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Abstract. Some influential families of subgroups such as

pronormal subgroups, contranormal subgroups, and abnormal sub-

groups, their generalizations, characterizations, interplays between

them and the group, and their connections to other types of sub-

groups have been considered.

Introduction

Groups with certain prescribed properties of subgroups form one of the

central subjects of research in group theory. Their investigation intro-

duced many important notions such as the finiteness conditions, locally

nilpotence, locally solubility, group ranks, and others. Choosing specific

prescribed properties and concrete families of subgroups which posses

these properties, we come to distinct classes of groups. Among many oth-

ers, the following restrictive properties have been considered by numerous

authors: the normality, generalized normality, to be abelian, nilpotency,

complementability, transitivity, supersolubility, density, the minimal and

maximal conditions, different restrictions on important characteristics

of groups (in particular, on distinct ranks), other finiteness conditions.

Topological and linear groups with the restrictions on their systems of

subgroups have been also investigating.

The roots of these investigations lie in the famous classical paper due

to R. Dedekind [19], in which he completely described finite non-abelian
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groups whose all subgroups are normal (the Hamiltonian groups). Recall

that abelian and Hamiltonian groups together form the named in honor

of R. Dedekind the class of Dedekind groups (i.e. groups with only normal

subgroups). Later, R. Baer obtained a description of all infinite and finite

Hamiltonian groups [3]. As it has been shown, such groups are direct

products of a quaternion group, an elementary abelian 2-group, and an

abelian periodic group with elements of only odd orders. In their famous

paper [55], G. Miller and H. Moreno described the finite groups whose

all proper subgroups are abelian. In this setting, we need to mention the

remarkable article [68], in which O. Yu. Schmidt completely described

finite groups whose all proper subgroups are nilpotent. O.Yu. Schmidt

[69] continuing farther the Dedekind’s research, described finite groups

G having only one class of non-normal subgroups. Later, in the paper

[70], he considered finite groups having only two classes of non-normal

subgroups. As an evidence of nowadays actuality of these Schmidt’s results,

we can mention that these researches were continued in [76], generalized

in [62], and quite recently they have been just repeated in [13] and [57].

The mentioned above Schmidt’s works showed that normal subgroups

and their generalizations quite strongly influence the structure of a finite

group. Classical results of S.N. Chernikov concerning groups whose all

infinite subgroups are normal, groups whose all non-abelian subgroups are

normal [16, 17], and groups whose infinite abelian subgroups are normal

[18] justified this point for infinite groups. The influence on the structure

of a group such generalizations of normal subgroups as the subnormal

subgroups, ascendant subgroups, permutable subgroups, almost normal

subgroups, normal-by-finite subgroups and many others, became one of the

central themes in infinite group theory. Numerous important results have

been obtained in this area by many algebraists, containing S.N. Chernikov,

R. Baer, P. Hall, B.H. Neumann, V.M. Glushkov, M.I. Kargapolov, S.E.

Stonehewer, J. Wiegold, B. Hartley, D.J. Robinson, D.I. Zaitsev, M.J.

Tomkinson, J.S. Wilson, J.C. Lennox, L.A. Kurdachenko, M.R. Dixon, H.

Smith, C. Casolo, I.Ya. Subbotin, N.F. Kuzennyj, F.N. Liman.

Meanwhile, some other important types of subgroups having significant

influence on the structure of a group have been introduced. Among them

are such well-known subgroups as the abnormal, pronormal, contranormal,

permutable, Carter subgroups, system normalizers, and so on.

A subgroup H of a group G is called abnormal in G if g ∈ 〈H,Hg〉

for each element g of G. Abnormal subgroups have appeared in the paper

[29] due to P. Hall, while the term "an abnormal subgroup" itself belongs

to R. Carter [14].
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Later, P. Hall has introduced the following generalization of abnormal

subgroups. A subgroup H of a group G is said to be pronormal in G if

for every g ∈ G the subgroups H and Hg are conjugate in the subgroup

〈H,Hg〉. Such important subgroups of finite soluble groups as Sylow

subgroups, Hall subgroups, system normalizers, and Carter subgroups are

pronormal subgroups.

As we can see, in these definitions a group does not need to be fi-

nite. However, these subgroups first have been introduced and intensively

studied in finite groups. Many interesting and important results on finite

groups have been proven in connection with these concepts. In infinite

groups, the study of pronormal and abnormal subgroups has begun much

later. Z.I. Borevich was one of the initiators of this study. He came to the

necessity of this investigation studying arrangements of subgroups in linear

groups. In the survey [2], some new types of pronormal subgroups and their

generalizations have been introduced, and some connections between them

have been established. An initial program of investigations in this area

has been also outlined there. Unfortunately, when Z.I. Borevich passed

away, these researches were no longer continued in St Petersburg. At the

same time, in the cycle of their articles N.F. Kuzennyi and I.Ya. Subbotin

initiated consistent investigation of pronormal subgroups in infinite groups.

Later, other mathematicians joined and actively contributed in this re-

search, and this part of group theory became rich on many interesting

results and new robust concepts. One of the main goals of our survey is

to give a snap shot of the current stage of this theory.

1. Abnormal subgroups, their interplays

and generalizations

By its meaning, the abnormality is an antagonist to the normality: a

subgroup of a group is simultaneously normal and abnormal only if it

coincides with the group. The maximal non-normal subgroups are trivial

examples of abnormal subgroups. More interesting here is the well-known J.

Tits example: the subgroup T(n,K) of all triangular matrices is abnormal

in the general linear group GL(n, F ) over a field F . Every Carter subgroup

(that is a nilpotent self-normalizing subgroup) of a finite soluble group is

abnormal (R.W. Carter [14]). In the mentioned paper, R.W. Carter also

was able to obtain an important following characterization of abnormal

subgroups. But first we need the following simple concept.

Let G be a group and G0 be a subgroup of G. A subgroup H is called

intermediate for G0 if G0 ≤ H ≤ G [2]. Z.I. Borevich and his collaborators
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studied a variety of properties of the lattices of all intermediate subgroups

for a fixed subgroup G0 (see [10, 12, 11, 25, 2]).

Theorem 1.1 [14]. Let G be a group and H a subgroup of G. Then H

is abnormal in G if and only if the following two conditions hold:

(i) If K is an intermediate subgroup for H, then K is self-normalizing.

(ii) If K, L are two intermediate subgroup for H such that L = x−1Kx,

then K = L.

In the case of soluble groups, the condition (ii) could be omitted. For

finite soluble groups this fact is mentioned in the book of B. Huppert [33,

p. 733, Theorem 11.17]. A very power generalization of this statement

on infinite groups has been obtained by L.A. Kurdachenko and I.Ya.

Subbotin in the paper [45]. This last result permits the following wide

generalization.

A group G is called an Ñ -group if G satisfies the following condition:

If M , L are subgroup of G such that M is maximal in L, then M is

normal in L.

Remark that the property “to be an Ñ−group” is local [49, § 8]. In

particular, every locally nilpotent group is an Ñ -group, but converse is not

true [78]. We also observe that a group G is an Ñ -group if and only if

every subgroup of G is a member of some Kurosh-Chernikov series of G

[49, § 8].

Let G be a group and S be a family subgroup of G. Then S is said to

be a Kurosh-Chernikov series, if it satisfies the following conditions:

(KC 1) 〈1〉 , G ∈ S;

(KC 2) for each pair A,B of subgroups from S either is A ≤ B or

B ≤ A;

(KC 3) for every subfamily L of S the intersection of all members of L

belongs to S and the union of all member of L belongs to S; in particular,

for each non-identity element x ∈ G the union Vx of all members of

S excluding the element x belongs to S, and the intersection Λx of all

members of S excluding the element x belongs to S;

(KC 4) for each non-identity element x ∈ G the subgroup Vx is normal

in Λx.

The factor-groups Λx/Vx are called factors of the series S.

If every subgroup of S is normal in G, then S is called the normal

Kurosh-Chernikov series.
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These and other families have been introduced in the classical work of

A.G. Kurosh and S.N. Chernikov [49]. In the paper [49], such series have

been named normal and invariant.

Let X be a class of groups. Recall that a group G is said to be a

hyper-X-group if G has an ascending series of normal subgroups whose

factors belong to the class X.

Theorem 1.2. Let G be a hyper-Ñ -group and H be a subgroup of G.

Then H is abnormal in G if and only if every intermediate subgroup for

H is self-normalizing.

Proof. If H is abnormal subgroup of G and K ≥ H , then NG(K) = K by

Theorem 1.1. Let

〈1〉 = L0 ≤ L1 ≤ ...Lα ≤ Lα+1 ≤ ...Lγ = G

be an ascending series of normal subgroups whose factors are Ñ -group.

We will prove that H is abnormal in LαH for each α ≤ γ. Put D =

HL1. Choose an arbitrary element g ∈ D and consider the subgroup

K = 〈H,Hg〉. Without loss of generality we may assume that g ∈ L1.

Suppose the contrary, that is g /∈ K. The inclusion H ≤ K implies that

K = H(K ∩ L1). Clearly K ∩ L1 is normal in K, in particular, K ∩ L1 is

H-invariant. Since g /∈ K, g /∈ K ∩ L1. Put V = 〈K ∩ L1, g〉. We choose a

subgroup M of 〈K ∩ L1, g〉, which is maximal relative to the properties

K ∩ L1 ≤ M and g /∈ M . By this choice, M is a maximal subgroup of V .

Since V is an Ñ -group, M is normal in V . In particular, Mg = M and

(K∩L1)
g ≤ M . If h ∈ H , then [h, g] = h−1hg ∈ K, that is [h, g] ∈ K∩L1.

We have now hg = h[h, g] ∈ H(K ∩ L1) = K for each element h ∈ H.

Let y ∈ M, h ∈ H. Consider the element g−1(h−1yh)g = g−1h−1yhg.

Since ghg−1h−1 = b ∈ K ∩ L1, g
−1h−1 = h−1g−1b. Similarly hg = agh

for some element a ∈ K ∩ L1. Now we have

g−1h−1yhg = h−1g−1byagh = h−1(g−1byag)h.

The inclusions K ∩ L1 ≤ M and (K ∩ L1)g ≤ M imply g−1h−1yhg ∈

h−1Mh, that is, g−1(h−1Mh)g = h−1Mh. Let C =
⋂

h∈H

Mh. By proved

above we have Cg = C. The inclusion K ∩ L1 ≤ M implies K ∩ L1 =

(K ∩ L1)
h ≤ Mh for each h ∈ H, so that K ∩ L1 ≤ C. Furthermore,

Hg ≤ K = H(K ∩ L1) ≤ HC.

It follows that (HC)g = HgCg ≤ HC. In other words, g ∈ NG(HC).
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Since

HC ∩ L1 = (H ∩ L1)C ≤ (K ∩ L1)C = C,

and C ≤ M, g /∈ HC. On the other hand, by our conditions, HC is

self-normalizing. This contradiction proves that g ∈ 〈H,Hg〉. Hence H is

abnormal in HL1.

Suppose that we have already proved that H is abnormal in LαH for

all α < γ. Choose an arbitrary element x ∈ G and consider the subgroup

〈H,Hx〉. First suppose that γ is a limit ordinal. Then there is an ordinal

α < γ such that x ∈ Lα. By the induction hypothesis, H is abnormal in

LαH , so that x ∈ 〈H,Hx〉. Assume now that γ is not a limit ordinal. Put

W = Lα−1. If x ∈ WH, then all is proved. So we must consider the case

when x /∈ WH. Put X/W = 〈HW/W,xW 〉. Choose in X/W a subgroup

Y/W , which is maximal relative to the properties HW/W ≤ Y/W and

xW /∈ Y/W . By such choice, Y/W is a maximal subgroup of X/W . Since

X/W is an Ñ -group, Y/W is normal in X/W . Then X ≤ NG(Y ). Since

x /∈ Y, Y 6= NG(Y ). The inclusion H ≤ Y implies a contradiction. This

contradiction proves the inclusion x ∈ WH. This case has been already

considered. �

We obtain the following corollaries.

Corollary 1.3 [43]. Let G be a radical group and H be a subgroup of G.

Then H is abnormal in G if and only if every intermediate subgroup for

H is self-normalizing.

Corollary 1.4 [26]. Let G be a hyperabelian group and H be a subgroup

of G. Then H is abnormal in G if and only if every intermediate subgroup

for H is self-normalizing.

Corollary 1.5. Let G be a soluble group and H be a subgroup of G. Then

H is abnormal in G if and only if every intermediate subgroup for H is

self-normalizing.

The following very natural question arises in this connection:

Does Theorem 1.2 valid for all groups?

Even for some simple finite groups this question has a negative answer.

There is a corresponding counterexample in [2, § 7].

Let G be a group. A subgroup H is called weakly abnormal in G if

x ∈ H〈x〉 for each element x ∈ G [2].

Theorem 1.6 [2]. Let G be a group and H be a subgroup of G. Then H

is weakly abnormal in G if and only if every intermediate subgroup for H

is self-normalizing.
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Proof. Let H be a weakly abnormal subgroup of G and K ≥ H. If

x ∈ NG(K), then Kx = K, so that K〈x〉 = K. The inclusion x ∈ H〈x〉

implies x ∈ H〈x〉 ≤ K〈x〉 = K, and NG(K) = K.

Suppose contrary. Let x be an arbitrary element of G. Put L = H〈x〉.

We observe that L = 〈x−nHxn | n ∈ N〉. The equation

x−1(x−nHxn)x = x−n−1Hxn+1 ≤ L

implies x−1Lx = L. Since NG(L) = L, x ∈ L = H〈x〉, and H is weakly

abnormal. �

If H is weakly abnormal (respectively, abnormal) in G, and K is an

intermediate subgroup for H, then H is weakly abnormal (respectively,

abnormal) in K, and K is weakly abnormal (respectively, abnormal) in G.

In particular, if S be a family of weakly abnormal (respectively, abnormal)

subgroup of G, then the subgroup, generated by all subgroups of the family

S is weakly abnormal (respectively abnormal) in G. But we cannot justify

the same statement about a lattice of all weakly abnormal (respectively,

abnormal) subgroups, because the intersection of two weakly abnormal

(respectively, abnormal) subgroups is not necessary weakly abnormal

(respectively, abnormal). Here is the following simple example.

Let G = Sym(4) be the symmetric group of degree 4. Consider the

following subgroups of G:

H = 〈(12), (123)〉 and K = 〈(12), (1324)〉 .

Clearly, H = Sym(3); in particular, H is maximal in G. Since H is not

normal, H is abnormal in G. A subgroup K is a dihedral group of order 8,

so it of index 3 in G, and hence K is a maximal subgroup of G. Clearly,K is

not normal, so that K is abnormal in G. We have D = H∩K = 〈(12)〉 . Let

x = (13)(24), then Dx =〈(34)〉, and L = D〈x〉 = 〈D,Dx〉 = 〈(12), (34)〉.

The subgroup D is normal in L, in particular, L is not self-normalizing.

Theorem 1.1 shows that D is not abnormal in G, and Theorem 1.6 shows

that D is not weakly pronormal in G.

Consider now the following chain of subgroups D < H < G. Clearly, D

is maximal in H , but not normal, so that D is abnormal in H . A subgroup

H is abnormal in G. However, D is not abnormal in G. Consequently, the

property “to be an abnormal subgroup” is not transitive. However there

exists the following form of transitivity of abnormality.

Proposition 1.7 (P. Hall). Let G be a group and H be a normal subgroup

of G. If a subgroup D is abnormal in DH and DH is abnormal in G,
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then D is abnormal in G.

Proof. Let x be an arbitrary element of G. Since DH is an abnormal

subgroup of G, x ∈ 〈DH, (DH)x〉 = H 〈D,Dx〉. Then x = hy where

h ∈ H, y ∈ 〈D,Dx〉 . Since D is abnormal in DH, then h ∈ H ≤ DH

implies

h ∈
〈

D,Dh
〉

=
〈

D, (xy−1)−1D(xy−1)
〉

≤ 〈D,Dx, y〉 = D,Dx.

It follows that x = hy ∈ 〈D,Dx〉, which means that D is abnormal in G.

�

In connection with this, it is worth mentioning the following most

general yet result on transitivity of abnormality.

Recall that a group G is called an N -group or a group with the nor-

malizer condition if H 6= NG(H) for each subgroup H.

Theorem 1.8. (L.A. Kurdachenko, I.Ya. Subbotin [45]). Let G be a

group and H be a normal subgroup of G. Suppose that G/H has no

proper abnormal subgroups and H satisfies the normalizer condition. Then

abnormality is transitive in G.

Following J.S.Rose [67], a subgroup H of a group G is called contra-

normal if HG = G.

Abnormal subgroups are contranormal. However not every contranor-

mal subgroup is abnormal. The following example justifies this.

Let P be a quasicyclic 2-group, that is

P =
〈

an | a21 = 1, a2n+1 = an, n ∈ N
〉

.

Being abelian, P has an automorphism α such that α(a) = a−1 for all

a ∈ P . Clearly, |α| = 2. Consider a semi-direct product G = P ⋋ 〈d〉 where

|d| = 2 and ad = α(a) for all a ∈ P . Then the series

〈1〉 < 〈a1〉 > 〈a2〉 < ... 〈an〉 < ...P < G

is the upper central series of G. Being hypercentral, G satisfies the nor-

malizer condition. Hence G has no proper abnormal subgroups. We have

d−1and = a−1
n , and this implies that a−1

n d−1and = a−2
n = a−1

n−1
. This

equation shows that 〈d〉G = G, so that 〈d〉 is a contranormal subgroup

of G.

If H is an abnormal subgroup of a group G and K is a subgroup

containing H , then H is abnormal in K, in particular, H is contranormal
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in K.

A subgroup H of a group G is said to be nearly abnormal, if H is

contranormal in K for every subgroup K containing H.

From Theorem 1.2 we obtain

Corollary 1.9. Let G be a hyper-Ñ -group and H be a subgroup of G.

Then H is nearly abnormal in G if and only if H is abnormal in G.

Proof. If H is an abnormal subgroup of G, then,as we saw above, H is

nearly abnormal. Suppose that H is nearly abnormal in G. Let K be an

arbitrary subgroup containing H. Suppose that NG(K) = L 6= K. Then

K is normal in L. The inclusion H ≤ K implies that HL ≤ K, so that

H is not contranormal in L. This contradiction shows that NG(K) = K.

Theorem 1.2 proves now that H is abnormal in G. �

The Carter subgroups are an important subclass of abnormal subgroups.

These subgroups have been introduced by R. Carter [14] as the self-

normalizing nilpotent subgroups of a finite group. Some attempts of

extending the definition of a Carter subgroup to infinite groups were

made by S.E. Stonehewer [72, 73], A.D. Gardiner, B. Hartley and M.J.

Tomkinson [23], and M.R. Dixon [20]. In [45], this concept have been

extended to the class of nilpotent-by-hypercentral (not necessary periodic)

groups.

We may define a Carter subgroup of a finite metanilpotent group as a

minimal abnormal subgroup. The first logical step here is to consider the

groups whose locally nilpotent residual is nilpotent.

Let G be a group, A be a normal subgroup of G. We say that A

satisfies the condition Max−G (respectively, Min−G), if A satisfies the

maximal (respectively, the minimal) condition for G-invariant subgroups.

Let X be a class of groups. A group G is said to be an artinian-by-X-

group if G has a normal subgroup H such that G/H ∈ X and H satisfies

Min−G.

Let X be a class of groups, G be a group and

R(X) = {H | H is a normal subgroup of G such that G/H ∈ X}.

Then the intersection GX of all normal subgroups of the family R(X) is

called the X-residual of the group G.

We will deal with artinian-by-hypercentral groups whose locally nilpo-

tent residuals are nilpotent. This is a natural first step. Since these groups

are generalizations of finite metanilpotent groups, for the definition of the

Carter subgroups in this class we may use some characterizations of these

subgroups that are valid for finite metanilpotent groups.
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Theorem 1.10 (L.A. Kurdachenko, I.Ya. Subbotin [43]). Let G be an

artinian-by-hypercentral group and suppose that its locally nilpotent resid-

ual K is nilpotent. Then G contains a minimal abnormal subgroup L.

Moreover, L is a maximal hypercentral subgroup and it contains the up-

per hypercenter of G. In particular, G = KL. If H is another minimal

abnormal subgroup, then H conjugates with L.

Corollary 1.11 [43]. Let G be an artinian-by-hypercentral group and

suppose that its locally nilpotent residual K is nilpotent. Then G contains

a hypercentral abnormal subgroup L. Moreover, L is a maximal hypercentral

subgroup and it contains the upper hypercenter of G. In particular, G =

KL. If H is another hypercentral abnormal subgroup, then H conjugates

with L.

Let G be an artinian-by-hypercentral group with a nilpotent hyper-

central residual. A subgroup L is called a Carter subgroup of a group G

if H is a hypercentral abnormal subgroup of G (or, equivalently, H is a

minimal abnormal subgroup of G).

A Carter subgroup in finite soluble group can be defined as a cover-

ing subgroup for the formation of nilpotent groups. As we shall see, this

characterization can be extended on the groups under consideration.

Recall that a subgroup H of a group G is said to be a LN-covering

subgroup if H is locally nilpotent and if S = HSLN for every subgroup

S that contains H. (Here SLN is the locally nilpotent residual of the

subgroup S).

Theorem 1.12 (L.A. Kurdachenko, I.Ya. Subbotin [43]). Let G be an

artinian-by-hypercentral group and suppose that its locally nilpotent residual

K is nilpotent. If L is a Carter subgroup of G, then L is a LN-covering

subgroup of G. Conversely, if H is a LN-covering subgroup of G, then

H is a Carter subgroup of G.

In a finite soluble group, the N-covering subgroups are exactly N-

projectors. Therefore a Carter subgroup of a finite soluble group can be

defined as an N-projector. This characterization can be also extended on

artinian-by-hypercentral groups.

Recall that a subgroup L of a group G is said to be a locally nilpotent

projector, if LH/H is a maximal locally nilpotent subgroup of G/H for

each normal subgroup H of a group G.

Theorem 1.13 (L.A. Kurdachenko, I.Ya. Subbotin [43]). Let G be an

artinian-by-hypercentral group and suppose that its locally nilpotent residual

K is nilpotent. If L is a Carter subgroup of G, then L is a locally nilpotent
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projector of G. Conversely, if H is a locally nilpotent projector of G,

then H is a Carter subgroup of G.

For some restricted classes of infinite groups, the Carter subgroups

could be defined more traditionally.

Let G be a group and C be a normal subgroup of G. Then C is said

to be a G-minimax if C has a finite series of G-invariant subgroups whose

infinite factors are abelian and either satisfy Min−G or Max−G.

A group G is said to be generalized minimax, if G is G-minimax.

Every soluble minimax group is obviously generalized minimax. How-

ever, the class of generalized minimax groups is significantly wider than

the class of soluble minimax groups.

Theorem 1.14 (L.A. Kurdachenko, J. Otal, I.Ya. Subbotin [35]). Let

G be a periodic generalized minimax group and suppose that its locally

nilpotent residual K is nilpotent. If L is a self-normalizing locally nilpotent

subgroup of G, then L is a LN-covering subgroup of G. In other words,

L is a Carter subgroup of G.

Following [42] we shall call normal and abnormal subgroups U-normal

(from “union” and “U-turn”). We observe that finite groups with only

U-normal subgroups have been considered in [22]. The locally soluble

(in the periodic case, locally graded) infinite groups with U-subgroups

have been studied in [75]. In [42], the groups with all U-normal subgroups

and the groups with transitivity of U-normality, have been completely

described.

Next natural question is regarding the structure of the groups whose

U-normal subgroups form a lattice. These groups are denoted as #U-

groups [47]. It is easy to see that the groups with no abnormal subgroups

are #U-groups.

Observe that a union of any two U-normal subgroups is U-normal.

However, the similar assertion is obviously false for intersections.

Note that in a soluble group, an abnormal subgroup R is exactly a

subgroup that is contranormal in all its intermediate subgroups [21]. The

condition "every contranormal subgroup is abnormal" (the CA-property)

is an amplification of the transitivity of abnormality (the TA-property).

Some simple examples show that the class of TA-groups is wider than the

class of CA-groups and does not coincide with the class of #U-groups.

The description of soluble CA-groups having #U-property was obtained

in [47].
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2. Pronormal subgroups, their interplays

and generalizations

The pronormality is an indirect union of abnormality and normality.

Besides of normal and abnormal subgroups, Sylow p-subgroups and Hall π-

subgroups of normal soluble subgroups of a finite group are other examples

of pronormal subgroups.

As for abnormality, we shall consider a weak variant of pronormality

Let G be a group. A subgroup H is called weakly pronormal in G if

the subgroups H and Hx conjugate in H〈x〉 for each element x ∈ G [2].

The inclusion 〈H,Hx〉 ≤ H〈x〉 shows that every pronormal subgroup is

weakly pronormal. The converse statement is not true – the correspondent

example can be found in [2].

Let G be a group and H be a subgroup of G. We say that H has the

Frattini property if for every subgroups K, L such that H ≤ K and K is

normal in L we have L = NL(H)K.

Theorem 2.1 [2]. Let G be a group and H be a subgroup of G. Then H

is weakly pronormal in G if and only if H has the Frattini property.

Proof. Suppose first that H is a weakly pronormal subgroup of G. Let

K, L be subgroups of G with the properties K ≥ H and K E L. For

each element x ∈ L, Hx = Hu for some element u ∈ H〈x〉. It follows

that H = ux−1Hxu−1. By the choice of the subgroups K and L we have

H〈x〉 ≤ KL = K. Thus v = xu−1 ∈ NL(H), or x = vu ∈ NL(H)K, which

implies that L = NL(H)K.

Conversely, assume that H has the Frattini property. If x is an arbitrary

element of G, then put K = H〈x〉 and L = 〈H,x〉. By such choice, K

is normal in L, so that L = NL(H)K. It follows that x = yz where

y ∈ NL(H) and z ∈ K. Then Hx = Hyz = Hz what proves that H is

weakly pronormal. �

Corollary 2.2. Let G be a group and H be a pronormal subgroup of G.

Then H has the Frattini property.

Corollary 2.3. Let G be a group and H be a weakly pronormal subgroup

of G. Then H is weakly abnormal in G if and only if H = NG(H).

Proof. If H is weakly abnormal subgroup of G, then H = NG(H) by

Theorem 1.6. Suppose that H is weakly pronormal and self-normalizing.

For each element x ∈ G we have Hx = Hu for some element u ∈ H〈x〉. It
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follows that H = ux−1Hxu−1, and therefore, v = xu−1 ∈ NG(H) = H.

Hence

x = vu ∈
〈

H,H〈x〉
〉

= H〈x〉

which shows that H is weakly abnormal in G. �

The following result clarifies relationships between weakly pronormal

and pronormal subgroups.

Theorem 2.4. [2]. Let G be a group and H be a subgroup of G. Then

H is pronormal in G if and only if the following conditions hold:

(i) H is weakly pronormal;

(ii) if L is a intermediate subgroup for H and g is an element of G

such that H ≤ Lg, then there exists an element x ∈ NG(H) with the

property Lx = Lg

Proof . Suppose first that H is pronormal subgroup of G. Corollary 2.2

shows that H satisfies (i). Let g be an element of G such that Lg ≥ H.

It follows that gHg−1 ≤ L, so that and
〈

H, gHg−1
〉

≤ L. Since H is

pronormal, there exists an element y ∈
〈

H, gHg−1
〉

such that y−1Hy =

gHg−1. It follows that x = yg ∈ NG(H). Observe that y ∈ L, and therefore

Lx = Lyg = Lg.

Conversely, suppose that H satisfies the conditions (i) and (ii). Let

g be an arbitrary element of G and put K = 〈H,Hg〉. Then gKg−1 =
〈

gHg−1, H
〉

≥ H. By (ii), there exists an element x ∈ NG(H) such that

x−1Kx = gKg−1. It follows that xg ∈ NG(K), thus K is normal in the

subgroup 〈K,xg〉 = L. By (i), L ≤ NL(H)K, in particular, xg = vy where

v ∈ NL(H), y ∈ K. Hence

Hg = Hxg = Hvy = Hy.

And finally just recall that y ∈ K = 〈H,Hg〉. �

Corollary 2.5. Let G be a group and H be a pronormal subgroup of G.

Then H is abnormal in G if and only if H = NG(H).

Proposition 2.6. Let G be a group and H be a subgroup of G. If H is

pronormal in G, then NG(H) is abnormal in G.

Proof. Let g be an arbitrary element of G and L = NG(H). Since H is

pronormal, then there is an element x ∈ 〈H,Hg〉 such that Hg = Hx.

It follows that gx−1 = u ∈ NG(H) = L. Thus g = ux ∈ 〈L, 〈H,Hg〉〉 ≤

〈L,Lg〉. �

For finite soluble groups, T.A. Peng obtained the following characteri-

zation of pronormal subgroups.
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Theorem 2.7 (T. A. Peng [61]). Let G be a finite soluble group and D

be a subgroup of G. Then D is pronormal in G if and only if D has the

Frattini property.

This characterization of pronormal subgroups could be extended on

infinite groups in the following way.

Theorem 2.8 (L.A. Kurdachenko, J. Otal, I.Ya. Subbotin [35]). Let G

be a hyper-N -group and D be a subgroup of G. Then D is pronormal in

G if and only if D has the Frattini property.

The following results are direct amplification of this theorem.

Corollary 2.9 (F. de Giovanni, G. Vincenzi [26]). Let G be a hyperabelian

group and D be a subgroup of G. Then D is pronormal in G if and only

if D has the Frattini property.

Corollary 2.10 Let G be a soluble group and D be a subgroup of G.

Then D is pronormal in G if and only if D has the Frattini property.

If H is a pronormal subgroup of a group G and L is an intermediate

subgroup for H , then H is pronormal in L. So Proposition 2.6 shows that

NL(H) is abnormal in L. We observe that every abnormal subgroup is

contranormal.

A subgroup H of a group G is called nearly pronormal if NL(H) is

contranormal in L for every intermediate for H subgroup L.

As we can see, every pronormal subgroup is nearly pronormal but the

converse statement is not true.

Let G be a special unitary group of 3× 3 matrices over the field F9

of order 9. This group is simple and its order is 6048. The multiplicative

group U(F9) is cyclic. Let g be an element such that 〈g〉 = U(F9). Let K

be a subgroup generated by the following matrices





0 0 1

0 2 0

1 0 0



 ,





0 0 2

0 2 0

2 0 0



 ,





g g2 g5

g5 0 g5

g g6 g5



 ,





1 g2 1

g2 0 g6

1 g6 1



 .

This subgroup is nearly pronormal, but not pronormal. The order of K

is 24. This group is soluble, but not nilpotent. We observe that K is

isomorphic to Sym(4).

Nevertheless, for some classes of generalized soluble groups the nearly

pronormallity coincides with pronormality.
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Proposition 2.11 (L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin [48]).

Let G be a group having an ascending series whose factors are abelian.

Then every nearly pronormal subgroup of G is weakly pronormal in G.

Theorem 2.12 (L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin[48]). Let

G be a hyper-N -group. Then every nearly pronormal subgroup of G is

pronormal in G.

Corollary 2.13 [48]. Let G be a soluble group. Then every nearly pronor-

mal subgroup of G is pronormal in G.

Corollary 2.14. Let G be a soluble group. Suppose that a subgroup H

satisfies the following condition:

If K is a subgroup containing H, then NK(H) is abnormal in K.

Then K is pronormal in G.

Corollary 2.15. (Wood G.J. [77]). Let G be a finite soluble group. Suppose

that a subgroup H satisfies the following condition:

if K is a subgroup containing H, then NK(H) is abnormal in K.

Then K is pronormal in G.

Remark also that for generalized pronormal subgroups the class of an

Ñ -group plays a very special role. The following Proposition justifies this.

Proposition 2.16. Let G be an Ñ -group and H be a nearly pronormal

subgroup of G. Then H is normal in G.

Proof. Suppose the contrary. Then NG(H) 6= G. In this case, there exists

an element x /∈ NG(H). Put L = 〈x,NG(H)〉, and pick in L a subgroup M

which is maximal relative to the properties NG(H) ≤ M and x /∈ M . By

such choice, M is a maximal subgroup of L. Since G is an Ñ -group, M is

normal in L. Since H is nearly pronormal in G, NL(H) is contranormal in

L, that is (NL(H))L = L. On the other hand, the inclusion NG(H) ≤ M

and the fact that M is normal in L imply that (NL(H))L ≤ M 6= L. This

contradiction shows that NG(H) = G, i.e. H is normal in G. �

Corollary 2.17. Let G be a locally nilpotent group and H be a nearly

pronormal subgroup of G. Then H is normal in G.

Proposition 2.18. Let G be an Ñ -group and H be a weakly pronormal

subgroup of G. Then H is normal in G.

Proof. Suppose the contrary. Then NG(H) 6= G. In this case, there exists

an element x /∈ NG(H). Put L = 〈x,NG(H)〉, and choose in L a subgroup

M which is maximal relative to the properties NG(H) ≥ M and x /∈ M .

By such choice, M is a maximal subgroup of L. Since G is an Ñ -group,
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M is normal in L. The inclusion H ≤ M and the fact that H is weakly

pronormal imply the equality L = MNL(H) = MNG(H). On the other

hand, NG(H) ≤ M , so that L = M , and we obtain a contradiction. This

contradiction shows that NG(H) = G, i.e. H is normal in G. �

Corollary 2.19. Let G be a locally nilpotent group and H be a weakly

pronormal subgroup of G. Then H is normal in G.

Corollary 2.20. Let G be an Ñ -group and H be a pronormal subgroup

of G. Then H is normal in G.

Corollary 2.21 (N.F. Kuzennyi, I.Ya Subbotin [52]). Let G be a locally

nilpotent group and H be a pronormal subgroup of G. Then H is normal

in G.

T.A. Peng has considered finite groups whose all subgroups are pronor-

mal. He proved it to be the groups in which the relation”to be normal

subgroup” is transitive.

A group G is said to be a T -group if every subnormal subgroup of G

is normal. A group G is said to be a T̄ -group, if every subgroup of G is a

T -group.

It should be noted that T -groups have been investigating for a long

period of time (see e.g. [1, 8, 24, 31, 30, 63, SK1988]). The structure of finite

soluble T -groups has been described by W. Gaschütz [24]. In particular, he

proved that every finite soluble T -group is a T̄ -group. Observe that a finite

T -group is metabelian. The infinite soluble T -groups have been studied

by D.J.S. Robinson [63]. A locally soluble T̄ -group has the following

structure.

Theorem 2.22 (D.J.S. Robinson [63]). Let G be a locally soluble T̄ -group.

(i) If G is not periodic, then G is abelian.

(ii) If G is periodic and L is the locally nilpotent residual of G, then

G satisfies the following conditions:

(a) G/L is a Dedekind group;

(b) Π(L) ∩Π(G/L) = ∅;

(c) 2 /∈ Π(L);

(d) every subgroup of L is G-invariant.

In particular, if L is non-identity, then L = [L,G].

Note that in general case, the locally nilpotent residual has no comple-

ment. In the paper [28], an related well-known sophisticated construction

has been developed. This construction, in particular, allows us to develop

some examples of periodic groups that are non-splitting extensions of
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its abelian Hall derived subgroup by an uncountable elementary abelian

2-group.

T.A. Peng proved the following result for finite soluble groups.

Theorem 2.23 (T.A. Peng [60]). Let G be a finite soluble group. Then

every subgroup of G is pronormal is and only if G is a T -group.

As the following theorem shows, the infinite case is much more com-

plicated.

Recall that a group is called locally graded, if every its non-identity

finitely generated subgroup has a proper subgroup of finite index.

Theorem 2.24 (N.F. Kuzennyi and I.Ya. Subbotin [51]). Let G be a

locally soluble group or a periodic locally graded group. Then the following

conditions are equivalent:

(i) every cyclic subgroup of G is pronormal in G;

(ii) G is a soluble T̄ -group.

The infinite groups whose subgroups are pronormal firstly have been

considered in [50]. The authors completely described such infinite locally

soluble non-periodic and infinite locally graded periodic groups. The main

result of that paper is the following appealing theorem.

Theorem 2.25 (N.F. Kuzennyi and I.Ya. Subbotin [50]). Let G be a

group whose subgroups are pronormal, and L be a locally nilpotent residual

of G.

(i) If G is periodic and locally graded, then G is a soluble T̄ -group in

which L is a complement to every Sylow Π(G/L)-subgroup.

(ii) If G is not periodic and locally soluble, then G is abelian.

Conversely, if G has this structure (i) – (ii), then every subgroup of

G is pronormal in G.

In the paper [65], the assertion (ii) has been extended to non-periodic

locally graded groups proving that in this case such groups still to be

abelian.

N.F. Kuzennyi and I. Ya. Subbotin have also completely described

the locally graded periodic groups in which all primary subgroups are

pronormal [53] and the infinite locally soluble groups in which all infinite

subgroups are pronormal [51]. They proved that in the infinite case, the

class of groups whose all subgroups are pronormal is a proper subclass

of the class of groups with the transitivity of normality. Moreover, it is

also a proper subclass of the class of groups whose primary subgroups are
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pronormal. However, the pronormality for all subgroups can be weakened

to the pronormality for only abelian subgroups [54].

In the paper [39], the groups whose subgroups are nearly pronormal

have been considered.

Theorem 2.26 (L.A. Kurdachenko, A. Russo, G. Vincenzi [39]). Let G

be a locally radical group.

(i) If every cyclic subgroup of G is nearly pronormal, then G is a

T̄ -group.

(ii) If every subgroup of G is nearly pronormal, then every subgroup

of G is pronormal in G.

If G is a finite group, then for each subgroup H there is a chain of

subgroups

H = H0 ≤ H1 ≤ ... ≤ Hn−1 ≤ Hn = G

such that Hj is maximal in Hj+1, 0 ≤ j ≤ n − 1. Generalizing this, J.

Rose has introduced the balanced chain connecting a subgroup H to a

group G, that is, the chain of subgroups

H = H0 ≤ H1 ≤ ... ≤ Hn−1 ≤ Hn = G

such that for each j, 0 ≤ j ≤ n − 1, either Hj is normal in Hj+1, or Hj

is abnormal in Hj+1. The number n is the length of this chain. He refers

appropriately to two consecutive subgroups Hj ≤ Hj+1 as forming a

normal link or respectively an abnormal link of this chain [66]. In finite

groups, every subgroup can be connected to a group by some balanced

chain.

It is natural to consider the case when all of these balanced chains

are quite short, i.e. their lengths are bounded by small numbers. If these

lengths are 1, then every subgroup is either normal or abnormal in a group.

Such finite groups were studied in [22]. Infinite groups of this kind and

some their generalizations were described in [75] and [21]. Moreover, in the

last paper, the groups whose subgroups are either abnormal or subnormal

have been considered. More general situation was considered in the paper

of L.A. Kurdachenko and H. Smith [41]. They investigated the groups,

whose subgroups are either self-normalizing or subnormal.

Observe that in the groups in which a normalizer of any subgroup

is abnormal, and in the groups in which every subgroup is abnormal in

its normal closure. the mentioned lengths are at most 2. It is logical to

choose these groups as the subjects of investigation.

It is interesting to observe that if G is a soluble T̄ -group, then every

subgroup of G is abnormal in its normal closure. As we mentioned above,
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for any pronormal subgroup H of a group G, the normalizer NG(H) is an

abnormal subgroup of G. So a subgroup having abnormal normalizers is a

generalization of a pronormal subgroup. There are examples showing that

this generalization is non-trivial.

The article [40] initiated the study of groups whose subgroups are

connected to a group by balanced chains of length at most 2. As we

recently mentioned, such groups are naturally related to the T -groups.

Theorem 2.27 (L.A. Kurdachenko, A. Russo, I.Ya. Subbotin, G. Vincenzi

[40]).

(i) Let G be a radical group. Then G is a T̄ -group if and only if every

cyclic subgroup of G is abnormal in its normal closure.

(ii) Let G be a periodic soluble group. Then G is a T̄ -group if and

only if its locally nilpotent residual L is abelian and the normalizer of each

cyclic subgroup of G is abnormal in G.

The following result from [40] provides us with the following new inter-

esting and useful characterization of groups with all pronormal subgroups.

Theorem 2.28 (L.A. Kurdachenko, A. Russo, I.Ya. Subbotin, G. Vin-

cenzi [40]). Let G be a periodic soluble group. Then every subgroup is

pronormal in G if and only if its locally nilpotent residual L is abelian

and a normalizer of every subgroup of G is abnormal in G.

For the non-periodic case, there exist non-periodic non-abelian groups

in which normalizers of all subgroups are abnormal [40]. On the other

hand, the non-periodic locally soluble groups in which all subgroups are

pronormal are abelian [50]. So, in the non-periodic case, we cannot count

on a similar to above characterization. However, we have the following

result.

Theorem 2.29 (L.A. Kurdachenko, A. Russo, I.Ya. Subbotin, G. Vincenzi

[40]). Let G be a non-periodic group with the abelian locally nilpotent

residual L. If a normalizer of every cyclic subgroup is abnormal and for

each prime p ∈ Π(L) the Sylow p-subgroup of L is bounded, then G is

abelian.

3. Generalized normality and criteria

of generalized nilpotency

The following well-known characterizations of finite nilpotent groups are

tightly connected to abnormality and pronormality.

A finite group G is nilpotent if and only if G has no proper abnormal

subgroups.



94 Some related to pronormality subgroup families

A finite group G is nilpotent if and only if its every pronormal subgroup

is normal.

Note that since a normalizer of a pronormal subgroup is abnormal,

the absence of abnormal subgroups is equivalent to the normality of all

pronormal subgroups.

The mentioned above results 2.18-2.21 can be reformulated in the

following way.

Let G be an Ñ -group, Then G has no proper abnormal subgroups.

Let G be a locally nilpotent group, then G has no proper abnormal

subgroups.

There exists an example of an Ñ -group which is not locally nilpotent

[78]. It follows that the absence of abnormal subgroups does not need

necessary imply the locally nilpotency of a group. Therefore the following

question is natural:

In what groups the absences of abnormal subgroups is equivalent to

locally nilpotency?

In other words, it would be interesting to obtain some criteria of

nilpotency in terms of abnormality and pronormality. In the paper [34],

the first such criterion was obtained.

Theorem 3.1 (L.A. Kurdachenko, J. Otal, I.Ya. Subbotin [34]). Let G

be a soluble generalized minimax group. If every pronormal subgroup of G

is normal (or, what is equivalent, G has no proper abnormal subgroups),

then G is hypercentral.

Let G be a group. Then the set

FC(G) = {x ∈ G | xG is finite}

is a characteristic subgroup of G which is called the FC-center of G. A

group G is an FC-group if and only if G = FC(G). Starting from the

FC-center, we construct the upper FC-central series of a group G

〈1〉 = C0 ≤ C1 ≤ ...Cα ≤ Cα+1 ≤ ...Cγ

where C1 = FC(G), Cα+1/Cα = FC(G/Cα) for all α < γ, and

FC(G/Cα) = 〈1〉.

The term Cα is called the α − FC-hypercenter of G, while the last

term Cγ of this series is called the upper FC-hypercenter of G. If Cγ = G,
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then the group G is called FC-hypercentral, and, if γ is finite, then G is

called FC-nilpotent.

The following criteria of hypercentrality have been obtained in [38].

Theorem 3.2 (L.A. Kurdachenko, A. Russo, G. Vincenzi [38]). Let G be a

group whose pronormal subgroups are normal. Then every FC-hypercenter

of G having finite number is hypercentral.

Let G be an FC-nilpotent group. If all pronormal subgroups of G are

normal, then G is hypercentral.

Let G be a group whose pronormal subgroups are normal. Suppose that

H is an FC-hypercenter of G having finite number. If C is a normal

subgroup of G such that C ≥ H and C/H is hypercentral, then C is a

hypercentral.

For periodic groups, the above results were obtained in [44].

Observe that the abnormal subgroups are an important particular

case of the contranormal subgroups: in the soluble groups, the abnormal

subgroups are exactly the subgroups that are contranormal in each sub-

group containing them. On the other hand, the abnormal subgroups are a

particular case of pronormal subgroups.

Pronormal subgroups are connected to contranormal subgroups in the

following way. If H is a pronormal subgroup of a group G and H ≤ K,

then NK(H) is an abnormal and hence contranormal subgroup of K.

Starting from the normal closure of H we can construct the normal

closure series of H in G

HG = H0 ≤ H1 ≤ ... Hα ≤ Hα+1 ≤ ...Hγ

by the following rule: Hα+1 = HHα for every α < γ, and Hλ =
⋂

µ<λ

Hµ

for a limit ordinal λ. The term Hα of this series is called the α-th normal

closure of H in G and will be further denoted by HG,α. The last term

Hγ of this series is called the lower normal closure of H in G and will be

denoted by HG,∞. Observe that every subgroup H is contranormal in its

lower normal closure.

The subgroup H of a group G is called descendant (in G), if H

coincides with its lower normal closure HG,∞. An important particular

case of descendant subgroups are subnormal subgroups. A subnormal

subgroup is exactly a descending subgroup having finite normal closure

series. These subgroups strongly affect structure of a group. For example,

it is not hard to prove that if every subgroup of a locally (soluble-by-

finite) group is descendant, then this group is locally nilpotent. If every
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subgroup of a group G is subnormal, then, by a remarkable result due

to W. Möhres [56], G is soluble. Subnormal subgroups have been studied

very thoroughly for quite a long period of time. We are not going to

consider this topic here since it has been excellently presented in the

survey of C. Casolo [15]. However, we need to admit that, with the

exception of subnormal subgroups, we have no significant information

regarding descendant subgroups. The next results connect the conditions

of generalized nilpotency to descendant subgroups.

Theorem 3.3 (L.A. Kurdachenko, I.Ya. Subbotin [44]). Let G be a group

every subgroup of which is descendant. If G is FC-hypercentral, then G

is hypercentral.

Theorem 3.4 (L.A. Kurdachenko, J. Otal, I.Ya. Subbotin [35]). Let G

be a soluble generalized minimax group. Then every subgroup of G is

descendant if and only if G is nilpotent.

If every subgroup of a group G is descendant, then G does not include

proper contranormal subgroups. The study of groups without contranor-

mal subgroups is a next logical step. We observe that every non-normal

maximal subgroup of an arbitrary group is contranormal. Since a finite

group whose maximal subgroups are normal is nilpotent, we come to the

following criterion of nilpotency of finite groups in terms of contranormal

subgroups:

A finite group G is nilpotent if and only if G does not contain proper

contranormal subgroups.

The question on existence of similar criterion for infinite groups is very

natural. However, in general, the absence of contranormal subgroups does

not imply nilpotency. In fact, there exist non-nilpotent groups all subgroups

of which are subnormal. The first such example has been constructed by H.

Heineken and I.J. Mohamed [32]. Nevertheless, for some classes of infinite

groups the absence of contranormal subgroups does imply nilpotency of

a group. The groups without proper contranormal subgroups have been

considered in papers [36, 37]. We present the main results of these articles

here.

Theorem 3.5. Let G be a group and H be a normal soluble-by-finite

subgroup such that G/H is nilpotent. Suppose that H satisfies Min −

G. If G has no proper contranormal subgroups, then G is nilpotent. In

particular, if a soluble-by-finite group G without proper contranormal

subgroups satisfies minimal condition for normal subgroups, then G is

nilpotent.
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Theorem 3.6. Let G be a group and H be a normal Chernikov subgroup

such that G/H is nilpotent. If G has no proper contranormal subgroups,

then G is nilpotent. In particular, a Chernikov group without proper

contranormal subgroups is nilpotent.

Theorem 3.7. Let G be a group and C be a normal subgroup of G such

that G/C is nilpotent. Suppose that C has a finite series of G-invariant

subgroups

〈1〉 = C0 ≤ C1 ≤ ... ≤ Cn = C

whose factors Cj/Cj−1, 1 ≤ j ≤ n, satisfy one of the following conditions:

(i) Cj/Cj−1 is finite;

(ii) Cj/Cj−1 is hyperabelian and minimax;

(iii) Cj/Cj−1 is hyperabelian and finitely generated;

(iv) Cj/Cj−1 is abelian and satisfies Min−G.

If G has no proper contranormal subgroups, then G is nilpotent.

Let G be a group and let A be an infinite normal abelian subgroup of

G. We say that A is a G-quasifinite subgroup, if every proper G-invariant

subgroup of A is finite. This means that either A contains a proper finite

G-invariant subgroup B such that A/B is G-simple, or A is a union of all

finite proper G-invariant subgroups.

Theorem 3.8. Suppose that a group G contains a normal subgroup C such

that G/C is nilpotent. Suppose that C has a finite series of G-invariant

subgroups

〈1〉 = C0 ≤ C1 ≤ ... ≤ Cn = C

every factor Cj/Cj−1, 1 ≤ j ≤ n, of which satisfies one of the following

conditions:

(i) Cj/Cj−1 is finite;

(ii) Cj/Cj−1 is hyperabelian and minimax;

(iii) Cj/Cj−1 is hyperabelian and finitely generated;

(iv) Cj/Cj−1 is abelian and G-quasifinite.

If G has no proper contranormal subgroups, then G is nilpotent.

The following useful assertions are almost direct corollaries of this

theorem.

Theorem 3.9. Let G be a group and let C be a normal soluble subgroup

of G such that G/C is nilpotent. Suppose that C has a finite G-chief

series. If G has no proper contranormal subgroups, then G is nilpotent.

Theorem 3.10. Let G be a group and let C be a normal soluble sub-

group of G such that G/C is nilpotent. Suppose that C is a hyperabelian



98 Some related to pronormality subgroup families

minimax subgroup. If G has no proper contranormal subgroups, then G

is nilpotent. In particular, if G is hyperabelian minimax group without

proper contranormal subgroups, then G is nilpotent.

Theorem 3.11. Let G be a group and let C be a normal soluble subgroup

of G such that G/C is nilpotent. Suppose that C is a Chernikov subgroup.

If G has no proper contranormal subgroups, then G is nilpotent. In partic-

ular, if G is a Chernikov group without proper contranormal subgroups,

then G is nilpotent.

Theorem 3.12. Let G be a group and let C be a normal soluble subgroup

of G such that G/C is nilpotent. Suppose that C is a hyperabelian finitely

generated subgroup. If G has no proper contranormal subgroups, then G

is nilpotent. In particular, if G is a hyperabelian finitely generated group

without proper contranormal subgroups, then G is nilpotent.

Theorem 3.13. Suppose that the group G contains a normal G-minimax

subgroup C such that G/C is a nilpotent group of finite section rank. If

G has no proper contranormal subgroups, then G is nilpotent.

4. Groups with transitivity

of some generalized normal properties

We mentioned already some important results on transitivity of normal-

ity. Transitivity of such important subgroup properties as pronormality,

abnormality and other related to them properties have been studied by

L.A. Kurdachenko, I.Ya. Subbotin, and J.Otal (see, [43, 35]).

The groups in which pronormality is transitive, are called TP -groups,

and the groups in which all subgroups are TP -groups, are called T̄P -groups.

For the T̄P -groups the following description has been obtained.

Theorem 4.1 (L.A. Kurdachenko, I.Ya. Subbotin [43]). Let G be a locally

soluble group. Then G is a T̄P -group if and only if G is a T̄ -group.

Theorem 4.2 (L.A. Kurdachenko, I.Ya. Subbotin [43]). Let G be a

periodic soluble group. Then G is a TP -group if and only if G = A ⋋

(B × P ) where

(i) A, B are abelian 2́-subgroup, and P is a 2-subgroup (if P is

non-identity);

(ii) Π(A) ∩Π(B) = ∅;

(iii) P is a T -group;

(iv) [G,G] = A× [P, P ];

(v) every subgroup of [G,G] is G-invariant;
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(vi) A is a complement to every Sylow Π(B × P )-subgroup of G.

In [42], the authors were able to list all types of periodic soluble

TP -groups.

The following theorem completes the description of soluble TP -groups.

Theorem 4.3 (L.A. Kurdachenko, I.Ya. Subbotin [43]). Let G be a non-

periodic soluble group.

(i) If CG([G,G]) is non-periodic, then G is a TP -group if and only if

G is a T -group.

(ii) If CG([G,G]) is periodic, then G is a TP -group if and only if G

is a hypercentral T -group.

Recall the following interesting property of pronormal subgroups:

Let G be a group, H, K be the subgroups of G and H ≤ K. If H is

a subnormal and pronormal subgroup of K, then H is normal in K.

We say that a subgroup H of a group G is transitively normal if

H is normal in every subgroup K ≥ H in which H is subnormal [46].

In [59], these subgroups have been introduced under a different name.

Namely, a subgroup H of a group G is said to satisfy the subnormalizer

condition in G if for every subgroup K such that H is normal in K we

have NG(K) ≤ NG(H).

We say that a subgroup H of a group G is strong transitively normal,

if HA/A is transitively normal for every normal subgroup A of the group

G [46]. Since a homomorphic image of a pronormal subgroup is pronormal,

we can conclude that every pronormal subgroup is a strong transitively

normal subgroup.

Theorem 4.4 (L.A. Kurdachenko, I.Ya. Subbotin [46]). Let G be a

group and H be a hypercentral subgroup of G. Suppose that G contains a

normal soluble subgroup R such that G/R is hypercentral. If H is strong

transitively normal in G and R satisfies Min−H, then H is a pronormal

subgroup of G.

As direct corollaries we can mention the following results from [46].

Corollary 4.5 [46]. Let G be a group and H be a hypercentral subgroup of

G. Suppose that G contains a normal soluble Chernikov subgroup R such

that G/R is hypercentral. If H is strong transitively normal in G, then H

is a pronormal subgroup of G. In particular, if G is a soluble Chernikov

group and H is a hypercentral strong transitively normal subgroup of G,

then H is pronormal in G.
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A subgroup H is said to be polynormal in a group G, if for each

intermediate for H subgroup S the subgroup H is contranormal in HS

([2]).

Corollary 4.6 [46]. Let G be a group and H be a hypercentral subgroup of

G. Suppose that G contains a normal soluble subgroup R such that G/R

is hypercentral. If H is a polynormal in G and R satisfies Min−H (in

particular, if R is a Chernikov group), then H is a pronormal subgroup

of G.

Corollary 4.7 [59]. Let G be a soluble finite group and H be a nilpotent

subgroup of G. If H is a polynormal in G, then H is a pronormal subgroup

of G.

A subgroup H is said to be paranormal in a group G if H is contra-

normal in 〈H,Hg〉 for all elements g ∈ G [2]). Every pronormal subgroup

is paranormal, and every paranormal subgroup is polynormal [2].

Corollary 4.8 [46]. Let G be a group and H be a hypercentral subgroup of

G. Suppose that G contains a normal soluble subgroup R such that G/R

is hypercentral. If H is a paranormal in G and R satisfies Min−H (in

particular, if R is a Chernikov group), then H is a pronormal subgroup

of G.

As a corollary we obtain

Corollary 4.9. Let G be a soluble finite group and H be a nilpotent

subgroup of G. If H is a paranormal in G, then H is a pronormal

subgroup of G.

In [61] the following criterion of pronormality of a nilpotent subgroup

in a finite group has been established.

Theorem 4.10 (T.A. Peng [61). Let G be a finite nilpotent-by-abelian

group and H be a nilpotent subgroup of G. If H is transitively normal in

G, then H is a pronormal subgroup of G.

The article [46] contains the following useful strong generalization of

this criterion to some infinite cases.

Theorem 4.11 (L.A. Kurdachenko, I.Ya. Subbotin [46]). Let G be a

group and H be a hypercentral subgroup of G. Suppose that G contains

a normal nilpotent subgroup R such that G/R is hypercentral. If H is

transitively normal in G and R satisfies Min−H (in particular, if R is

a Chernikov subgroup), then H is a pronormal subgroup of G.

As a corollary we obtain
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Corollary 4.12 [46]. Let G be a nilpotent-by-hypercentral Chernikov group

and H be a hypercentral subgroup of G. If H is transitively normal in G,

then H is a pronormal subgroup of G.

A subgroup H of a group G is called weakly normal if Hg ≤ NG(H)

implies g ∈ NG(H) (K.H. Müller [58]). We note that every pronormal

subgroup is weakly normal [4], every weakly normal subgroup satisfies the

subnormalizer condition [4], and hence it is transitively normal in a group.

Thus from above result we obtain

Corollary 4.13 [46]. Let G be a group and H be a hypercentral subgroup of

G. Suppose that G contains a normal nilpotent subgroup R such that G/R

is hypercentral. If H is weakly normal in G and R satisfies Min−H (in

particular, if R is a Chernikov subgroup), then H is a pronormal subgroup

of G.

A subgroup H of a group G is called an H-subgroup if NG(H)∩Hg ≤ H

for all elements g ∈ G [9]. Note that every H-subgroup is transitively

normal [9]. Therefore, from the above result we obtain

Corollary 4.14 [46]. Let G be a group and H be a hypercentral subgroup of

G. Suppose that G contains a normal nilpotent subgroup R such that G/R

is hypercentral. If H is an H-subgroup of G and R satisfies Min−H (in

particular, if R is a Chernikov subgroup), then H is a pronormal subgroup

of G.

Some properties of transitively normal subgroups (under another name)

have been considered in the paper [27], which, in particular, contains the

following result.

Theorem 4.15 (F. de Giovanni, G. Vincenzi [27]). Let G be an FC-group

and H be a transitively normal subgroup of G. If H is a p-subgroup for

some prime p, then H is a pronormal subgroup of G.

The pronormal subgroups play very important role in a following inter-

esting class of groups connected to the following essential generalization

of normal subgroups. A subgroup H of a group G is called permutable in

G, if HK = KH for every subgroup K of G.

Investigation of permutable subgroups begun rather long time ago (see,

for example the book [71]). In particular, the groups (finite and infinite)

whose every subgroup is permutable have been described (see, for example,

[71, 2.4]). According to a well-known theorem of Stonehewer ([74, Theorem

A]) permutable subgroups are always ascendant. In this connection, it

is natural to consider the opposite situation, namely, the groups whose
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ascendant subgroups are permutable. A group G is said to be an AP -

group if every ascendant subgroup of G is permutable in G. These groups

are quite close to the groups in which the relation "to be a permutable

subgroup" is transitive. A group G is said to be a PT -group if permutability

is a transitive relation in G, that is, if K is a permutable subgroup of H

and H is a permutable subgroup of G, then K is a permutable subgroup

of G. If G is a finite group, then G is a PT -group if and only if every

subnormal subgroup is permutable. The study of finite PT -groups has been

initiated in the paper of G. Zacher [79]. He determined the structure of

finite soluble PT -groups in a manner corresponding to W. Gaschütz’s [24]

characterization of finite soluble groups, in which normality is a transitive

relation.

Theorem 4.15 (G. Zacher [79]). Let G be a finite soluble group and L be

a nilpotent residual of G. Then G is a AP -group (and hence a PT -group)

if and only if it satisfies the following conditions:

(a) every subgroup of G/L is permutable;

(b) L is abelian Hall subgroup of G;

(c) 2 /∈ Π(L);

(d) every subgroup of L is G-invariant.

Consider now infinite AP -groups. A paper [64, Lemma 4] contains

the following result: every ascendant subgroup of an arbitrary PT -

group is permutable. But this result is incorrect. The following exam-

ple shows this. Let G = A ⋋ 〈b〉 where A is a Prüfer 2-group (that is

A =
〈

an | a21 = 1, a2n+1 = an, n ∈ N
〉

), |b| = 2 and ab = a−1 for each a ∈ A.

If x = ab for some a ∈ A, then x2 = abab = aa−1 = 1. Let H be a proper

subgroup of G. If A contains H, then H is G-invariant. Suppose that

A does not include H. Then H is finite and H = K 〈x〉 where K is a

proper subgroup of A, x ∈ A and hence |x| = 2. Every subgroup of A

is cyclic, so K = 〈c〉 where c ∈ A. Let |c| = 2m for some m ∈ N. Then

|H| = 2m · 2 = 2m+1. Since the subgroup A is divisible, we may choose an

element d ∈ A such that dt = c where t = 25. Put y = dx. Clearly y /∈ A,

thus |y| = 2. Suppose that H 〈y〉 = 〈y〉H . Then |H 〈y〉 | = 2m+1 ·2 = 2m+2.

On the other hand, (dx)x ∈ 〈H, y〉 and (dx)x = d, but |d| = 2m+5. This

shows that H can not be permutable in G. In other words, if H is a per-

mutable subgroup of G, then H ≤ L. But in this case, every permutable

subgroup of G is G-invariant. It follows that G is a PT -group. A subgroup

〈b〉 is ascendant in G, but it is not permutable in G.

This example shows that for infinite groups the classes of AP -groups

and PT -groups do not coincide. Infinite AP -group have been studied in the

paper [5]. Obviously, groups with no permutable subgroups are AP -groups,
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but no sense in study of properties of permutable subgroups in groups

with no permutable subgroups. This justifies the necessity of imposing

some restrictions on the group in this study. The natural framework for

considering AP -groups are the classes of groups that have many ascendant

subgroups. As the first step we consider radical hyperfinite groups.

Theorem 4.16 [5]. Let G be a radical hyperfinite group and L be a locally

nilpotent residual of G. Then the following conditions hold:

(i) L is abelian;

(ii) if R is the locally nilpotent radical of G, then R = L× Z where

Z is the upper hypercenter of G;

(iii) Π(L) ∩Π(G/L) = ∅;

(iv) every subgroup of L is G-invariant;

(v) G/L is hypercentral and every subgroup of G/L is permutable.

Conversely, let G be a periodic group satisfying the conditions (i)-(v).

Then G is a soluble AP -group.

The following corollary shows the illustrates the connections between

AP -groups and T̄ -groups.

Corollary 4.17 [5]. Let G be a locally soluble hyperfinite AP -group. If

the Sylow 2-subgroups of G are Dedekind and the Sylow p-subgroups of

G are abelian for p 6= 2, then G is a metabelian T̄-group.

The description of AP -groups from Theorem 4.16 can be extend to

ather classes of groups.

Theorem 4.18 [5]. Let G be a periodic AP -group. If G is a hyper-N-

group, then G is hyperfinite.

Corollary 4.19 [5]. Let G be a periodic AP -group. If G is a hyper-

Gruenberg group, then G is a hypercyclic metabelian AP -group.

Corollary 4.20 [5]. Let G be a periodic AP -group. If G is hyperabelian,

then G is a hypercyclic metabelian AP -group.

Corollary 4.21 [5]. Let G be a periodic AP -group. If G is residually

soluble, then G is a hypercyclic metabelian AP -group.

In the paper [7]. the role of pronormal subgroups in AP -groups has

been studied.

Let p be a prime, G be a group and P be an arbitrary Sylow p-subgroup

of G. We say that a group G belongs to the class Pp if G satisfies the

following two conditions:

(i) every subgroup of P is permutable;

(ii) each normal subgroup of P is pronormal in G.
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Theorem 4.22 [7]. Let G be a finite soluble group. Then G is an AP -

group if and only if G belong to the class Pp for all primes p.

In the paper [6] this result was extend to infinite groups in the following

way.

Theorem 4.23 [6]. Let G be a periodic locally soluble group. If G ∈ Pp

for all primes p, then G is a AP -group. Moreover, if L is the locally

nilpotent residual, then there exists a hypercentral subgroup T such that

G = L⋋ T .

As we can see, the properties which define the class Pp for all primes

p, are stronger than the property AP , because in an arbitrary soluble

AP -group the locally nilpotent residual is not always complemented. So,

unlike in the case of finite soluble groups, the class of infinite soluble

AP -groups does not coincide with the class of infinite soluble groups that

belong to the class Pp for all primes p.
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