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Abstract. In this paper, it is shown that for an isotone map

f on a pseudo ordered set A, the set of all fixed points of f inherits

the properties of A, namely, completeness, chain-completeness and

weakly chain-completeness, as in the case of posets.

1. Introduction

In 1955 Tarski [6] proved that the set of all fixed points of an order

preserving map in a complete lattice constitutes a complete lattice. Later

in 1976, Markowsky [2] generalized this result by proving that the set of all

fixed points of an order preserving map in a chain-complete poset forms a

chain-complete poset. We extend these results to generalized structures

like trellises and pseudo ordered sets. Further, a counterexample is given

to show that the least fixed point property does not imply weakly chain-

completness even for an acyclic pseudo ordered set. This, in particular

gives a negative solution to Problem 2 in [1].

2. Notations and definitions

A reflexive and antisymmetric binary relation ⊳ on a non- empty set A is

called a pseudo order. The set A together with this pseudo order ⊳ is called

a pseudo ordered set or a psoset. For a subset of A, the notions of a lower

bound, an upper bound, the greatest lower bound (or meet), the least upper
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bound (or join), the minimum (or the least) element and the maximum (or

the greatest) element are defined analogous to the corresponding notions

in a poset. Let B be a subset of A. Then for a subset X of B, the join of

X in B is denoted by
∨

B X. For any two elements a, b ∈ A, if a ⊳ b and

a 6= b, then we denote it as a ⊳ b. If a ⊳ b does not hold, then we denote

it by a 5 b.

A trellis is a psoset, any two of whose elements have a join and a meet.

A trellis is said to be a complete trellis if every subset of A has a meet and

a join. An extensive investigation of the notions of psosets and related

concepts can be found in H.L. Skala [3] and H. Skala [4].

A subset C of A, including C = φ, is called a chain in A if the

restriction of ⊳ to C is a complete order (i.e. it is a partial order on C

such that every pair of elements of C are comparable). A chain C in A

is said to be well ordered if every non-empty subset of C has the least

element. A psoset A is said to be chain-complete if every chain in A has a

join. A is said to be weakly chain-complete if every well ordered chain in

A has a join. Eventhough the notions of chain-completeness and weakly

chain-completeness coincide in posets, it is not known to date whether

they are equivalent in case of psosets. The above definitions are due to

Bhatta [1].

A map f : A → A is said to be isotone if a ⊳ b implies f(a) ⊳ f(b). An

element a ∈ A is said to be a fixed point for f if f(a) = a. If every isotone

map of A into itself has a fixed point (the least fixed point), then A is

said to have the fixed point property (the least fixed point property). The

composition maps f ◦f, f ◦f ◦f, . . . are denoted by f2, f3, . . . respectively.

3. Results

The notion of an f -chain starting at a point p, comparable to its image,

is well known for posets [5]. The following generalization of this definition

helps us in our further discussion

Definition 3.1. Let < A, ⊳ > be a psoset, f : A → A be an isotone map

and B be a subset of FA = {x ∈ A : f(x) = x}. For an ordinal ξ, a subset

Sξ = {xη : η < ξ} of A is called an f -chain on B if for any α < ξ we have

xα =

{ ∨

A[B ∪ {xη : η < α}] if α is a limit ordinal;

f(xβ) otherwise, where α = β + 1.

To have more versatility later on, we shall not assume any sort of

completeness on the psoset for the following lemmas.
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Lemma 3.2. Let < A, ⊳ > be a psoset, f : A → A be an isotone map

and B be a subset of FA = {x ∈ A : f(x) = x}. Then any f-chain on B

is well ordered and is contained in the set of upper bounds of B in A.

Proof. Assume the contrary. Let B∆ denote the set of all upper bounds of

B in A. Choose α to be the least ordinal for which either xη 5 xα for some

η < α or xα /∈ B∆. Clearly α is not a limit ordinal. Hence α = β + 1 for

some ordinal number β. Since xβ ∈ B∆, it follows that xα = f(xβ) ∈ B∆.

Choose γ to be the least ordinal for which xγ 5 xα. Since xα is is an upper

bound for {xη : η < γ}, γ cannot be a limit ordinal. Hence γ = δ + 1 for

an ordinal δ. As xδ ⊳ xβ and f is order preserving, we get xγ = f(xδ) ⊳

f(xβ) = xα, a contradiction.

If Sα = {xη : η < α} and Sβ = {xη : η < β} are two f -chains on

B, then by transfinite induction it can be shown that xγ = yγ for every

γ < α, β. Hence either both of them are equal or one should be an initial

segment of the other. Thus there is a unique maximal f -chain on B.

Lemma 3.3. Let < A, ⊳ > be a psoset and f : A → A be an isotone map.

For a subset B of FA = {x ∈ A : f(x) = x}, let S be the unique maximal

f -chain on B. If u =
∨

A(B ∪ S) exists, then u =
∨

FA
B.

Proof. We have x ⊳ f(x) for every x ∈ S. Further, u =
∨

A(B ∪ S) ∈ S

so that f(u) ∈ S. Thus f(u) = u. Hence u is an upper bound for B in

FA. If y is any upper bound for B in FA, then by transfinite induction, it

follows that y is an upper bound for B ∪ S in A. Hence u ⊳ y.

The following theorems are direct consequences of Lemma 3.2 and

Lemma 3.3.

Theorem 3.4. Let < A, ⊳ > be a chain-complete psoset and f : A → A

be an isotone map. Then FA = {x ∈ A : f(x) = x} is a chain-complete

psoset in the induced order.

Corollary 3.5. (Theorem 9, [2]) Let P be a chain-complete poset, f :

P → P isotone and FP = {x ∈ P : f(x) = x} be the set of all fixed points

of f . Then

(i) there is a least element 0∗ ∈ FP .

(ii) for all y ∈ P , if f(y) ≤ y, then 0∗ ≤ y.

(iii) FP is a chain-complete poset in the induced order.



20 Some fixed point theorems for pseudo ordered sets

Theorem 3.6. Let < A, ⊳ > be a weakly chain-complete psoset and

f : A → A be an isotone map. Then FA = {x ∈ A : f(x) = x} is a weakly

chain-complete psoset in the induced order.

Corollary 3.7. (Theorem, [1]) Every weakly chain-complete psoset has

the least fixed point property.

Eventhough the following theorem follows directly from Lemma 3.3, a

much shorter proof is given below.

Theorem 3.8. Let < A, ⊳ > be a complete trellis and f : A → A be an

isotone map. Then FA = {x ∈ A : f(x) = x} is a complete trellis in the

induced order.

Proof. Let B be a subset of FA. Let B∆ denote the set of all upper bounds

of B in A. Then B∆ is a complete trellis in the induced order and f is a

self map on B∆. By Corollary 3.7 f has the least fixed point say u in B∆.

Clearly, u =
∨

FA
B. Hence FA is a complete trellis.

Corollary 3.9.(Theorem 37, [4]) If f is an isotone map of a complete

trellis A onto itself such that a ⊳ f(a) for each a in A, then with respect

to the same pseudo order on A, the set of all fixed points of f constitutes

a complete trellis.

Corollary 3.10.(Theorem 1, [6]) Let P be a complete lattice, f an isotone

map of A to itself and FP be the set of all fixed points of f . Then the set

FP is a complete lattice.

Counterexample 3.11 The converse of Corollary 3.7 was posed as an

open problem (Problem 2, [1]). A negative solution is given below to show

that the converse doesn’t hold even for an acyclic psoset.

Let A = N ∪ {a} = {1, 2, 3, . . .} ∪ {a}. We define a pseudo-order ⊳ on

A as follows. The elements of N are ordered by the usual natural order

of the reals. Further, for any k ∈ N, k 6= 2 we have k ⊳ a. This psoset is

represented by the digraph in Figure 1.

Clearly, A is not weakly chain-complete as the well ordered chain

C = {1, 2, 3, . . .} is not bounded above.

Let f : A → A be isotone. Suppose f does not have any fixed points.

Since 1 ⊳ f(1) ⊳ f2(1) ⊳ . . . is a chain in A, there is no n ∈ N such that

fn(1) = a. For, if fn(1) = a for some n ∈ N , then we get f(a) = a, a

contradiction. Thus 1 ⊳ f(1) ⊳ f2(1) ⊳ . . . is a chain contained in N . Hence

f2(1) ≥ 3 so that {f2(1), f3(1), . . .} is a chain contained in {3, 4, . . .}.

Since a is an upper bound for {f2(1), f3(1), . . .}, f(a) should be an upper

bound for {f3(1), f4(1), . . .} in A. As a being the only upper bound of
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{f3(1), f4(1), . . .} in A, we should have f(a) = a, a contradiction to the

assumption that f has no fixed points. Hence f has a fixed point. Further,

if f(2) = 2 and f(a) = a, then either f(1) = 1 or f(1) = a. Since 2 = f(2)

⊳ f(3) and f(1) ⊳ f(3), it follows that f(1) 6= a. Thus A has the least

fixed point property.
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2002.

[6] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J.

Math. 5 (1955), 285-309.

Contact information

S. Parameshwara

Bhatta

Department of Mathematics, Mangalore Uni-

versity, Mangalagangothri, 574 199, Karnataka

State, INDIA

E-Mail: s_p_bhatta@yahoo.co.in



22 Some fixed point theorems for pseudo ordered sets

Shiju George Department of Mathematics, Mangalore Uni-

versity, Mangalagangothri, 574 199, Karnataka

State, INDIA

E-Mail: shijugeorgem@rediffmail.com

Received by the editors: 09.09.2009

and in final form 04.05.2011.


