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ABSTRACT. Let R be an arbitrary ring with identity and M
a right R-module. In this paper, we introduce a class of modules
which is an analogous of d-supplemented modules defined by Kosan.
The module M is called principally 6-supplemented, for all m € M
there exists a submodule A of M with M = mR+ A and (mR)NA o-
small in A. We prove that some results of d-supplemented modules
can be extended to principally d-supplemented modules for this
general settings. We supply some examples showing that there are
principally d-supplemented modules but not é-supplemented. We
also introduce principally é-semiperfect modules as a generalization
of J-semiperfect modules and investigate their properties.

1. Introduction

Throughout this paper all rings have an identity, all modules considered
are unital right modules. Let M be a module, N and P be submodules
of M. We call P a supplement of N in M if M = P+ N and PN N is
small in P. A module M is called supplemented if every submodule of M
has a supplement in M. A module M is called lifting if, for all N < M,
there exists a decomposition M = A @ B such that A < N and NN B
is small in M. Supplemented and lifting modules have been discussed by
several authors (see [4, 8]) and these modules are useful in characterizing
semiperfect and right perfect rings (see [8, 14]). A submodule L is called a
0-supplement of N in M if M = N+ L and NN L is §-small in L(therefore

2000 Mathematics Subject Classification: 16U80.

Key words and phrases: supplemented modules, d-supplemented modules, prin-
cipally 0-supplemented modules, semiperfect modules, §-semiperfect modules, principally
d-semiperfect modules.



60 A GENERALIZATION OF SUPPLEMENTED MODULES

in M), and M is called §-supplemented in case every submodule of M has
a d-supplement in M. Principally supplemented modules are introduced
and studied in [3|. A module M is said to be principally supplemented if for
any cyclic submodule has a supplement in M. Principally supplemented
modules generalizes principally lifting modules(]9]), supplemented modules
and weakly supplemented modules(see [1], [8], [14]).

In this paper, we introduce principally d-supplemented modules and in-
vestigate their properties. A module M is called principally d-supplemented
if for each cyclic submodule has the principally 6-supplement property, i.e.,
for each m € M, there exists a submodule N such that M = mR+ N with
(mR) N N is d-small submodule in N. A module M is called principally
d-semiperfect if, for each m € M, M/mR has a projective d-cover|[12].
New characterizations of principally d-semiperfect rings are obtained using
principally d-supplemented modules.

In what follows, by N, Z, Q, Z,, and Z/nZ we denote, respectively,
natural numbers, integers, rational numbers, the ring of integers modulo
n and the Z-module of integers modulo n. For unexplained concepts and
notations, we refer the reader to [2] and [8].

2. Preliminaries

In this section we establish the notation and state some results on J-small
submodules which are required later. Following Zhou [16], a submodule
N of a module M is called a §-small if, whenever M = N + X with M/ X
singular, we have M = X.

We state the next lemma which is contained in [16, Lemma 1.2 and 1.3].

Lemma 2.1. Let M be a module. Then we have the following.

1. If N is §-small in M and M = X + N, then M = X &Y for a
projective semisimple submodule Y with Y < N.

2. If K is 6-small in M and f : M — N is a homomorphism, then
f(K) is §-small in N. In particular, if K is 6-small in M < N, then
K is §-small in N.

3. LetK1 S M1 S M, KQ S M2 S M and M = Ml@MQ. Then
Ky ® Ks is §-small in My & Ms if and only if Ky is 6-small in M,
and Ko 1s 0-small in M.

4. Let N, K be submodules of M with K is §-small in M and N < K.
Then N is also d-small in M.
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Lemma 2.2. Let M be a module and m € M. Then the following are
equivalent.

1. mR is not 6-small in M.

2. There is a mazimal submodule N of M such that m ¢ N and M /N
singular.

Lemma 2.3. Let M be a module and K, L, H be submodules of M. If L
18 0-small in K, then L is §-small in K + H.

Proof. Assume that L is d-small in K. Let U be a submodule of M with
K+H = L+U and (K+H)/U singular. Then K/(UNK) = (K+U)/U =
(K + H)/U is singular. On the other hand we have K = L+ (K NU).
Since L is é-small in K, K = KNU <U. Hence K + H="U. O]

Lemma 2.4. Let L be a 6-supplement submodule of a module M. If U is
a d-small submodule of M with U < L, then U is §-small in L.

Proof. Let M = K + L with KN L §-small in L and L = U + V and
L/V singular. We prove that L = V. Then M = K + U + V and
M/(K+V) = (K+L)/(K+V) = ((K+V)+L)/(K+V) 2 L/(LN(K+V))
which is a homomorphic image of singular module L/V. By hypothesis
M=K+V.Then L=(LNK)+V andso L=1V. O

Lemma 2.5. Let A < B and K be submodules of M and M = A+ K.
If BN K is 6-small in M, then B/A is 0-small submodule of M/A.

Proof. Let M/A = B/A+ L/A with M /L singular. We have M = B+ L
and B=A+BNK. Then M =A+BNK+L=BNK + L. Hence
M = L since BN K is é-small in M and M/L is singular. 0

Lemma 2.6. Let M be an R-module and K, L, N be submodules of M.
Then we have the followings.

(1) If K is a §-supplement of N in M and T is 6-small in M, then K is
a d-supplement of N +T in M.

(2) Let M 4 N be an epimorphism with Kerf 6-small in M. If the
submodule L of M is a §-supplement in M, then f(L) is a 0-supplement
i N. The converse holds if Kerf is a d-small submodule of L.

Proof. (1) Let K be a é-supplement of N in M. Then M = N + K and
NN K is §-small in K. We prove (N +7) N K is §-small in K. For if, let
L < K with K = L+(N+T)NK and K/L singular, then M = L+ N+T
and M/(L+N)=(K+N)/(L+N)=K/(K+ (LNN)) is singular as
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an homomorphic image of the singular module K/L. Since T is é-small
in M, M =L+ N.Hence K =L+ KNN. Since KN N is §-small in K
and K/L is singular we have K = L.

(2) Let L be a d-supplement of K in M. Then L is a d-supplement of
K + Kerf by (1). By Lemma 34, f(L) = f(L + Kerf) is also a J-
supplement of f(K) = f(K + Kerf) in N. Conversely, let N = f(L)+U
with f(L)NU is -small in f(L) and K = f~1(U). Then M = L+ K. To
complete the proof we prove that LNK is J-smallin L. Forif L = V+LNK
with L/V singular, then f(L) = f(V)+ f(L)N f(K) = f(V)+ f(L)NU
since Kerf < K, f(LNK) = f(L)N f(K). f(L)/f(V) is singular as an
homomorphic image of singular module L/V. Hence f(L) = f(V). So
L=V + Kerf. Thus L=V. O

3. Principally -supplemented modules

In this section we introduce principally J-supplemented modules and
investigate some properties of these modules. We prove that some results of
supplemented and J-supplemented modules can be extended to principally
d-supplemented modules.

Lemma 3.1. Let m € M and L a submodule of M. Then the following
are equivalent.

1. M =mR+ L and mRN L is §-small in L.

2. M = mR+ L and for any proper submodule K of L with L/K
singular, M # mR + K.

Proof. (1) = (2) Let K < L and M = mR + K where L/K singular.
Then L = (LN'mR) + K. Since LNmR is é-small in L, L = K.

(2)= (1) IfL=(mRNL)+ K where K < L and L/K singular, then
M=mR+L=mR+K.By (2), K=L. SomRNLis§smallin L. O

Lemma 3.2. Let M be a module and K, L, H be submodules of M. If L
18 a d-supplement of K in M and K is a d-supplement of H in M, then
K is a d-supplement of L in M.

Proof. Let M = K+ L =K+ H, KNL and K N H are §-small in L
and K respectively. We prove K N L is d-small in K. Let X < M be such
that KN L+ X = K and K/X is singular. Then M = (KNL)+ X + H.
Since K N L is §-small in M, by Lemma 2.1 there exists a projective
semisimple submodule Y in K N L such that M =Y & (X + H). Hence
K=Y®X)+ (KNH). Since K/(X +7Y) is singular and K N H is
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0-small in K, again by Lemma 2.1, K = X ®Y. Thus Y =0 as K/X is
singular and Y is projective semisimple. O

Let M be a module and m € M. A submodule L is called a principally
d-supplement of mR in M, if mR and L satisfy Lemma 3.1 and the module
M is called principally §-supplemented if every cyclic submodule of M has
a principally d-supplement in M, equivalently, for all m € M there exists
a submodule A of M with M = mR + A and mR N A §-small in A. In
[12], a module M is defined to be principally d-lifting if, for all m € M,
there exists a decomposition M = A @ B such that A < mR and mRN B
is 0-small in B (equivalently, in M).

Clearly, every supplemented module and every principally d-lifting
module is principally d-supplemented. Since every factor module of a
singular module is singular, every singular d-supplemented module is
supplemented. There are principally §-supplemented modules but not
supplemented and so not d-supplemented.

Example 3.3. (1) The Z-module Q has no maximal submodules. Every
cyclic submodule of Q is small, therefore Q is principally d-supplemented.
But Q is not supplemented, and so not d-supplemented since it is singular
Z-module.

o0
2) Let R =7 and M = M,; with each M; = Z,~, where p is prime
( oo pisp

z:l

number. Then §(M) = EB d(M;) = M is essential in M. In [10], it is

proved that M is neither bupplemented nor J-supplemented. We prove M
is principally d-supplemented. For if m = (m;) € M then m is contained
in a finite direct sum of copies of Z,~. Since any submodule of a small
submodule is small and finite sum of small submodules is small, mZ is
small in M. Hence M is principally d-supplemented.

Lemma 3.4. If M i) M’ is a homomorphism and N is a §-supplement
in M with Ker(f) < N, then f(N) is a 0-supplement in f(M).

Proof. Let M = N + K with NN K §-small in N. Then f(M) = f(N +
K) = f(N)+ f(K). Since Kerf < N, we have f(N)Nf(K) = f(NNK).
By Lemma 2.1 (2), f(NNK) = f(N)nN f(K) is -small in f(N). Hence
f(N) is a d-supplement of f(K) in f(M). O

Lemma 3.5. Let M be a principally §-supplemented module and N < M.
If every cyclic submodule mR has a d-supplement A with N < A, then
M/N is principally §-supplemented.
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Proof. Let K/N be a cyclic submodule of M/N. Then K = mR + N
for some m € M. There exists L < M such that N < L, M = mR + L
with mR N L é-small in L. Let M = M/N natural epimorphism. By
Lemma 3.4, (L) is d-supplement of 7(mR) = K/N, indeed M/N =
L/N+(mR+ N)/N =L/N+K/N and (N + (LNmR))/N is §-small in
L/N as it is a homomorphic image of L N mR which is §-small in L. [

Lemma 3.6. Let M be a module, N a d-supplemented submodule of M
and K a cyclic submodule of M. If N + K has a 6-supplement T in M,
then NN (T + K) has a §-supplement U in N. In particular, T + U is a
d-supplement of K in M.

Proof. We have M = (N + K)+ T and (N + K) N T is 0-small in
T, NN(K+T)4+U = N and (K +T)NU is §-small in U. Then
M=N+K+T=K+Nn(K+T)+U=K+T+U. Since finite
sum of §-small submodules is §-small by Lemma 2.1 (3), K N (T'+U) <
TN K+U)+UN(K+T)<TN(K+N)+UnN(K+T) is é-small in
T+U. 0

Recall that a module M is called distributive, if for all submodules K,
Land N NN(K+L)=NNK+NNLor N+(KNL) = (N+K)N(N+L).
Lemma 3.7 is well known and obvious but we prove it for the sake of easy
reference.

Lemma 3.7. Let M = My & My = K+ N and K < M. If M is
distributive and K N\ N is §-small in N, then KON is §-small in M7 N N.

Proof. Let My NN = (K NN)+ L with (M; N N)/L singular. Since M is
distributive, N = M1 "N & Mo N N. We have M = K+ N =K + M N
N+MyNN=K+L+(M;NN)and N=KNN+ L+ (M>NN). Now
N/(L&(MyNN)) = (NNMy)&(NNMy)) /(L& (M2NN)) = (NNMy)/L
is singular. Hence N = L& (M2NN). This and N = (NN M) & (NN Ms)
and L < Mi{NN imply L = M1{NN. Hence KNN is d-small in M1NN. [

Theorem 3.8. FEvery direct summand of a distributive principally J-
supplemented module is principally d-supplemented.

Proof. Let M = M; ® My and m € M;. There exists N < M such that
M =mR+ N and mRN N is é-small in N. Then My = mR+ (M;NN)
and by Lemma 3.7, mR N (M; N N) is é-small in (M; N N). O

Proposition 3.9. Let My and Mo be principally §-supplemented modules
and M = My & Ms. If M is a distributive module, then M is principally
d-supplemented.
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Proof. Let M = M; ® M, be a distributive module and mR be a sub-
module of M. Then mR = (mRN M;) & (mRN Ms). Since mR N M; and
mR N M, are cyclic submodules of M7 and Ms respectively, there exist A
a submodule of M; such that M; = (mRNM;)+ A and AN(mRNM;) =
ANmR is §-small in A, and B < My such that My = (mR N M,) + B,
BN (mRN M) = BnNmR is é-small in B. Then M = mR + A+ B.
Now we claim mR N (A+ B) = (mRN A) + (mR N B). The inclusion
(mRNA)+(mRNB) < mRN(A+ B) always holds. For the inverse inclu-
sion, nRN(A+B) < AnN(mR+B)+BN(mR+A)=AN((mRNM;)+
M)+ BN (M + (mRNMs)). On the other hand AN((mRN M)+ Ms) <
(mRN M) N (A+ M)+ Mo ((mRN M)+ A) = mRN A. Similarly
BN(My+(mRNMs)) < mRNB. Hence (mRN(A+B) < mRNA+mRNB.
So the claim (mR N (A+ B) = mRN A+ mRN B is justified. Since
mR N A is é-small in A and mR N B is §-small in B, by Lemma 2.1
(3), we have mR N (A + B) is §-small in A + B. Hence M is principally
d-supplemented. O

Let M be a module with S = End(Mg). A submodule N is called
fully invariant if for each f € S, f(N) < N. Then M is an (S, R)-module
and a principal submodule N of the right R-module M is fully invariant
if and only if N is an (S, R)-submodule of M. Clearly 0 and M are fully
invariant submodules of M. The right R-module M is called duo provided
every submodule of M is fully invariant. For the readers’ convenience we
state and prove Lemma 3.10 which is proved in [11].

Lemma 3.10. Let M = @M, be a direct sum of submodules M; (i € I)
el
and N a fully invariant submodule of M. Then N = @(N N M,;).
el
Proof. For each j € I, let p; : M — M; denote the canonical projection
and let 4; : M; — M denote inclusion. Then i;p; is an endomorphism of M
and hence i;p;j(N) C N for each j € I. It follows that N C € i;p;(N) C
JelI

@D (N N M;) C N, sothat N = @ (N NM;). O
JeI g€l

We can not prove that any direct sum of principally §-supplemented
modules need not be principally d-supplemented. Note the following fact.

Proposition 3.11. Let My and My be principally §-supplemented modules
and M = My ® M. If M is a duo module, then M is principally 6-
supplemented.

Proof. Same as the proof of Proposition 3.9. O
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A module M is said to be principally semisimple if every cyclic submod-
ule is a direct summand of M. Tuganbayev calls a principally semisimple
module as a regular module in [7]. Every semisimple module is prin-
cipally semisimple. Every principally semisimple module is principally
o-lifting, and so principally é-supplemented. For a module M, we write
Rads(M) = > {L| L is a é-small submodule of M}.

Lemma 3.12. Let M be a distributive principally §-supplemented module.
Then M/ Rads(M) is a principally semisimple module.

Proof. Let m € M/Rads(M). There exists a submodule A of M such
that M = mR+ A and mRN A is é-small in A, so is d-small in M. By the
distributivity of M we have mR N (A + Rads(M)) = (mRNA)+mRnN
Rads(M) = Rads(M).

M/ Rads(M) = ((mR + Rads(M))/ Rads(M))+
+((A+ Rads(M))/Rads(M) =
= ((mR)/Rads(M)) ® ((A+ Rads(M))/ Rads(M). O

Theorem 3.13 may be proved easily by making use of Lemma 3.12 for
distributive modules. But we prove it in another way in general.

Theorem 3.13. Let M be a principally d-supplemented module. Then M
has a submodule My such that My has an essential socle and Rads(M )® M
1s essential in M.

Proof. By Zorn’s Lemma we may find a submodule M; of M such that
Rads(M) @ M; is essential in M. To prove Soc(Mj) is essential in My,
we show that every cyclic submodule of M has a simple submodule. Let
m € M;. Since M is principally d-supplemented, there exists a submodule
A of M such that M = mR + A and mR N A is d-small in A. Then
mRN A = 0. Let K be a maximal submodule of mR. If K is unique
maximal submodule in mR, then it is small, therefore d-small in mR and
so in M. This is not possible since mR N Rads(M) = 0. Hence there
exists x € mR such that mR = K + xR. We claim that K N xR = 0.
Otherwise let 0 # x1 € K NxR. By hypothesis there exists C7 such that
M =21 R+ Cy with (z1R) N Cy is §-small in M. So M = xR & C} since
(x1R)NC1 < KNRads(M) = 0. Hence mR = z1R & (mR N Cp) and
K =x1Re (KnNCy). If KN is nonzero, let 0 # x9 € K NCy. By
hypothesis there exists C such that M = z9R + Cy with (zoR) N Cy is J-
small in M. So M = zoR®C5 since (z2R)NCy < KNRads(M) = 0. Then
KNnCy = (l’QR)@(KﬁClﬂCQ). Hence mR = :BlR@I‘QR@(mRﬂCl ﬁCQ)
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and K = 21R® xoR® (K NCyNCy). If KNCpNCy is nonzero, similarly
there exists 0 £ x3 € KNC1NCy and C3 < M such that M = 23R @ Cs.
Then mR = x1R®xo RO xs RO (mRNC1NCyNCs) and K = 21 RGxa R
x3R® (K NC1NCyNC3). This process must terminate at a finite step, say
t. At this step mR = 21 R® 1o RPx3R®... xR and so mR = K since at
t* step we must have KNCiNCyN...NCy <mRNC1NCyN...NC; = 0.
This is a contradiction. There exists x € mR such that mR = K & xR.
Then zR is a simple module. O

In the following we investigate under what conditions direct summands
of principally §-supplemented modules are principally §-supplemented.

Lemma 3.14. Let M = M1 @ M be a decomposition of M. Then My is
principally §-supplemented if and only if for every cyclic submodule N /M,
of M/My, there exists a submodule K of My such that M = K + N and
NNK isd-small in K.

Proof. Suppose that My is principally-supplemented. Let N/Mj be a cyclic
submodule of M /M. Let N/M; = (xR+ My)/M; and = mq+msz where
my € My, mg € Ms. Then N/M; = (maoR + Mi)/M;. By supposition
there exists a submodule K < M such that My = (maR) + K with
(maR) N K is d-small in K. Then N = moR+ M; and M = N + K. Now
NNK = ((meR)+M)NK < (mQR)ﬂ(Ml-i-K) + Mlﬂ(K—l-(MQR)) <
KnN (Ml + (TTLQR)) + MinN (ng + K) M N (mzR -+ K) = 0 implies
(M +maR)NK = (m2R) N ((m1R) + K). Hence N N K < myR. Since
(maR) N K is d-small in K, NN K is §-small in K.

Conversely, let NV be a cyclic submodule of Ms. Consider the cyclic
submodule (N + M;)/M; of M/M,. By hypothesis, there exists a sub-
module K of My such that M = (N + M;) + K and K N (N + M;) is
d-small submodule of K. Then My = N + K. To complete the proof
it is enough to show K N (M1 + N) = NN (M; + K) = NN K. Now
NN (M +K)<MN(K+N)+KN(N+M)=Kn(N+ M) <
NN(Mi+K)+MN(K+N)= NN(M;+K) since MiN(K+N) = 0. Then
NN(Mi+K)=KnN(N+M). But (Mi+K)NN = KN(N+M;) = NNK
is obvious now. Hence N N K is §-small submodule of K. Ol

Proposition 3.15. Let My and My be principally §-supplemented modules
with M = My & My. Then M is principally §-supplemented if and only if
every cyclic submodule N of M with M = N+ K for any proper submodule
K of M has a supplement in M.

Proof. Necessity is clear. Conversely, suppose that for every cyclic submod-
ule N of M with M = N + K for any proper direct summand K of M has
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a supplement in M. Let N = mR be a cyclic submodule. If M = N + M;
or N < M; we have done. Otherwise we may assume m = mq +mo and my
and my are nonzero. By supposition there are K1 < M; and Ko < M5 such
that M1 = (m1R)+ Ky , My = (m2R) + K5 and (m1 R) N K7 is d-small in
K7 and (meR)N Ko is 6-small in K. myR+msR = N+maR = N+m1R
and M = N+m1R+K1+K2 = N+M1+K2. Similarly M = N+M2+K1.
Assume M = M; + K. Then My = K9 and so mg =0 and N < M. It
leads us to a contradiction. Hence M; + K> is a proper submodule of M.
Similarly Ms + K is proper. Thus N has a supplement in M. O

Principally §-hollow modules and principally §-lifting modules are
defined in [12]| and properties of these modules are investigated. A nonzero
module M is called é-hollow if every proper submodule is §-small in M,
and M is called principally 0-hollow if every proper cyclic submodule is
d-small in M, and M is said to be finitely d-hollow if every proper finitely
generated submodule is d-small in M. Since finite direct sum of §-small
submodules is d-small, M is principally d-hollow if and only if it is finitely
d-hollow. There are principally d-hollow modules but not é-hollow. Let
Z and Q denote the ring of integers and rational numbers respectively.
Then the Z-module Q is principally d-hollow since each finitely generated
submodule of Q is small, therefore §-small in Q. Let Q; = {a/b e Q| 2
does not divide b} and Q2 = {a/b € Q| 2 divides b}. Then Q = Q; + Qo.
Since Q/Q; and Q/Q2 are singular Z-modules, Q; and Q9 are not d-small
submodules in Q.

Recall that a nonzero module M is called principally d-lifting if for each
cyclic submodule has the -lifting property, i.e., for each m € M, M has
a decomposition M = A ® B with A < mR and mR N B is d-small in B
(see [12] for detail). It is obvious that every principally J-lifting module is
principally §-supplemented. There are principally d-supplemented modules
but not principally J-lifting. As an illustration we record here Example
3.16.

Example 3.16. Consider the Z-modules M| = Z/2Z and My = Z/8Z.
As Z-modules M7 and M are principally §-hollow, therefore principally
d-supplemented modules. Let M = M; @& My. It is mentioned in [12] that
M is not a principally d-lifting Z-module. The submodules Ny = (1,2)Z
and No = (1,1)Z, N3 = (0,4)Z and N4 = (0,2)Z are the only proper
submodules of M and all of them are cyclic. N3 and N4 are d-small in
M and M = Ny + No. Now Ny N Ny = N3 is §-small in both Ny and
Ns. Hence M is principally d-supplemented. By the same reasoning, for
any prime integer p, the Z-module M = (Z/pZ) ® (Z/p37Z) is principally
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d-supplemented but not principally J-lifting.

Lemma 3.17. Let M be an indecomposable module. Consider the follow-
g conditions.

1. M is a principally §-lifting module.

2. M 1s a principally 6-hollow module.

3. M is a principally §-supplemented module.
Then (1) < (2) = (3).

Proof. (1) < (2) is proved in [12]. (2) = (3) Let m € M. By (2) each
cyclic submodule is §-hollow. Then M = mR+ M and mRN M is d-small
in M. So M is principally d-supplemented. O

Note that Lemma 3.17 (3) = (2) does not hold in general.

In a subsequent paper the authors continue studying some gener-
alizations of supplemented modules. In [8], the module M is called @-
supplemented if for every submodule N of M there is a direct summand
K of M such that M = N+ K and N N K is small in K, and M is called
@-6-supplemented module if for each submodule N of M there exists a
direct summand A such that M = N + A and NN A is d-small in A. In
the same way 0-®-supplemented module means for each submodule N of
M there exists a direct summand A such that M = N + A and NN A
is 0-small in A. It is the same as @-J-supplemented module. Hence we
introduce M is called principally &-0-supplemented module if for each
m € M there exists a direct summand A such that M = mR + A and
mR N A is d-small in A.

The module M is called a weak principally §-supplemented if for each
m € M there exists a submodule A such that M = mR+ A and mRN A
is 0-small in M. Every weakly supplemented module is weak principally
d-supplemented. The module M is called principally &-supplemented if for
each m € M there exists a direct summand A of M such that M = mR+ A
and mR N A is small in A. @-supplemented modules are studied in [6].
Every @é-supplemented module is principally @-d-supplemented and it
is evident that every principally @-supplemented is weak principally 6-
supplemented. In a subsequent paper the authors investigates the intercon-
nections between principally d-supplemented modules, weakly principally
d-supplemented modules and principally @-d-supplemented modules in
detail.
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Recall that a module M is said to have the summand intersection
property if the intersection of any two direct summands of M is again a
direct summand of M. The summand intersection property was studied by
J. L. Garcia [5], who characterized modules with the summand intersection
property. A module M is called refinable if for any submodule U, V' of M
with M = U + V there is a direct summand U’ of M such that U’ C U
and M = U’ +V (see namely [15]).

Theorem 3.18. Let M be a refinable module. Consider the following
conditions.

(1) M is principally §-lifting.

2) M is principally ©-6-supplemented.

(2)
(3) M is principally d-supplemented.
(4)

4) M is weak principally d-supplemented.
Then (1) = (2) and (2) <& (3) & (4). If M has the summand

intersection property then (4) = (1).

Proof. By definitions (1) = (2) = (3) = (4) always hold.

(4) = (2) Let M be a weakly principally d-supplemented module and
m € M. By (4) there exists a submodule A of M such that M = mR+ A
and mRN A is -small in M. By hypothesis, there exists a direct summand
Uof M withU < Aand M = mR+U = U'®U for some submodule U’ of
M. We claim that mRNU is d-small in U. Assume that mRNU+L = U for
some submodule L of U with U/L singular. Since M /(U’ + L) is singular
as it is isomorphic to the singular U/L. Then M = U’ + (mRNU) + L
implies M = U’ @& L as mRNU is §-small in M. Hence L =U. So M is a
principally é@-d-supplemented module.

(4) = (1) Assume that M has the summand intersection property and
let m € M. By (4) there exists a submodule A such that M =mR + A
and mRNA is §-small in M. By hypothesis, there exists a direct summand
Uy of M such that U; is contained in A and M = mR+U; = U] & Uy.
Since U; is direct summand and mR N A is §-small in M, mR N Uy is
0-small in U; by Lemma 2.1 (3). Again by hypothesis, there exists a
direct summand Uy of M such that Us is contained in mR and M =
Us+U =Us; ® Ué. By the summand intersection property Us N Uj is a
direct summand of M, M = (U NU;) @ K for some submodule K of M.
Then Uy = (UaNUy) @ (KNUy) and M = Us & (K NUp). By Lemma 2.1
(4), mRN (K NUy) is 0-small in U; since mRN(KNU) <mRNU; < U
and mRNU is §-small in U;. By Lemma 2.1 (3), mRN (K NUy) is §-small
in KNU; as K NU;p is direct summand of Uj. O
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Theorem 3.19 is proved in [12]. We state without proof for the conve-
nience of the reader.

Theorem 3.19. Let M be a principally 6-semiperfect module. Then
1. M is principally 6-supplemented.

2. FEach factor module of M is principally d-semiperfect, hence any
homomorphic image and any direct summand of M is principally
0-semiperfect.

Theorem 3.20. Let M be a projective module. The following conditions
are equivalent.

1. M is principally §-semiperfect.
2. M s principally §-lifting.
3. M s principally §-supplemented.

Proof. (1) < (2) is proved in [12].
(1) = (3) By Theorem 3.19.
(3) = (1) Let m € M. By (3) there exists a submodule A such that

M = mR+ A such that mRN A is -small in A. Let M ER M/mR defined
by f(y) = a+ mR, where y = mr +a € M with mr € mR, a € A, and
M5 M /mR the natural epimorphism. There exists M 9 M such that
fg =m. Then M = g(M) +mRN A. Since mRN A is J-small in A, it
is 6-small in M. By Lemma 2.1 (1), there exists a projective semisimple
submodule Y of mR N A such that M = g(M) @Y and so that g(M) is
projective. Hence g(M) = M /Ker(g) implies M =Ker(g) @& B for some
submodule B of M and B is projective. Let (fg);p denote the restriction
of fg on B. Then Ker(fg)p < mRN A. Hence Ker(fg)p is é-small in B

and so B (fg—)>|B M/mR is a projective d-cover of M. O

4. Applications

Recall that projective d-cover of a module M is a projective R-module
P with an epimorphism f from P to M such that Kerf is d-small in P.
The next result is a well known fact about the relation between projective
d-cover and a d-supplement and we prove for completeness.

Lemma 4.1. Let M be a module and m € M. If M/mR has a projective
d-cover, then N contains a d-supplement of mR.
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Proof. Let f: P — M/mR be a projective d-cover of M/mR and m : M
— M/mR natural epimorphism. There exists an g : P — M such that
f=mg. Then M = mR+ g(P) and mRN g(P) = g(Ker(f)). It is 6-small
in g(P) as an homomorphic image of J-small submodule Kerf in P by
Lemma 2.1 (2). O

In [12]| principally d-semiperfect modules are introduced and some
properties are studied. By [16], a ring is called d-perfect (or d-semiperfect)
if every R-module (or every simple R-module) has a projective d-cover.
For more detailed discussion on d-small submodules, d-perfect and o-
semiperfect rings, we refer to [16]. A module M is called principally
d-semiperfect if every factor module of M by a cyclic submodule has a pro-
jective d-cover. A ring R is called principally §-semiperfect in case the right
R-module R is principally §-semiperfect. Every d-semiperfect module is
principally d-semiperfect. In Example 4.2, we see that there is a principally
d-semiperfect module but not semiperfect. In [16], a ring R is called J-
semiregular if every cyclically presented R-module has a projective d-cover.

We recall some well known examples for motivation.

Example 4.2. Let R = {{ :8

upper triangular matrices over the ring of integers modulo 4. It is easy

Z ] | z,y,z € Z4} denote the ring of

to check that principal right ideals of R are either small in R or direct
summands of R. Hence R is principally d-supplemented right R-module.
By Theorem 4.3, R is principally d-semiperfect. Let e1o denote the matrix
unit having 1 at (1,2) entry and zero elsewhere. Let I = ej2R. Then I is
small, therefore -small right ideal and Jacobson radical J(R) of R is equal
to I. Hence R/J(R) is not semisimple. Therefore R is not a semiperfect
ring.

Theorem 4.3. Let R be a ring. The following conditions are equivalent.
1. R is principally d-semiperfect.
2. R is principally §-lifting.
3. R is d-semireqular.
4. R is principally §-supplemented.

Proof. (1) = (2) Clear from Theorem 3.20.
(2) = (3) Assume that R is principally é-lifting and = € R. Then
there exists a direct summand right ideal A of R such that R = A ® B,
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A < zR and xR N B is 0-small in B. Then 2R = A ® xR N B and
xRN B < Rads(M). By [16, Theorem 3.5], R is J-semiregular.

(3) = (4) Assume that R is d-semiregular. Let z € R and 7 : R —
R/xR natural epimorphism. By hypothesis, R/ R has a projective d-cover
f: P — R/zRsince R/xR is cyclically presented. There exists g : P — R
such that f = mg. Then R = g(P) + 2R and ¢g(P) N zR is d-small in
g(P) since g(P) NzR = g(Kerf) and Kerf is §-small in P. Hence R is
principally d-supplemented.

(4) = (1) Clear from Theorem 3.20. O

Theorem 4.4. Let M be a refinable projective module with Rads(M)
is 0-small in M. If M/Rads(M) is principally semisimple, then M is
principally d-supplemented.

Proof. Let xR be any cyclic submodule of M. Then we have
M/Rads(M) = [(zR + Rads(M))/Rads(M)] @ [U/ Rads(M)] for some
U< M. Then M = xR+ U and Rads(M) =xRNU + Rads(M). Hence
xRNU is é-small in M and xRNU < Rads(M). Since M = xR+ U there
exists a direct summand A of M such that A< U and M =a2R+U =
xR+ A=B® A. Since tRN A is d-small in M, so it is d-small in A since
A is direct summand. This completes the proof. ]
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