− 10δ+3
ρ

. The only vertices of paths pi that are

on the boundary of ∆ are initial and terminal vertices pi±.
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(iii) Consider the diagram ∆′ from part (ii) and let ν ′ be any of the
four paths given by the formula ν ′ = γ′(U±1

i )s1p
−1
1 s2γ′(U±1

j ), where s1 is
a subpath of γ′Ri, s2 is a subpath of γ′Rj. Then

φ((γ′Ui)
±1s1p

−1
1 s2(γ′U±1

j )) =

j−c
∏

k=i+d

UkRkU
−1
k in G,

where c, d take values 0 or 1 depending on the path ν ′ and (c, d) 6= (0, 0).

Moreover, depending on values c and d, the word H ≡
∏j−d

k=i+c UkRkU
−1
k

conjugates UiRiU
−1
i to UjR

±1
j U−1

j , namely:

H−1UiRiU
−1
i H = UjR

e
jU

−1
j , where e ∈ {±1}.

Proof. By Remark 4.1, C̃(ǫ, µ, ρ–condition implies the condition C ′(2µ).
The product

∏n
k=1 UkRkU

−1
k equals to identity in G so by Lemma 2.15

it is not reduced in the sense of Definition 2.14. Hence there exists a
reducible pair i < j (in particular, we have that |Ri| = |Rj |) such that the
approximation tree for ai, bi, aj , bj is of shape on Figure 1 and by Lemma
2.13 the corresponding geodesic word Y satisfies:

|Y | ≥ 2µM + 10δ + 3, where M = |Ri| . (10)

Lemma 2.13 also provides the equation (4) and thus (i) is proved.

Diagram ∆′ over G with boundary γ′ labeled by
∏n

k=1 UkRkU
−1
k exists

by van-Kampen Lemma. Consider the map φ′ : ∆′ 7−→ Cay(G). We denote
φ′(γ′) as γ′′ (a path in Cay(G) with label

∏n
k=1 UkRkU

−1
k ). We adopt

notations from the definition of a reducible pair i < j and Figure 1.
Consider a geodesic path α in Cay(G) starting from ai with label XY Z
(hence it ends at bi) and a geodesic up to 18δ+6 path β in Cay(G) starting
from aj with label U−1Y −1V ( it ends at bj). By definition ofX,Y, Z, U, V ,
we have (αY )−1 =β Y

−1. From the fact that XY Z is geodesic, it follows
from Remark 2.3 (ii) that there exists a subpath q′1 of γ′′Ri such that:

∣

∣

αY− − q′1−
∣

∣ ,
∣

∣

αY+ − q′1+
∣

∣ ≤ δ, (11)

which implies that:
∣

∣q′1
∣

∣ ≥ |Y | − 2δ. (12)

Similarly, we consider the path β geodesic up to 18δ + 6 and apply
again Remark 2.3 (ii) to obtain that there exists a subpath q′2 of γ′′Rj

such that:
∣

∣

αY− − q′2+
∣

∣ ,
∣

∣

αY+ − q′2−
∣

∣ ≤ (9δ + 3) + δ, (13)
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and hence :
∣

∣q′2
∣

∣ ≥ |Y | − 20δ − 6. (14)

The inequalities (11), (13) imply also that
∣

∣q′1− − q′2+
∣

∣ ,
∣

∣q′1+ − q′2−
∣

∣ ≤
11δ + 3.

Consider subpaths q1 of γRi and q2 of γRj in the boundary ∂∆′ such
that φ′(qi−) = q′i−, φ

′(qi+) = q′i+. The Remark 3.4 implies that (after
some elementary transformations) there exists a subdiagram Γ in ∆′ with
boundary p1q1p2q2, vertices of pi are interior except for initial and terminal
ones and |pi| ≤ 11δ + 3. Equations (12), (14), (10) provide that:

max( |q1||Ri|
, |q2|
|Rj |

) ≥ |Y |−20δ−6
M

≥ 2µM+10δ+3−20δ−6
M

≥ 2µ − 10δ+3
M

. Part

(ii) is proved.
To justify part (iii) we look at each of the 4 options for the path

ν ′. For example, if ν ′ = (γ′Ui)s1p
−1
1 s2(γ′U−1

j ) then φ′ maps the vertex

ν− = (γ′Ui)− of ∆′ to the vertex gi−1 =
∏i−1

k=1 UkRkU
−1
k in Cay(G),

ν ′+ = (γ′U−1
j )+ to the vertex gj =

∏j
k=1 UkRkU

−1
k in Cay(G). Hence

lab(φ′(ν ′)) = g−1
i−1gj =

∏j
k=i UkRkU

−1
k .

A direct computation using the relation (9) yields that for every
possible value of c and d the word H conjugates UiRiU

−1
i to UjR

±1
j U−1

j .

For example, H ≡ Ui+1Ri+1U
−1
i+1 . . . UjRjU

−1
j conjugates UiRiU

−1
i to

UjR
−1
j U−1

j :

Ui+1Ri+1U
−1
i+1 . . . UjRjU

−1
j UjR

−1
j U−1

j (Ui+1Ri+1U
−1
i+1 . . . UjRjU

−1
j )−1 =

Ui+1Ri+1U
−1
i+1 . . . Uj−1Rj−1U

−1
j−1(Ui+1Ri+1U

−1
i+1 . . . UjRjU

−1
j )−1 =

UiRiU
−1
i . . . UjRjU

−1
j (Ui+1Ri+1U

−1
i+1 . . . UjRjU

−1
j )−1 = UiRiU

−1
i ,

where the last inequality holds by (9). It remains to notice that by relation
(9), in the word H the parameters c = d = 0 may be replaced by c = d =
1.

Definition 4.3. For every reducible pair i < j consider the diagram
∆′ from Corollary 4.2, identify each edge of γ′Us with corresponding
edge of γ′U−1

s and fill in the R-faces Πs to get a van-Kampen diagram
∆ over G1 which has a (11δ + 3)-contiguity subdiagram Γ such that
max{(Πi,Πj), (Πj ,Πi)} ≥ 2µ− 10δ+3

ρ
. We will refer to a described diagram

∆ as a standard diagram for relation (8). We denote the image of γ′ in ∆
by γ.

By definition, the standard diagram is a spherical diagram, but for
convenience we draw it on Figure 4 as a disc diagram with boundary label
1.
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Figure 4: Standard Diagram

R1
R2

Rk
U1

U2

Uk

...

1

O

Remark 4.4. According to the identifications made in the definition of
the standard diagram ∆, any of the four paths ν ′ in ∆′ corresponds to a
closed path in ∆ with label ν = (γUi)r1p1r2(γU

−1
j ), where ri correspond

to si. One can observe that different paths ν ′ have different images in ∆,
but we will not use this fact later. Note that the subpaths (γ′Ui)

±1 and
(γ′Uj)

±1 of ν ′ in ∆′ correspond respectively to subpaths γUi and γUj of ν.

5. Generators of a free normal subgroup in G

In this section we assume that the set R satisfies C̃(ǫ, µ, ρ–condition,
where the parameters ǫ, µ, ρ are chosen according to Lemma 3.7 and
satisfy inequalities ǫ > ǫ0 = 19δ + 3, µ < 1/100, ρ > 500ǫ

6µ(1−8µ) .

It is well known (see [Gro]2.2A) that a hyperbolic group contains only
finitely many conjugacy classes of torsion elements. So, given a group G,
we may choose the constant ρ to be larger then the length of shortest
representative in each conjugacy class of torsion elements. Thus we will
assume in the sequel that for values of ρ large enough:

Remark 5.1. The set R consists of elements of infinite order.

Definition 5.2. We call a (reduced) diagram ∆ an octagon diagram if
∂∆ = l1j1 . . . l4j4, where li are geodesic in G, and ‖ji‖ ≤ ǫ.

Definition 5.3. Consider an octagon reduced diagram ∆ with boundary
∂∆ = l1j1 . . . l4j4 and pick a number 0 < κ < 1. We say that an arc li
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satisfies the condition U∆(κ) if for every diagram ∆′ equivalent to ∆ and
every R–face Π in ∆′ such that there is a contiguity subdiagram Γ between
Π and li, we have the inequality (Π,Γ, li) < κ.

It is clear that if li has a subpath l which is a boundary arc of some
subdiagram ∆1 of ∆ then l satisfies U∆1

(κ) as well.

Lemma 5.4. Let ∆ be an arbitrary octagon diagram and φ(l1) = U ∈ U ,
then (in notations of Definition 5.2) l1 satisfies U∆(

1
2 + 1

5µ).

Proof. Note that by definition of ρ we have that 2ǫ+34δ
ρ

< 1
5µ. We suppose

that there exists an octagon diagram ∆, with boundary arc l1, φ(l1) =
U ∈ U . Assume that (after elementary transformations) there exists an
R–face Π in ∆ and a corresponding subdiagram Γ between Π and l1 with
boundary ∂(Π,Γ, l1) = p1q1p2q2 such that (Π,Γ, l1) ≥

1
2 + 2ǫ+34δ

ρ
.

Now we may apply Remark 3.4(ii) to the diagram Γ and conclude that
(after elementary transformations) there exists a subdiagram Γ′ of Γ with
boundary p′1q

′
1p

′
2q

′
2 such that q′i are subpaths of qi and:

∣

∣p′i
∣

∣ ≤ 6δ,
∣

∣q′1
∣

∣ = |q1| − 2ǫ− 4δ. (15)

By definition of q′1, we have |q′1| = |q1| − 2ǫ − 4δ ≥ 1
2 |∂Π| + 30δ and

it’s complement q′3 (∂Π = q′1q
′
3) satisfies |q′3| ≤

1
2 |∂Π| − 30δ. Thus the

condition (i) of definition 2.10 is satisfied.
We define paths l′, l′′ such that l1 = l′q′2l

′′. The equality U = φ(l1) =
φ(l′p′1q

′
1p

′
2l

′′) holds in G, moreover, by inequalities (15), we have:

∣

∣l′
∣

∣+
∣

∣p′1
∣

∣+
∣

∣q′1
∣

∣+
∣

∣p′2
∣

∣+
∣

∣l′′
∣

∣ ≤
∣

∣l′
∣

∣+2
∣

∣p′1
∣

∣+
∣

∣q′2
∣

∣+2
∣

∣p′2
∣

∣+
∣

∣l′′
∣

∣ ≤ |l1|+4 ·6δ.

Hence the condition (ii) of definition 2.10 is checked for the factorization
φ(l′p′1)φ(q

′
1)φ(p

′
2l

′′) of the word U .
By Definition 2.10, the word U does contain more then half of a relation

and thus U /∈ U contrary to our assumption.

Definition 5.5. Consider a reduced octagon diagram ∆ with boundary
l1j1 . . . l4j4. Denote for simplicity of notation u = l1 and v−1 = l3,
a = j3l4j4, b = j1l2j2 and define the base point of ∆ to be o = (l1)−. Con-
sider an R–face Π and disjoint contiguity subdiagrams Γu,Γv of Π to bound-
ary arcs u, v, define boundary arcs of Γu,Γv by ∂(Π,Γu, u) = p1uqΠup2uqu,
∂(Π,Γv, v) = p1vqΠvp2vqv and define q1, q2 by equality ∂Π = q−1

Πvq1q
−1
Πuq2

(see Figure 5). We say that a subdiagram ∆0 = ∆0(∆,Π) with a bound-
ary path p2uqup1uq2p2vqvp1vq1 (u, v)–bond (through Π) if both values
(Π,Γu, u), (Π,Γv, v) are greater then µ. We define subdiagrams ∆1 =
∆1(∆,Π), ∆2 = ∆2(∆,Π) of ∆ with boundaries u1p

−1
2u q1p

−1
1v v

−1
1 a and

u2bv
−1
2 p−1

2v q
−1
2 p−1

1u respectively, where u1 (v1) is an initial subpath of u (v)
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Figure 5: Bond Between u And v

∆1∆2

u1p2u
p1u

qu

qΠu

ab

v

q2 q1

qΠv

p2v

qv

p1v

Π

and v2 (u2) is a terminal subpath of v (u) (recall that the orientation of
the boundary is clockwise).

For an arbitrary reduced octagon diagram ∆, ∂∆ = l1j1 . . . l4j4, where
li are geodesic in G, ‖ji‖ ≤ ǫ, there exist a pair of (possibly empty) sets V =
{Π1, . . .Πm} of R–faces and Σ(∆) = {Γ1,u,Γ1,v, . . . ,Γm,u,Γm,v} of disjoint
ǫ-contiguity subdiagrams, where Γi,u,Γi,v are contiguity subdiagrams such
that ∆0(Πi) = Πi ∪ Γiu ∪ Γiv is a (u, v)–bond. We call a pair (V,Σ(∆)) a
system of bonds between u and v.

Remark 5.6. (i) It is clear that in a non-empty system of (u, v)–bonds
(V,Σ(∆)) for a reduced diagram ∆ there exists a unique face Π in V such
that the associated (see definition 5.5) paths u1 and v1 are the longest.
Moreover, any other face Π′ ∈ V belongs to ∆1(Π).

(ii) For every face Π in V we have that

|u1| ≤ |u| − (Π,Γu, u) |∂Π|+ 2ǫ, |v1| ≤ |v| − (Π,Γv, v) |∂Π|+ 2ǫ. (16)

The following remark will allow us to extend systems of bonds of
subdiagrams ∆i to the diagram ∆.

Remark 5.7. Consider a reduced octagon diagram ∆ over G1 and as-
sume that there is a (u, v)–bond ∆0(Π) = Π ∪ Γu ∪ Γv in ∆ satisfying
(Π,Γu, u), (Π,Γv, v) ≥ µ and two systems of (ui, vi)–bonds (Vi,Σ(∆i))
in ∆i = ∆i(Π,∆), i = 1, 2. Then the sets V = V1 ∪ V2 ∪ {Π} and
Σ(∆) = Σ(∆1) ∪ Σ(∆2) ∪ {Γu,Γv} comprise the system of (u, v)–bonds
(V,Σ(∆)) in ∆.
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Lemma 5.8. Let ∆ be a reduced octagon diagram with at least one R–face
with boundary ∂∆ = aj1uj2bj3v

−1j4, where u, v, a satisfy the condition
U∆(

1
2 + µ

5 ), b satisfies U∆(µ) and |jk| ≤ ǫ for every k.
(i) Then ∆ has a non-empty system of (u, a)–, (v, a)– or (u, v)–bonds.
(ii) Assume in addition that ∆ does not have (u, a)– or (v, a)–bonds.

Then, for the set V consisting of all R–faces, there exists a system of
(u, v)–bonds (V,Σ(∆)) such that for every R–face Π in ∆ there exist
subdiagrams Γu,Γv ∈ Σ(∆) satisfying:

(Π,Γu, u) + (Π,Γv, v) > 1− 26µ; (17)

max[(Π,Γu, u), (Π,Γv, v)] >
1

2
− 13µ; (18)

min[(Π,Γu, u), (Π,Γv, v)] >
1

2
− 27µ. (19)

Proof. (i) On the one hand we may consider an R–face Π satisfying Lemma
3.7 such that (Π,Γa, a)+(Π,Γb, b)+(Π,Γu, u)+(Π,Γv, v) > (1−23µ)− 4·3ǫ

|∂Π|

(note that (Π,Γji , ji) |∂Π| ≤ 3ǫ because |ji| ≤ ǫ). Together with condition
on b it means that

(Π,Γa, a) + (Π,Γu, u) + (Π,Γv, v) > (1− 24µ)−
4 · 3ǫ

|∂Π|
(20)

On the other hand each summand on the left-hand side of (21) is
smaller then 1

2 + µ
5 . Hence at least two of them are larger then 12µ.

(ii) We continue the considerations in the proof of part (i). We cannot
have (Π,Γa, a) ≥ µ because at least one of the other summands in (20)
is larger then 12µ and we would get a (u, a)– or (v, a)–bond involving a
which is impossible. Hence we get that

(Π,Γu, u) + (Π,Γv, v) > (1− 25µ)−
4 · 3ǫ

|∂Π|
(21)

and so the inequality (17) holds for Π. The inequality

max[(Π,Γu, u), (Π,Γv, v)] >
1

2
−

25

2
µ−

2 · 3ǫ

|∂Π|

follows immediately since µ < 1/100, while for

min[(Π,Γu, u), (Π,Γv, v)] >
1

2
− 26

1

5
µ

it is enough to recall that |qu| , |qv| < (12 + 1
5µ) |∂Π|. We have proved

the formulas (17)–(19) for the face Π satisfying Lemma 3.7, taking into
account that (by definition of ρ): 4·3ǫ

|∂Π| ≤
4·3ǫ
ρ
< 1

5µ.
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When n = 1, the diagram ∆ has a single R–face Π and we are done
by the argument above.

We induct on a number n of R-faces in the octagon diagram ∆ with
base n = 1. If n > 1 we consider subdiagrams ∆i = ∆i(∆,Π) for the face
Π (we follow notations of Definition 5.5 here). It is clear that diagrams ∆i

satisfy the induction assumption. Each has a number of R–faces strictly
less then n because neither contains the face Π, the arcs piu, piv on the
boundary of ∆i are not longer then ǫ. The boundary arcs qi of ∆i satisfy
the condition U∆i

(µ) by Lemma 3.6 because they are boundary arcs of
the R–face Π in the reduced diagram ∆. As we mentioned before the
proof of the lemma, conditions U∆i

(µ) for qi imply that there are no bonds
involving qi in ∆i. The induction assumption is now checked for ∆i, hence
there exist systems of (ui, vi)–bonds (Vi,Σ(∆i)) in ∆i satisfying the
conclusion of the lemma. Finally we are in position to apply the Lemma
5.7 to ∆ relative to the bond ∆0(Π): we obtain a system of (u, v)–bonds
(V,Σ(∆)) such that V contains all R–faces and the set Σ(∆) is comprised
of Σ(∆i) for i = 1, 2 and Γu,Γv. The inequalities (17)–(19) hold for every
R–face in ∆ except for the face Π by induction assumption, and for the
face Π we have obtained them above.

We denote words URU−1 by AR,U . If u is a path in some diagram ∆,
we write AR,u for AR,φ(u).

Definition 5.9. Define a weight of a word AR,U by ψ(AR,U ) = |R|+4 |U |.

Lemma 5.10. Let ∆ be a reduced diagram over the group G1 with bound-
ary uj1aj2v

−1, where u, v, a satisfy the condition U∆(
1
2 + µ

5 ), |ji| ≤ ǫ for
i = 1, 2 and there are no (u, a)– or (v, a)–bonds. Then φ(uj1aj2v

−1) =
∏n

i=1ARj ,U
′

j
in G, where max1≤j≤nψ(ARj ,U

′

j
) < 4max(|u| , |v|).

Proof. We proceed by induction on the number n of R–faces in ∆. The
conclusion of the lemma holds for k = 0 because φ(uj1aj2v

−1) = 1 in G
and there are no AR,U ’s.

Assume that the lemma is true for n− 1. Consider a face Π satisfying
the Remark 5.6. By Lemma 5.8(ii), the R–face Π of ∆ is in the set V for
some system of (u, v)–bonds (V,Σ(∆)), and inequalities (17)–(19) hold
for Π. We recall the inequality (18) and assume that

(Π,Γu, u) > (
1

2
− 13µ), (22)

in the other case proof is the same.
By the choice of Π, we have that every other R–face of ∆ is in the

subdiagram ∆1 (∆i = ∆i(∆,Π)) and the subdiagram ∆2 is a diagram over
G (we are using notations from Definition 5.5 and the reader can refer to
Figure 5 in the sequel of the proof). We consider a system of (u, v)–bonds
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provided by Lemma 5.8. Denote a subdiagram of ∆ consisting of ∆2,∆0

by ∆′. It contains a single R–face Π, so we get the following equations in
the group G:

φ(∂u1+
∆′) = φ(∂u1+

∆0) = φ(p−1
2u (∂p2u−Π)p2u). (23)

Now notice that paths ∂u−
∆ and u1(∂u1+

∆′)u−1
1 (∂u−

∆1) coinside after
the elimination of returns in the latter path, so their labels are equal in
the free group generated by S. We get that

φ(∂u−
∆) = φ(u1(∂u1+

∆′)u−1
1 (∂u−

∆1)) = φ(u1(∂u1+
∆′)u−1

1 )φ(∂u−
∆1),

(24)
and taking into account (23),

φ(u1p
−1
2u )φ(∂(p2u)−Π)φ(u1p

−1
2u )

−1φ(∂u−
∆1) = 1 in G1,

where the number of faces in the diagram ∆1, bounded by the path
u1p

−1
2u q

−1
1 p−1

1v v
−1
1 , is n− 1. For convenience we denote φ(∂(p2u)−Π) by R1.

By induction assumption, we have the following equality in G for the
boundary of ∆′:

φ(u1p
−1
2u q

−1
1 p1vv

−1
1 ) =

n
∏

i=2

ARj ,uj
,

where for every 1 < j ≤ n we have ψ(ARj ,uj
) < 4max(|u1| , |v1|).

By Remark 5.6 part (ii), we have that max(|u1| , |v1|) < max(|u| , |v|).
By inequalities (16) and (22), we have

∣

∣u1p
−1
2u

∣

∣ ≤ |u| − (Π,Γu, u) |∂Π| +

2ǫ+ ǫ < |u| − (12 − 13µ) |∂Π|+ 3ǫ < |u| − 1
4 |∂Π|, hence

ψ(AR1,u1p
−1

2u
) = |∂Π|+ 4

∣

∣u1p
−1
2u

∣

∣ < |∂Π|+ 4 |u| − |∂Π| = 4 |u| .

Remark 5.11. Let ∆ be a reduced octagon diagram with boundary
∂∆ = l1j1 . . . l4j4. Assume that φ(l1) is a subword of some R ∈ R and
|l1| ≤

1
2 |R|. Then l1 satisfies U∆(

1
2 + µ

5 ).

Proof. Suppose on the contrary, there exists an R–face Π and a contiguity
subdiagram Γ such that (Π,Γ, l1) ≥

1
2 +

µ
5 , ∂(Π,Γ, l1) = p1q1p2q2. Then,

by C̃(ǫ, µ, ρ–condition, R and φ(∂Π) are conjugate so |∂Π| = |R|. Hence
we get

1

2
|∂Π| ≥ |l1| ≥ |q1| − 2ǫ ≥ (

1

2
+
µ

5
) |∂Π| ,

which is a contradiction.
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For technical reasons we introduce a notation

NR,U = gp〈AR′,U ′ | ψ(AR′,U ′) < ψ(AR,U )〉.

We say that AR′,U ′ is equivalent (≈) to AR,U iff ψ(AR′,U ′) = ψ(AR,U )
and there exists a word H in NR,U such that HAR′,U ′H−1 = AR,U in G.
To prove that the relation ≈ is a correctly defined equivalence it is enough
to notice that NR,U = NR′,U ′ whenever ψ(AR′,U ′) = ψ(AR,U ). It is clear
that equivalence classes with respect to ≈ are finite.

Definition 5.12. Let A be a maximal set of words AR,U where R ∈
R, U ∈ U such that

(i) AR,U /∈ NR,U ;
(ii) if AR′,U ′ ≈ A±1

R,U , then at most one of them belongs to A.

Lemma 5.13. (i) Suppose that some geodesic word U contains more then
half of a relation, then for every R ∈ R we have that AR,U ∈ NR,U .

(ii) If URU−1 is not geodesic up to 10δ then there exists a geodesic up to
10δ word V R′V −1 such that AR,U = AR′,V in G and ψ(AR,U ) > ψ(AR′,V ).

(iii) A is a subset of X from Lemma 2.11.
(iv) A generates N (R), moreover every AR,U is a product of elements

of A±1 with weights not larger then ψ(AR,U ).

Proof. Pick some word AR,U .
(i) Assume that U contains more then half of a relation, then (using

notations and statement of Remark 2.12(i)) we have

AR,U = Ar1r2,U1
AR,U1r

−1

2
U2
A−1

r1r2,U1
, where U = U1r1U2, r1r2 ∈ R, (25)

and the following inequalities hold:

|r1|+ |U1|+ |U2| ≤ |U |+ 50δ, |r1| ≥ |r2|+ 60δ. (26)

It follows from 2.12(i) that ψ(AR,U1r
−1

2
U2
) < ψ(AR,U ). Now we use in-

equalities (26) to estimate:

ψ(Ar1r2,U1
) = |r1r2|+ 4 |U1| = |r1|+ |r2|+ 4 |U1| ≤

2 |r1|+ 4 |U1| = 2(|r1|+ |U1|) + 2 |U1| ≤

≤ 2(|U |+ 50δ) + 2(|U |+ 50δ − |r1|) ≤ 4 |U |+ 200δ − ρ < 4 |U | .

Hence AR,U is equal to the product (25) such that both ψ(Ar1r2,U1
)

and ψ(AR,U1r
−1

2
U2
) are strictly less then ψ(AR,U ) and we conclude that

AR,U ∈ NR,U . Contradiction with Definition 5.12. Hence, if AR,U ∈ A
then U does not contain more then half of a relation.
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(ii) Suppose that AR,U is not geodesic up to 10δ. The Remark 2.12
(ii) implies that then there exists R′ ∈ R and a geodesic word V such
that URU−1 = V R′V −1 in G. By the same remark, the word V R′V −1

is geodesic up to 10δ and |R| = |R′| and so |U | > |V |. Thus we have got
inequality ψ(AR,U ) > ψ(AR′,V ) contradicting the choice AR,U ∈ A again.

(iii) Follows from (i) and (ii) by definition of X in Lemma 2.11.
(iv) By Lemma 2.11, if g ∈ N then g =

∏n
s=1 UsRsU

−1
s for some

UsRsU
−1
s ∈ X . Hence it is enough to show that every AR,U ∈ X is equal

to a product of elements of A. We proceed by induction on possible values
of k = ψ(∗) on the set X .

If AR0,1 ∈ X has minimal weight ψ(AR0,1), we have that NR0,1 = {1}
and so AR0,1 /∈ NR0,1. By maximality of the set A, the exists a word
AR′,U ′ ∈ A such that AR0,1 ≈ A±1

R′,U ′ which implies that AR0,1 = A±1
R′,U ′

in G.
Now pick AR,U ∈ X such that ψ(AR,U ) = k. There are two cases.
CASE 1. AR,U ∈ NR,U . In this case AR,U is a product of words

AR′,U ′ such that ψ(AR′,U ′) < ψ(AR,U ) and we are done by the induction
assumption.

CASE 2. AR,U /∈ NR,U . Consider all words AR′,U ′ such that AR′,U ′ ≈
AR,U . Clearly, AR′,U ′ /∈ NR,U = NR′,U ′ . By maximality of the set A, there
exists a word AR′,U ′ ∈ A and by Corollary 4.2 (iii) we have that there

exists H ∈ NR,U such that HA±1
R′,U ′H−1 = AR,U in G. By induction

assumption, H is a product of elements of A with weights smaller then
ψ(AR,U ), while ψ(AR,U ) = ψ(AR′,U ′).

Lemma 5.14. Let ∆ be a reduced diagram over the group G1 with bound-
ary upav−1 where |p| ≤ ǫ, φ(u), φ(v) ∈ U , φ(a)−1A′ ≡ R ∈ R for some
word A′ and |φ(a)| ≤ 1

2 |R|.
(i) Suppose that there exist an R–face Π and contiguity subdiagrams

Γa,Γv such that (Π,Γa, a), (Π,Γv, v) ≥ µ. Then AR,v /∈ A±1.
(ii) Suppose that there exist an R–face Π and disjoint contiguity sub-

diagrams Γa,Γu such that (Π,Γa, a), (Π,Γu, u) ≥ µ. In addition assume
that φ(p)A′φ(a)−1φ(p)−1 = R′ in G for some R′ ∈ R. Then AR′,u /∈ A±1.

Proof. (i) We define arcs of Γa,Γv by equalities ∂(Π,Γv, v) =
p1vqΠvp2vqv, ∂(Π,Γa, a) = p1aqΠap2aqa and define q1, q2 by equality ∂Π =
q−1
Πvq1q

−1
Πaq2. We also define v1, v2 by equality v = v1q

−1
v v2 (see Figure 6).

Consider a subdiagram ∆′ with boundary p−1
2v q

−1
2 p−1

1a a2v
−1
2 . Observe

that q2 satisfies U∆′(µ) by Lemma 3.6 (because it is a boundary subpath of
the R–face Π in the reduced diagram ∆), |p1v| , |p1a| ≤ ǫ and a2, v2 satisfy
U∆′(12 +

µ
5 ) (they are subpaths of a, v and a satisfies U∆(

1
2 +

µ
5 ) by Lemma

5.11). Choose (a2)− as a base point of ∆. By Lemma 5.8, there exists a
system of (a, v)–bonds (V,Σ(∆′)) such that V contains all R–faces of ∆′

and (assuming there are R–faces in ∆′), by Remark 5.6, there exists a
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Figure 6:

u
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p2a p1a

qΠa
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v2

v1

p1v

qΠv

p2v

Γv

qv
q1

O

qa

q2

face Π′ such that the diagram ∆2(Π
′,∆′) does not have R–faces. The face

Π′ is in V so in order to simplify the notation we assume that Π′ = Π and
∆′ itself is a diagram over G (i.e. it does not contain R–faces).

Consider an R–face Π̄ disjoint from ∆ and glue Π̄ and ∆ together
along a. Define ∂Π̄ = a−1a′ so that φ(a−1a′) ≡ R. Since (Π,Γa, a) ≥ µ we
have that Π, Π̄ comprise a pair of opposite faces with respect to p1a hence

φ((∂(p1a)+Π)p
−1
1a (∂(qa)+Π̄)p1a) = 1 in G. (27)

Now notice that φ(p1a) = φ(a2v
−1
2 qvp1vqΠvq

−1
2 ) in the groupG because

it bounds the diagrams ∆′ and Γv over G. We plug in the latter expression
into the equation (27) and then conjugate by φ(p1vqΠvq

−1
2 ) to obtain

φ(p1v[qΠvq
−1
2 (∂(p2a)+Π)q2q

−1
Πv ]p

−1
1v q

−1
v v2[a

−1
2 (∂(qa)+Π̄)a2]v

−1
2 qv) = 1 in G.

The paths in the square brackets are equal after elimination of returns
to ∂(p1v)+Π and ∂v+Π̄ respectively. Denote R′ = φ(∂(p1v)+Π), recall that

R = φ(∂v+Π̄). Thus we have obtained that AR′,p1vAR,q−1

Π
v2

= 1 in G and,

conjugating by v1, we get:

AR′,v1p1vAR,v = 1 in G. (28)
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But on the other hand we have that |R| = |R′| (because they are labels
of opposite R–faces in ∆) and, using inequality (16),

|v1p1v| ≤ |v1|+ |p1v| = |v| − |qv| − |v2|+ |p1v| ≤

≤ |v| − ((Π,Γv, v) |∂Π| − 2ǫ) + ǫ < |v| .

Hence we get ψ(AR′,v1p1v) < ψ(AR,v) and so AR,v /∈ A±1.
Proof of part (ii) repeats part (i) with obvious changes in notation.

Recall that in the beginning of section 5 we chose constants ǫ, µ, ρ
according to Lemmas 3.7, 3.8. Hence part (ii) of Theorem 1.3 follows imme-
diately from aforementioned lemmas (and is due to Olshanskii [Olsh93]).
We prove part (i) below:

Theorem 5.15. The subgroup N = N (R) is freely generated by the set A.

Proof. A generates N by lemma 5.13(iv).
We have to show that the set A generates N freely. We define

a partial short-lex ordering on all words in alphabet A±1. Let W =

Aǫ1
R1,U1

. . . Aǫk
Rk,Uk

(ǫi ∈ ±1), W ′ = Ã
ǫ′
1

R′

1
,U ′

1

. . . Ã
ǫk′

R′

k′
,U ′

k′
, we say that W ≻

W ′ if either
(i) k > k′ or
(ii) length of W is equal to length of W ′ (k = k′) and there exists m0 ≤

k such that ψ(ARm,Um) = ψ(ÃR′

m,U ′

m
) for anym < m0 and ψ(ARm0

,Um0
) >

ψ(ÃR′

m0
,U ′

m0
).

Let W (A) ≡ Aǫ1
R1,U1

. . . Aǫn
Rn,Un

be a nontrivial freely reduced word

(in alphabet A) such that W = 1 in G, assume that it is minimal with
respect to the above ordering ≻. We are in position to apply Corollary
4.2 and consider the corresponding standard diagram ∆ for the word W ,
a reducible pair of indexes i < j, the standard contiguity subdiagram Γ
between Πi and Πj with |p1| < 11δ + 3. We apply Lemma 3.5 to faces
Πi,Πj , path p1 and vertices o1 = (γUi)+, o2 = (γUj)+. It provides the path
s1p1s2 in ∆ such that φ(s1p1s2) = Pφ(a) in G with |P | ≤ 11δ + 3 + 8δ,
|a| ≤ 1

2 |∂Πj |, a is a subpath of ∂Πj and (using formula (6)) provides the

equality (Pφ(a))−1Rǫi
i (Pφ(a))R

ǫj
j = 1 in G or, equivalently,

P−1Rǫi
i P [φ(a)R

ǫj
j φ(a)

−1] = 1 in G, (29)

where the the word [φ(a)R
ǫj
j φ

−1(a)] is a cyclic conjugation of R
ǫj
j so

R
ǫj
j ≡ φ−1(a)A′ for some A′.

We have that the path γUis1p1s2(γUj)
−1 is closed in the standard

diagram ∆ by Remark 4.4 and we have chosen s1p1s2 so that

φ(γUis1p1s2γU
−1
j ) = UiPφ(a)U

−1
j . (30)
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Consider a reduced diagram ∆̃ with boundary upa1v
−1 such that φ(u) =

Ui, φ(p) = P , φ(a1) = A, where A = φ(a), a ∈ ∆, φ(v) = Uj . We will
show that in fact it satisfies conditions of Lemma 5.10. We first check
conditions of Lemma 5.14: we have that paths u, v are in U , thus they
satisfy condition U∆̃(

1
2 + µ

5 ) by Lemma 5.4 and so does the path a1 by

Lemma 5.11. We also have that φ(v)R
ǫj
j φ

−1(v) ∈ A±1 by definition of v

and Rǫi
i = PA′φ−1(a1)P

−1 by equation (29), so Lemma 5.14 provides us

that there are no (u, a1)– or (v, a1)–bonds in ∆̃. We have just checked the
conditions of Lemma 5.10 for the diagram ∆̃ and conclude that:

φ(ua1sv
−1) =

k
∏

m=1

AR′

m,U ′

m
in G,

where max1≤m≤kψ(AR′

m,U ′

m
) < 4max(|u| , |v|).

The last relation together with (30) implies that φ(γUis1p1s2γU
−1
j )

belongs to at least one of the groups NRi,Ui
,NRj ,Uj

. By Corollary 4.2(iii),

we have that φ(γUis1p1s2γU
−1
j ) = H in G (where H ≡

∏j−c
k=i+dA

ǫk
Rk,Uk

,

(c, d) 6= (0, 0), c, d ∈ {0, 1}) and that

H−1Aǫi
Ri,Ui

H = Ae
Rj ,Uj

in G for some e ∈ {±1}. (31)

Suppose that ARi,Ui
≻ ARj ,Uj

, then both words H and ARj ,Uj
belong to

NRi,Ui
. Hence ARi,Ui

∈ NRi,Ui
, contradiction.

It remains consider the case when ψ(ARi,Ui
) = ψ(ARj ,Uj

). By equation
(31), ARi,Ui

≈ Ae
Rj ,Uj

and since they are both in A we have that Ui ≡ Uj ,

Ri ≡ Rj . Thus we can glue together the paths u and v of the boundary of

∆̃ and obtain a diagram with boundary pa1 (we will also call it ∆̃). For
every R–face Π in ∆̃ we now have that (Π,Γp, p) ≤ 3ǫ because |p| ≤ ǫ
and (Π,Γa1 , a1) ≤

1
2 + 1

5µ thus

(Π,Γa1 , a1) + (Π,Γp, p) ≤
1

2
+
µ

5
+ 3ǫ < 1− 23µ,

which contradicts Lemma 3.7. Hence there are no R–faces in ∆̃ and
H = φ(pa1) = 1 in G. But the word H ≡

∏j−c
k=i+dARk,Uk

is a subword
of W which is strictly shorter then W so W ≻ H and H = 1 in G. By
minimality of W , we have equality H ≡ 1 which can only happen if
i+ 1 = j so Aǫi

Ri,Ui
A

ǫi+1

Ri+1,Ui+1
is a subword of W , Ui ≡ Uj , Ri ≡ Rj and

by the relation (9) in G:

UiR
ǫi
i U

−1
i Ui+1R

ǫi+1

i+1 U
−1
i+1 ≡ UiR

ǫi
i U

−1
i UiR

ǫi+1

i U−1
i = 1,

which is equivalent to R
ǫi+ǫi+1

i = 1 in G and, taking into account the
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Remark 5.1, we have that ǫi + ǫi+1 = 0. Hence Aǫi
Ri,Ui

A
ǫi+1

Ri+1,Ui+1
≡

Aǫi
Ri,Ui

A−ǫi
Ri,Ui

is a subword of W . Contradiction with choice of W .

Following [Olsh93], we call a pair of elements x, y of infinite order
in G non-commensurable if xk is not conjugate to ys for any non-zero
integers k, s. A group G is called non-elementary if it contains a finite
index subgroup isomorphic to Z.

In order to deduce Theorem 1.4 we will use the following remark.

Remark 5.16 ([Swe] Theorem 13). (i) For every element x in a hyperbolic
group G there exists n > 0 and a straight word Yx (i.e. a word Yx such
that Y s

x is geodesic for every s) such that Yx is conjugate to xn.
(ii) Given a set of geodesic words words X1, . . . , Xm we will denote

by Rn = R(Xs1
1 , . . . , X

sm
m , n) a system of all cyclic permutations of R±1

i

where Ri ≡ Xsin
i . If X1, . . . , Xm are straight pairwise non-commensurable

words in G, then for every µ > 0, ǫ ≥ ǫ0 and ρ > 0 there exists a number
n > 0 such that Rn satisfies C(ǫ, µ, ρ)–condition independent of a choice
of non-zero integers s1, . . . , sm.

(iii) If Y is a straight word in G then for every integer m the word
Y m has a minimal length in it’s conjugacy class.

Proof. Proof of part (ii) up to minor modifications repeats the proof of
lemma 4.1 in [Olsh93] which states the same property for m = 1.

Part (iii). Assume that Y s = TZT−1 for some T and that |Z| ≤ |Y s|−1
then for every k we have that

k |Z|+k ≤ k(|Y s|−1)+k = k(|Y s|) =
∣

∣

∣
Y sk

∣

∣

∣
≤ 2 |T |+

∣

∣

∣
Zk

∣

∣

∣
≤ 2 |T |+k |Z| ,

which implies that k ≤ 2 |T |. Contradiction.

Proof of Theorem 1.4. Let us first consider a set of pairwise non-commen-
surable elements x1, . . . , xm of infinite order. By remark 5.16 (i), for each
xi there exists a straight word Ȳxi

conjugate to xni

i for some ni > 0. Define
n0 =

∏

1≤i≤m ni. Clearly words Yx1
≡ Ȳ n0

x1
, . . . , Yxm ≡ Ȳ n0

xm
are pairwise

non-commensurable and, by parts (ii) and (iii) remark 5.16, there exists an
integer K > 0 such that the system RK = R(Y s1

1 , . . . , Y sm
m ,K) satisfies

C̃(ǫ, µ, ρ–condition for any choice of positive s1, . . . , sm. By Theorem 1.3,
the group N (RK) is free and the quotient G/N (RK) is non-elementary
hyperbolic.

Now consider an arbitrary set of elements x1, . . . , xm in G. If some of
the elements xi have finite orders ni1 , . . . , niq we define n0 = ni1 . . . niq
and replace the set x1, . . . , xm with xn0

1 , . . . , x
n0
m (which after deletion of

identity elements contains only the elements of infinite order). Hence we
can assume that all elements x1, . . . , xm are of infinite order. For every
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pair xi, xj (i < j) define a pair of nonzero integers kij , kji such that x
kij
i

is conjugate to x
kji
j if xi, xj are commensurable and let kij = kji = 1 if

the pair xi, xj is not commensurable. Define K0 =
∏

1≤i,j≤m kij and let
K0 = 1 if m = 1. We show by induction on m that

there exists an integer N such that N = N (xs1K0N
1 , . . . , xsmK0N

m ) is
free for any choice of integers s1, . . . , sm.

We have showed that the statement holds if the elements x1, . . . , xm are
pairwise non-commensurable and in particular if m = 1. Hence, in order
to prove the induction step, we may assume that (after reenumeration of
xi’s) x1 is commensurable to x2. Using the normality of N and the fact
that for every x ∈ G a subgroup generated by xa, xb is the equal to the
one generated by xgcd(a,b) we get that

N (xs1K0N
1 , xs2K0N

2 , ..., xsmK0N
m ) = N (x

k12s1
K0
k12

N

1 , xs2K0N
2 , ...) =

N (x
k21s1

K0
k12

N

2 , xs2K0N
2 , ...) = N (x

gcd(k21s1
K0
k12

,s2K0)N

2 , xs3K0N
3 , ..., xsmK0N

m ).

Thus N is generated by m− 1 elements and we may apply the induction
assumption completing the proof of theorem 1.4.

We recall the notions of an SQ-universal group and a CEP-subgroup.
A group G is said to be SQ–universal if every countable group K embeds
in a quotient of G. Let H be a subgroup of G, then H is said to have
a congruence extension property (CEP) if for every subgroup K, K ⊳H
there exists a subgroup K1, K1 ⊳ G, such that K1 ∩H = K. It is easy to
see that if the group G has a free infinitely generated CEP-subgroup then
G is SQ–universal (see, for example, Proposition [Olsh95]).

Proof of Corollary 1.5. (i) If G is non-elementary, there exists a pair of
non-commensurable straight words X1, X2 in G (see for example [Olsh93],
Lemma 1.14). By Remark 5.16, there exists a number n such that R =
R(X1, X2, n) satisfies the small cancellation property C̃(ǫ, µ, ρ–condition
for sufficiently small µ and hence N (R) is a free group by Theorem 1.4.
The rank N (R) is greater then 1 because X1, X2 are non-commensurable.

(ii) It is a result of Olshanskii [Olsh95] that
(*) inside every non-elementary subgroup of G there exists a free

countably generated CEP-subgroup in G (Theorem 4, [Olsh95]);
Consider a free normal subgroup N in G of rank greater then 1. There

exists a free infinite rank CEP-subgroup N1 in G, N1 < N by (*). Hence
for every countable group H there exists M1 ⊳ N1 such that H ∼= N1/M1.
By congruence extension property, the (normal in G) subgroup M =MG

1

satisfies M ∩H = M1, so H embeds in G/M . Clearly M = MG
1 is free

(being a subgroup of a free group N ), and thus (ii) is proved.
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