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Abstract. CI-algebras are a generalization of BE-algebras
and dual BCK/BCI/BCH-algebras. In this paper filters of CI-
algebras are considered. Given a subset of a CI-algebra, the least
filter containing it is constructed. An equivalent condition of the
filters using the notion of upper sets is provided.

1. Introduction

In 1966, Y. Imai and K. Iséki [3] introduced the notion of a BCK-algebra.

There exist several generalizations of BCK-algebras, such as BCI-algebras

[4], BCH-algebras [2], BCC-algebras [8], BH-algebras [5], d-algebras [12],

etc. In [6], H. S. Kim and Y. H. Kim introduced the notion of a BE-algebra

as a dualization of a generalization of a BCK-algebra. They defined and

studied the concept of a filter in BE-algebras. This concept was also

investigated in [10] and [7]. As a generalization of BE-algebras, B. L.

Meng [9] introduced the notion of CI-algebras and discussed its important

properties.

In this paper, we consider filters in CI-algebras. Given a subset of a

CI-algebra, we make the least filter containing it. We provide an equivalent

condition of the filters using the notion of upper sets.

2. Preliminaries

Definition 2.1. ([9]) A CI-algebra is an algebra (X; ∗, 1) of type (2, 0)

satisfying the following axioms:
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(CI-1) x ∗ x = 1,

(CI-2) 1 ∗ x = x,

(CI-3) x ∗ (y ∗ z) = y ∗ (x ∗ z) .

A CI-algebra X is said to be a BE-algebra if for all x ∈ X

(BE) x ∗ 1 = 1.

Throughout this paper X will denote a CI-algebra. We introduce a

relation ≤ on X by x ≤ y if and only if x ∗ y = 1.

Example 2.2. Let X = {1, a, b, c} and ∗ be defined by the following

table:
∗ 1 a b c

1 1 a b c

a 1 1 1 c

b 1 1 1 c

c c c c 1

Then (X, ∗, 1) is a CI-algebra, which is not a BE-algebra.

For any x1, . . . , xn, a ∈ X, we define

n
∏

i=1

xi ∗ a = xn ∗ (· · · ∗ (x1 ∗ a) · · · ).

Proposition 2.3. ([9]) For any x, y ∈ X we have

(a) y ∗ ((y ∗ x) ∗ x) = 1,

(b) 1 6 x ⇒ x = 1.

Definition 2.4. ([11]) A CI-algebra X is said to be transitive if for all

x, y, z ∈ X,

y ∗ z 6 (x ∗ y) ∗ (x ∗ z).

It is easily seen that the CI-algebra X of Example 2.2 is transitive.

Consider the following example.

Example 2.5. Let X = {1, a, b, c, d} and ∗ be defined by the following

table:

∗ 1 a b c d

1 1 a b c d

a 1 1 b c d

b 1 1 1 1 d

c 1 a c 1 d

d d d d d 1

Then (X, ∗, 1) is a CI-algebra. Since b∗a = 1 and (c∗b)∗(c∗a) = c∗a = a,

X is not transitive.
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Lemma 2.6. ([11]) If a CI-algebra X is transitive, then for all x, y, z ∈ X,

x 6 y implies z ∗ x 6 z ∗ y.

Lemma 2.7. Let X be a transitive CI-algebra and let x, y ∈ X such

that x ∗ y = 1. Then for all a1, . . . , an ∈ X,
∏n

i=1
ai ∗ x = 1 implies

∏n
i=1

ai ∗ y = 1.

Proof. We have x 6 y and from Lemma 2.6 we see that

1 =
n
∏

i=1

ai ∗ x 6

n
∏

i=1

ai ∗ y.

Applying Proposition 2.3 (b) we conclude that
∏n

i=1
ai ∗ y = 1.

3. Filters

Following [9], a filter of X is a subset F of X such that for all x, y ∈ X:

(F1) 1 ∈ F ,

(F2) if x ∗ y ∈ F and x ∈ F , then y ∈ F .

By Fil(X) we denote the set of all filters in X. It is obvious that {1}, X ∈

Fil(X).

Example 3.1. Consider the CI-algebra X of Example 2.2. It is easy to

check that Fil(X) = {{1}, {1, a, b}, X}.

Proposition 3.2. If Fi (i ∈ I) are filters of X, then
⋂

i∈I Fi is a filter

of X.

Proof. Straightforward.

Proposition 3.3. Let F be a subset of X containing 1. Then F ∈ Fil(X)

if and only if for any a, b ∈ F and x ∈ X, a ∗ (b ∗ x) = 1 implies x ∈ F .

Proof. (⇐) Since 1 ∈ F , the condition (F1) holds. Suppose that a ∗ x ∈ F

and a ∈ F . By Proposition 2.3 (a), a ∗ [(a ∗ x) ∗ x] = 1. Then x ∈ F and

hence (F2) is true. Therefore F is a filter of X.

(⇒) Let F ∈ Fil(X). Assume a, b ∈ F and x ∈ X such that a∗(b∗x) =

1. From (F1) we obtain a ∗ (b ∗ x) ∈ F . Applying (F2) twice we have

x ∈ F .

By induction we easily obtain

Corollary 3.4. Let F be a subset of X containing 1. Then F ∈ Fil(X) if

and only if for any a1, . . . , an ∈ F and x ∈ X,
∏n

i=1
ai ∗ x = 1 implies

x ∈ F .
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Definition 3.5. For every subset A ⊆ X, the smallest filter of X which

contains A, that is, the intersection of all filters F ⊇ A, is said to be the

filter generated by A, and will be denoted [A). Obviously, [∅) = {1}.

Theorem 3.6. Let A be a nonvoid subset of a transitive CI-algebra X.

Then

[A) = {x ∈ X : x = 1 or
∏n

i=1
ai ∗ x = 1 for some a1, . . . , an ∈ A}.

Proof. Set F = {x ∈ X : x = 1 or
∏n

i=1
ai∗x = 1 for some a1, . . . , an ∈ A}.

Since a ∗ a = 1 for all a ∈ A, we obtain A ⊆ F . Obviously, 1 ∈ F . Let

x ∗ y ∈ F and x ∈ F . To prove that y ∈ F , we will consider three cases.

Case 1: x = 1.

Then y = 1 ∗ y ∈ F.

Case 2: x ∗ y = 1 and x 6= 1.

Since x ∈ F and x 6= 1, we conclude that
∏n

i=1
ai ∗ x = 1 for some

a1, . . . , an ∈ A. From Lemma 2.7 it follows that
∏n

i=1
ai ∗y = 1. Therefore

y ∈ F .

Case 3: x ∗ y 6= 1 and x 6= 1.

Then there are a1, . . . , an, b1, . . . , bm ∈ A such that
∏n

i=1
ai ∗ (x ∗ y) = 1

and
∏m

j=1
bj ∗ x = 1. Applying (CI-3) we deduce that x ≤

∏n
i=1

ai ∗ y.

From Lemma 2.6 we see that

1 =
m
∏

j=1

bj ∗ x 6

m
∏

j=1

bj ∗

(

n
∏

i=1

ai ∗ y

)

.

By Proposition 2.3 (b),
∏m

j=1
bj ∗ (

∏n
i=1

ai ∗ y) = 1. Hence y ∈ F , and so

F is a filter of X.

Suppose now that U is any filter of X containing A. Let x ∈ F . If x = 1,

then obviously x ∈ U . Assume that x 6= 1. Then there are a1, . . . , an ∈ A

such that
∏n

i=1
ai ∗ x = 1. Since A ⊆ U , it follows that a1, . . . , an ∈ U .

Therefore x ∈ U by Corollary 3.4. Thus F ⊆ U and hence F = [A).

Let F1, F2 ∈ Fil(X). We define the meet of F1 and F2 (denoted by

F1 ∧ F2) by F1 ∧ F2 = F1 ∩ F2 and the join of F1 and F2 (denoted by

F1 ∨ F2) by F1 ∨ F2 = [F1 ∪ F2). We note that (Fil(X);∧,∨) is a lattice.

Moreover, by Proposition 3.2 we have

Theorem 3.7. (Fil(X);∧,∨) is a complete lattice.

4. Upper sets

For any x, y ∈ X, we define

A(x, y) = {z ∈ X : z = 1 or x ∗ (y ∗ z) = 1}
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and

A(x) = {z ∈ X : z = 1 or x ∗ z = 1}.

Applying (CI-2) we conclude that A(x) = A(1, x).

The set A(x) (resp. A(x, y)) is called an upper set of x (resp. of x and

y). We say that a subset A of X is an upper set of X if A = A(x, y) for

some x, y ∈ X. By US(X) we denote the set of all upper sets in X.

Remark 4.1. By (CI-3), A(x, y) = A(y, x) for all x, y ∈ X.

Example 4.2. Let X = {1, a, b} and ∗ be defined by the following table:

∗ 1 a b

1 1 a b

a a 1 1

b a 1 1

.

Then (X, ∗, 1) is a CI-algebra. For x, y ∈ X, we have

A(x, y) =

{

X if x 6= y and (x = 1 or y = 1)

{1} otherwise.

Since Fil(X) = {{1}, X}, we see that Fil(X) = US(X).

In general, not every filter is an upper set and not every upper set is a

filter. Indeed, we consider the following example.

Example 4.3. Let X be the CI-algebra of Example 2.2. We have (see Ex-

ample 3.1) Fil(X) = {{1}, {1, a, b}, X}. It is easy to check that US(X) =

{{1}, {1, a, b}, {1, c}}. Therefore X is not an upper set of X and {1, c} is

not a filter in X.

Lemma 4.4. For every x, y ∈ X,

(a) x ∈ A(x),

(b) 1 ∈ A(x, y) and 1 ∈ A(x),

(c) if y ∗ 1 = 1, then A(x) ⊆ A(x, y),

(d) if y ∗ 1 6= 1, then A(x)− {1} ⊆ X −A(x, y),

(e) if A(x) is a filter of X and y ∈ A(x), then A(x, y) ⊆ A(x).

Proof. (a) Let x ∈ X. Since x ∗ x = 1, we have x ∈ A(x).

(b) By the definition of upper sets.

(c) Let y ∗ 1 = 1 and let z ∈ A(x). If z = 1, then obviously z ∈ A(x, y).

Suppose that x ∗ z = 1. Hence y ∗ (x ∗ z) = y ∗ 1 = 1 and therefore

z ∈ A(y, x) = A(x, y). Consequently, A(x) ⊆ A(x, y).

(d) Let y ∗ 1 6= 1 and z ∈ A(x) − {1}. Then x ∗ z = 1 and applying

(CI-3) we get x ∗ (y ∗ z) = y ∗ (x ∗ z) = y ∗ 1 6= 1. Thus z /∈ A(x, y) and

we conclude that A(x)− {1} ⊆ X −A(x, y).
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(e) Let A(x) be a filter of X and y ∈ A(x). If z ∈ A(x, y), then

z = 1 or x ∗ (y ∗ z) = 1. In the first case z = 1 ∈ A(x), in the second

one x ∗ (y ∗ z) ∈ A(x). Since A(x) is a filter and x, y ∈ A(x), we obtain

z ∈ A(x).

Theorem 4.5. Let F be a nonvoid subset of a CI-algebra X. Then F is a

filter of X if and only if A(x, y) ⊆ F for all x, y ∈ F .

Proof. Suppose that F is a fillter of X. Let x, y ∈ F and z ∈ A(x, y).

Then z = 1 or x ∗ (y ∗ z) = 1. Obviously z = 1 ∈ F . If x ∗ (y ∗ z) = 1, then

applying twice (F2) we obtain z ∈ F. Hence A(x, y) ⊆ F.

Now let A(x, y) ⊆ F for all x, y ∈ F . Since F 6= ∅, there exists z ∈ F.

By definition, 1 ∈ A(z, z) ⊆ F and therefore (F1) holds. Let x ∗ y ∈ F

and x ∈ F . By (CI-1), (x ∗ y) ∗ (x ∗ y) = 1 and hence y ∈ A(x ∗ y, x) ⊆ F .

Thus (F2) also holds and consequently, F is a filter of X.

Proposition 4.6. If F is a filter of X, then F =
⋃

x,y∈F A(x, y).

Proof. Let F be a filter. From Theorem 4.5 it follows that A(x, y) ⊆ F for

all x, y ∈ F . Hence
⋃

x,y∈F A(x, y) ⊆ F.

Now let z ∈ F . By Lemma 4.4 (a),

z ∈ A(z) = A(1, z) ⊆
⋃

x,y∈F

A(x, y).

Then F ⊆
⋃

x,y∈F A(x, y).

Proposition 4.7. If F is a filter of X, then F =
⋃

x∈F A(x).

Proof. Let F be a filter and let z ∈ F . By Lemma 4.4 (a), z ∈ A(z) ⊆
⋃

x∈F A(x). Therefore F ⊆
⋃

x∈F A(x). From Theorem 4.5 we conclude

that A(x) = A(1, x) ⊆ F for all x ∈ F . Hence
⋃

x∈F A(x) ⊆ F and

consequently, F =
⋃

x∈F A(x). �
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