© Journal "Algebra and Discrete Mathematics"

On the prime spectrum of top modules

H. Ansari-Toroghy and D. Hassanzadeh-Lelekaami

Communicated by V. Mazorchuk

ABSTRACT. In this paper we investigate some properties of top modules and consider some conditions under which the spectrum of a top module is a spectral space.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and all modules are unital. The radical of an ideal I of R is denoted by \sqrt{I} and

$$\sqrt{I} = \{x \in R | x^n \in I \text{ for some } n \in \mathbb{N}\}.$$

Let M be an R-module. A submodule N of M is said to be prime if $N \neq M$ and whenever $rm \in N$ (where $r \in R$ and $m \in M$) then $r \in (N:M)$ or $m \in N$. If N is prime, then the ideal p = (N:M) is a prime ideal of R, and N is said to be p-prime (see [14]). The set of all prime submodules of M is called the spectrum of M and denoted by $\operatorname{Spec}(M)$. Similarly, the collection of all p-prime submodules of M for any $p \in \operatorname{Spec}(R)$ is designated by $\operatorname{Spec}_p(M)$. We remark that $\operatorname{Spec}(\mathbf{0}) = \emptyset$ and that $\operatorname{Spec}(M)$ may be empty for some nonzero module M. For example, the $\mathbb{Z}(p^{\infty})$ as a \mathbb{Z} -module has no prime submodule for any prime integer p (see [16]). Such a module is said to be primeless. Throughout this paper we assume that M is a non-primeless R-module. The set of all maximal submodules of M is denoted by Max(M). The Jacobson radical Rad(M)

²⁰⁰⁰ Mathematics Subject Classification: 13C13, 13C99.

Key words and phrases: top modules, irreducible space, Noetherian space, Spectral space.

of a module M is the intersection of all its maximal submodules. A module M is called a semi-local (resp. a local) module if Max(M) is a non-empty finite (resp. a singleton) set.

When $\operatorname{Spec}(M) \neq \emptyset$, the map $\psi : \operatorname{Spec}(M) \to \operatorname{Spec}(R/\operatorname{Ann}(M))$, defined by $\psi(P) = (P:M)/\operatorname{Ann}(M)$ for every $P \in \operatorname{Spec}(M)$, will be called the natural map of $\operatorname{Spec}(M)$. An R-module M is called primeful if either $M = (\mathbf{0})$ or $M \neq (\mathbf{0})$ and has a surjective natural map (see [19]). By $N \leq M$ (resp. N < M) we mean that N is a submodule (resp. proper submodule) of M. Let p be a prime ideal of R, and $N \leq M$. By the saturation of N with respect to p, we mean the contraction of N_p in M and designate it by $S_p(N)$ (see [18]).

M is called a multiplication module if every submodule N of M is of the form IM for some ideal I of R. For any submodule N of M we define V(N) to be the set of all prime submodules of M containing N. If $\zeta(M)$ denotes the collection of all subsets V(N) of $X = \operatorname{Spec}(M)$, then $\zeta(M)$ contains the empty set and $\operatorname{Spec}(M)$ and it is closed under arbitrary intersections. It is said that M is a module with Zariski topology or a top module for short, if $\zeta(M)$ is closed under finite unions, i.e. for any submodules N and L of M there exists a submodule J of M such that $V(N) \cup V(L) = V(J)$ (see [20]).

Let N be a submodule of M. If V(N) has at least one minimal member with respect to the inclusion, then such a minimal member is called a minimal prime submodule of N or a prime submodule minimal over N. A minimal prime submodule of $(\mathbf{0})$ is called a minimal prime submodule of M.

A non-Noetherian commutative ring R is called a quasisemilocal ring if R has only a finite number of maximal ideals. A non-Noetherian commutative ring R is called a quasilocal ring if has only one maximal ideal. Let N be a submodule of M. N is called compactly packed by prime submodules if whenever N is contained in the union of a family of prime submodules of M, N is contained in one of the prime submodules of the family. M is called compactly packed if every submodule of M is compactly packed by prime submodules (see [11]). A submodule N of M is said to be strongly irreducible if for submodules N_1 and N_2 of M, the inclusion $N_1 \cap N_2 \subseteq N$ implies that either $N_1 \subseteq N$ or $N_2 \subseteq N$. Strongly irreducible submodules has been characterized in [3]. For example every prime submodule of multiplication module is strongly irreducible (see [7, p. 1142, Lemma 4.11]). A module M is called a Bezout module if every finitely generated submodule is cyclic (see [22, 23]). A module M is called distributive if the lattice of its submodules is distributive, i.e.,

 $A \cap (B+C) = (A \cap B) + (A \cap C)$ and $A + (B \cap C) = (A+B) \cap (A+C)$ for all submodules A, B and C of M (see [6]). We recall that every Bezout R-module is distributive (see [22, p. 307, Corollary 2]).

Now let M be a top module. The purpose of this paper is to discuss some topological properties of $\operatorname{Spec}(M)$. We explore the relation between $\operatorname{Spec}(R)$ and $\operatorname{Spec}(M)$ and investigate topological space $\operatorname{Spec}(M)$ from the point of view of spectral spaces, topological spaces each of which is homeomorphic to $\operatorname{Spec}(S)$ for some ring S. In Section 2, various algebraic properties of top modules are considered. We will consider the conditions under which M is a top module. In Section 3, we will discuss some topological properties of $\operatorname{Spec}(M)$.

2. Top modules

Let M be an R-module. For any subset E of M, we recall that V(E) is the set of all prime submodules of M containing E. Also for a submodule N of M, the radical of N defined to be the intersection of all prime submodules of M containing N and denoted by $rad_M(N)$ or briefly rad(N) (see [15]). In particular $rad(0_M)$ is the intersection of all prime submodules of M. We say N is a radical submodule if rad(N) = N. For every subset Y of Spec(M), S(Y) is defined to be the intersection of all prime submodules of M which belong to Y (see [18, 19]).

Let M be an R-module and $X = \operatorname{Spec}(M)$. If N is a submodule of M generated by a set S, then V(S) = V(N). We have $V(\mathbf{0}) = X$ and $V(M) = \emptyset$. If $\{N_i\}_{i \in I}$ is any family of subsets of M, then $V(\cup_{i \in I} N_i) = \bigcap_{i \in I} V(N_i)$. Also $V(N_1 \cap N_2) \supseteq V(N_1) \cup V(N_2)$ for any submodules N_1 and N_2 of M. Since $\sum_{i \in I} N_i$ generated by $\bigcup_{i \in I} N_i$, we have

$$V(\sum_{i \in I} N_i) = V(\bigcup_{i \in I} N_i) = \bigcap_{i \in I} V(N_i).$$

We denote V(Rm) by V(m).

If $\zeta(M)$ denotes the collection of all subsets V(N) of $X = \operatorname{Spec}(M)$, then $\zeta(M)$ contains the empty set and $\operatorname{Spec}(M)$ and it is closed under arbitrary intersections. We recall that M is a module with a Zariski topology or a top module for short, if $\zeta(M)$ is closed under finite unions, that is, for any submodules N and L of M there exists a submodule J of M such that $V(N) \cup V(L) = V(J)$. In this case $\zeta(M)$ satisfies the axioms for closed subsets of topological space (see [20]).

Theorem 2.1. Let M be an R-module. Then M is a top module in each of the following cases.

- 1. Every prime submodule of M is strongly irreducible.
- 2. M is an R-module with the property that for any two submodules N and L of M, (N:M) and (L:M) are comaximal.
- 3. M is a Bezout R-module.
- 4. R is a quasisemilocal ring and M is a distributive R-module.
- 5. M is an Artinian distributive R-module.
- 6. M is a distributive R-module with the property that every submodule has only finitely many maximal submodules.
- Proof. 1. Always we have, $V(N \cap L) \supseteq V(N) \cup V(L)$ for each submodules N and L of M. Now let $P \in V(N \cap L)$, thus $N \cap L \subseteq P$. Since P is strongly irreducible, either $N \subseteq P$ or $L \subseteq P$. Therefore $P \in V(N) \cup V(L)$. Thus $\zeta(M)$ is closed under finite unions. Hence M is a top module.
 - 2. Let P be a prime submodule of M with $N \cap L \subseteq P$. Then

$$(N:M) \cap (L:M) \subseteq (P:M) \in \operatorname{Spec}(R).$$

We may assume that $(N:M) \subseteq (P:M)$. Then clearly $(L:M) \not\subseteq (P:M)$ by assumption. Hence $N \subseteq P$ by [15, p. 215, Lemma 2]. Therefore P is strongly irreducible. This implies that M is a top module by part (1).

- 3. Let P be a prime submodule of M such that $N \cap L \subseteq P$ for submodules N and L of M. Let $N \not\subseteq P$, $a \in N \setminus P$, and $b \in L$. Then there exists $z \in M$ such that Ra + Rb = Rz. Thus there exists $r, s \in R$, such that a = rz, b = sz. Then we have that $sa \in P$, so $s \in (P : M)$. In particular $sz \in P$, whence $b \in P$. This implies that M is a top module by part (1).
- 4. Use [6, p. 176, Proposition 7 and p. 175, Proposition 4], and part (3).
- 5. Use [6, p. 176, Proposition 7], [12, p. 764, Corollary 2.9], and part (3).
- 6. Use $[6,\,\mathrm{p.}\ 176,\,\mathrm{Proposition}\ 7\,],\,[12,\,\mathrm{p.}\ 763,\,\mathrm{Theorem}\ 2.8],\,\mathrm{and}\ \mathrm{part}\ (3).$

Remark 2.2. Let M be a top R-module. Then by [17, p. 429, Corollary 6.2 and Theorem 6.1], the natural map $\psi : \operatorname{Spec}(M) \longrightarrow \operatorname{Spec}(R/\operatorname{Ann}(M))$, is injective.

Theorem 2.3. Let M be a top R-module. Then

- 1. Every prime submodule of M is of the form $S_p(pM)$ for some $p \in V(\operatorname{Ann}(M))$.
- 2. If R satisfies ACC on prime ideals, then M satisfies ACC on prime submodules.
- Proof. 1. Let P be a prime submodule of M and $p := (P : M) \supseteq \operatorname{Ann}(M)$. Then $\operatorname{Spec}_p(M) \neq \emptyset$, so $S_p(pM)$ is a p-prime submodule of M by [18, p. 2664, Corollary 3.7]. Since M is a top module, we have $S_p(pM) = P$ by Remark 2.2.
 - 2. Let $N_1 \subseteq N_2 \subseteq ...$ be an ascending chain of prime submodules of M. This induces the following chain of prime ideals, $\psi(N_1) \subseteq \psi(N_2) \subseteq \cdots$, where ψ is the natural map ψ : Spec $(M) \longrightarrow \operatorname{Spec}(R/\operatorname{Ann}(M))$. Since R satisfies ACC on prime ideals, there exists a positive integer k such that for each $i \in \mathbb{N}$, $\psi(N_k) = \psi(N_{k+i})$. Now by Remark 2.2, we have $N_k = N_{k+i}$ as required.

Remark 2.4. Let M be an R-module and p be a prime ideal of R. For every submodule N of the R_p -module M_p , let $N \cap M$ be the inverse image of N under $M \to M_p$. Then $(N \cap M)_p = N$ (see [10, p. 68, Proposition 10]).

Theorem 2.5. Let (R, \underline{m}) be a quasilocal ring and M be a nonzero top primeful R-module. Then M is a local module.

Proof. We must show that M has exactly one maximal submodule. For each $p \in V(\operatorname{Ann}(M))$, R_p is a quasilocal ring with unique maximal ideal pR_p and M_p is a nonzero top primeful R-module by [19, p. 135, Theorem 4.1] and [20, p. 93, Lemma 3.3]. Thus there exists a prime submodule L of M_p such that $(L:M_p)=pR_p$. We claim that $L\cap M$ is a maximal submodule of M. Let N be a submodule of M such that $L\cap M\subseteq N$. Then by Remark 2.4, $L=(L\cap M)_p\subseteq N_p$. But we have $pR_p=(L:M_p)=(N_p:M_p)$. Thus N_p is a prime submodule of M_p . Therefore $N_p=L$ by Remark 2.2. This implies that

$$N \subseteq S_p(N) = N_p \cap M = L \cap M \subseteq N.$$

Hence $L\cap M=N$, so $L\cap M$ is a maximal submodule of M. This means that $((L\cap M):M)=\underline{m}$. Now let $Q\in Max(M)$, then $(Q:M)=((L\cap M):M)=\underline{m}$. Therefore $Q=L\cap M$ by Remark 2.2. This completes the proof.

For every prime ideal p of R, R_p is always a quasilocal ring. However, for an arbitrary R-module M, M_p is not necessarily a local R_p -module. But by Theorem 2.5, if M is a nonzero top primeful R-module, then M_p is a local R_p -module for each $p \in V(\mathrm{Ann}(M))$.

Proposition 2.6. Let M be a nonzero top primeful R-module.

- 1. If M is a semi-local (resp. local) module, then $R/\operatorname{Ann}(M)$ is a quasisemilocal (resp. a quasilocal) ring.
- 2. Let M be a local module with maximal submodule P. If (P : M) = p, then the canonical homomorphism $M \to M_p$ is bijective.
- Proof. 1. Let M be a local module with unique maximal submodule P. Then $p:=(P:M)\in Max(R)$. Now let $q\in Max(R)\cap V(\mathrm{Ann}(M))$. It is enough to prove q=p. To see this, we note that $S_q(qM)$ is a q-prime submodule of M by [19, p. 127, Theorem 2.1]. We show that $S_q(qM)\in Max(M)$. Let $S_q(qM)\subseteq K$ for some submodule K of M. Then we have $q=(S_q(qM):M)=(K:M)$. Hence $S_q(qM)=K$ by Remark 2.2. This implies that $S_q(qM)=P$ and therefore q=p. For the semi-local case we argue similarly.
 - 2. Use part (1) and [10, p. 87, Proposition 8].

3. Topological properties of Spec(M)

We recall that a topological space X is irreducible if the intersection of two non-empty open sets of X is non-empty. Every subset of a topological space consisting of a single point is irreducible and a subset Y of a topological space X is irreducible if and only if its closure Cl(Y) is irreducible (see [10, §4.1]). A maximal irreducible subset Y of X is called an irreducible component of X and it is always closed. A topological space X is said to be quasi-compact if every open cover of X has a finite subcover. It is clear that every space X containing only finitely many points is quasi-compact. We begin this section by some examples.

- **Example 3.1.** 1. Let $M = \bigoplus_p \mathbb{Z}/p\mathbb{Z}$ be a \mathbb{Z} -module, where p runs through the set of all prime numbers. Then by [8, p. 124, Theorem 3.4], $\operatorname{Spec}(M)$ is not an irreducible space because $\operatorname{rad}(0_M)$ is not a prime submodule. Further, $\operatorname{Spec}(M)$ is not a quasi-compact space.
 - 2. Let $M = \mathbb{Z} \oplus \mathbb{Z}(p^{\infty})$ be a \mathbb{Z} -module. Then by [8, p. 124, Theorem 3.4]), Spec(M) is an irreducible space because $rad(0_M) = (0) \oplus \mathbb{Z}(p^{\infty})$ is a prime submodule of M.

3. Let $M = \mathbb{Q} \oplus \mathbb{Z}/p\mathbb{Z}$ be a \mathbb{Z} -module. Then by [8, p. 124, Theorem 3.4], Max(M) is an irreducible subset of Spec(M) because

$$Rad(M) = \Im(Max(M)) = \mathbb{Q} \oplus (0).$$

Proposition 3.2. Let Y be a subset of Spec(M) for a top R-module M. If Y is irreducible, then $T = \{(P : M) \mid P \in Y\}$ is an irreducible subset of Spec(R), with respect to Zariski topology.

Proof. $\psi(Y) = T'$ is an irreducible subset of $\operatorname{Spec}(R/\operatorname{Ann}(M))$ because ψ is continuous by [17, p. 421, Proposition 3.1]. We have

$$\Im(T') = (\Im(Y) : M) / \operatorname{Ann}(M) \in \operatorname{Spec}(R / \operatorname{Ann}(M)).$$

Therefore $\Im(T) = (\Im(Y) : M)$ is a prime ideal of R, so T is an irreducible subset of $\operatorname{Spec}(R)$ by [10, p. 102, Proposition 14].

Let Y be a closed subset of a topological space. An element $y \in Y$ is called a generic point of Y if $Y = Cl(\{y\})$. Note that a generic point of a closed subset Y of a topological space is unique if the topological space is a T_0 -space.

Theorem 3.3. Let M be a top R-module and $Y \subseteq \operatorname{Spec}(M)$. Then Y is an irreducible closed subset of $\operatorname{Spec}(M)$ if and only if Y = V(P) for some $P \in \operatorname{Spec}(M)$. Thus every irreducible closed subset of $\operatorname{Spec}(M)$ has a generic point.

Proof. Y = V(P) is an irreducible closed subset of $\operatorname{Spec}(M)$ for any $P \in \operatorname{Spec}(M)$ by [8, p. 123, Lemma 3.3]. Conversely if Y is an irreducible closed subset of $\operatorname{Spec}(M)$, then Y = V(N) for some $N \leq M$ and $\Im(Y) = \Im(V(N)) = rad(N)$ is a prime submodule by [8, p. 124, Theorem 3.4]. Hence Y = V(N) = V(rad(N)) as desired. □

Theorem 3.4. Let M be a top R-module. The correspondence $V(P) \mapsto P$ is a bijection from the set of irreducible components of $\operatorname{Spec}(M)$ to the set of minimal prime submodules of M.

Proof. Let Y be an irreducible component of $\operatorname{Spec}(M)$. Since each irreducible component of $\operatorname{Spec}(M)$ is a maximal element of the set $\{V(Q) \mid Q \in \operatorname{Spec}(M)\}$ by Theorem 3.3, we have Y = V(P) for some $P \in \operatorname{Spec}(M)$. Obviously P is a minimal prime submodule, for if T is a prime submodule of M with $T \subseteq P$, then $V(P) \subseteq V(T)$ so that P = T. Now let P be a minimal prime submodule of M with $V(P) \subseteq V(Q)$ for some $Q \in \operatorname{Spec}(M)$. Then $Cl(\{P\}) = V(P) \subseteq V(Q) = Cl(\{Q\})$, hence P = Q. This implies that V(P) is an irreducible subset of $\operatorname{Spec}(M)$ as desired. □

Example 3.5. Consider $M = \mathbb{Z} \oplus \mathbb{Z}(p^{\infty})$ as a \mathbb{Z} -module. By Example 3.1 and Theorem 3.4, $(0) \oplus \mathbb{Z}(p^{\infty})$ is a minimal prime submodule of M.

Proposition 3.6. Consider the following statements for a nonzero top primeful R-module M:

- 1. Spec(M) is an irreducible space.
- 2. Supp(M) is an irreducible space.
- 3. $\sqrt{\operatorname{Ann}(M)}$ is a prime ideal of R.
- 4. Spec(M) = V(pM) for some $p \in \text{Supp}(M)$.

Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$. When M is a multiplication module, all the four statements are equivalent.

Proof. (1) \Rightarrow (2) By [17, p. 421, Proposition 3.1], the natural map ψ is continuous and by assumption ψ is surjective. Hence $Im(\psi) = \operatorname{Spec}(R/\operatorname{Ann}(M))$ is also irreducible. Now by [19, p. 133, Proposition 3.4] and [4, p. 13, Ex. 21], we have $\operatorname{Supp}(M) = V(\operatorname{Ann}(M))$ is homeomorphic to $\operatorname{Spec}(R/\operatorname{Ann}(M))$. This implies that $\operatorname{Supp}(M)$ is an irreducible space. (2) \Rightarrow (3) By [10, p. 102, Proposition 14], $\operatorname{S}(\operatorname{Supp}(M))$ is a prime ideal of R. But we have $\operatorname{S}(\operatorname{Supp}(M)) = \operatorname{S}(V(\operatorname{Ann}(M))) = \sqrt{\operatorname{Ann}(M)}$.

(3) \Rightarrow (4) Let $a \in \sqrt{\text{Ann}(M)}$, then $a^n M = 0$ for some integer $n \in \mathbb{N}$. Hence for every prime submodule P of M, $a \in (P : M)$. Therefore $\sqrt{\text{Ann}(M)} \subseteq (P : M)$, for each $P \in \text{Spec}(M)$. Since M is primeful, there exists a prime submodule Q of M such that $(Q : M) = \sqrt{\text{Ann}(M)}$. Hence by [17, p. 419, Result 3],

$$\operatorname{Spec}(M) = \{ P \in \operatorname{Spec}(M) \mid (P : M) \supseteq (Q : M) \}$$
$$= V((Q : M)M) = V(\sqrt{\operatorname{Ann}(M)}M).$$

It is clear that $p := \sqrt{\operatorname{Ann}(M)} \in \operatorname{Supp}(M)$. Therefore $\operatorname{Spec}(M) = V(pM)$.

For the last assertion, we show that (4) implies (1). Let $\operatorname{Spec}(M) = V(pM)$ for some $p \in \operatorname{Supp}(M)$. Since M is primeful, there exists $P \in \operatorname{Spec}(M)$ such that (P : M) = p. Since M is multiplication, we have

$$\operatorname{Spec}(M) = V(pM) = V((P:M)M) = V(P).$$

Thus $rad(0_M) = \Im(\operatorname{Spec}(M)) = \Im(V(P)) = P \in \operatorname{Spec}(M)$. This implies that $\operatorname{Spec}(M)$ is an irreducible space by [8, p. 124, Theorem 3.4].

Notation and Remark 3.7. For each subset S of M, we denote $\operatorname{Spec}(M) \setminus V(S)$ by $\Gamma(S)$. Further for each element $m \in M$, $\Gamma(\{m\})$ is denoted by $\Gamma(m)$. Hence

$$\Gamma(m) = \operatorname{Spec}(M) \setminus V(m) = \{P \mid P \in \operatorname{Spec}(M) \text{ and } m \notin P\}.$$

Moreover, for any family $\{N_i\}_{i\in I}$ of submodules of M, we have $\Gamma(\sum_{i\in I} N_i) = \Gamma(\bigcup_{i\in I} N_i)$.

Proposition 3.8. Let M be a top R-module. Then the set $B = \{\Gamma(m) \mid m \in M\}$ form a basis of open sets for the Zariski topology.

Proof. Let $\Gamma(N)$ be an open set for some submodule N of M. Let $P \in \Gamma(N)$. Hence $N \not\subseteq P$ so that there exists $m \in N \setminus P$, therefore $P \in \Gamma(m)$. Now assume that $Q \in \Gamma(m)$. It follows that $N \not\subseteq Q$ so that $\Gamma(m) \subseteq \Gamma(N)$. Thus $P \in \Gamma(m) \subseteq \Gamma(N)$. Hence B is a basis for Zariski topology on $\operatorname{Spec}(M)$ by [21, P. 80, Lemma 13.2].

For a submodule N of an R-module M, we use the following notation

$$\mathbb{T}(N) := \{L \mid L \subseteq N \text{ and } L \text{ is finitely generated } \}.$$

Lemma 3.9. Let M be an R-module and N be a submodule of M. Then we have

$$V(N) = \bigcap_{L \in \mathbb{T}(N)} V(L), \quad \Gamma(N) = \bigcup_{L \in \mathbb{T}(N)} \Gamma(L).$$

Proof. Let $P \in V(N)$. If $L \in \mathbb{T}(N)$, then $L \subseteq N \subseteq P$. Hence $P \in V(L)$, thus $V(N) \subseteq \bigcap_{L \in \mathbb{T}(N)} V(L)$. Now suppose $P \in V(L)$ for every $L \in \mathbb{T}(N)$ and $P \not\in V(N)$. Since $N \not\subseteq P$, then there exists $x \in N \setminus P$. Hence $Rx \subseteq N$ and Rx is finitely generated, therefore $Rx \in \mathbb{T}(N)$. Consequently $x \in Rx \subseteq P$, a contradiction. Hence $\bigcap_{L \in \mathbb{T}(N)} V(L) \subseteq V(N)$.

Theorem 3.10. Let M be a top R-module. Then every quasi-compact open subset of $\operatorname{Spec}(M)$ is of the form $\Gamma(N)$ for some finitely generated submodule N of M. In particular if M is Bezout, then every quasi-compact open subset of $\operatorname{Spec}(M)$ is of the form $\Gamma(m)$ for some $m \in M$.

Proof. Suppose $\Gamma(B) = \operatorname{Spec}(M) \setminus V(B)$ is a quasi-compact open subset of $\operatorname{Spec}(M)$. By Lemma 3.9, we have $\Gamma(B) = \bigcup_{L \in T(B)} \Gamma(L)$. Since $\Gamma(B)$ is quasi-compact, every open covering of $\Gamma(B)$ has a finite subcovering, thus

$$\Gamma(B) = \Gamma(L_1) \cup ... \cup \Gamma(L_n) = \Gamma(\sum_{i=1}^n L_i).$$

This completes the proof.

Theorem 3.11. Let R be a Noetherian ring and let M be an R-module such that for every submodule N of M there exists an ideal I of R such that V(N) = V(IM). Then the open set $\Gamma(m)$ is quasi-compact for each $m \in M$.

Proof. By [20, p. 94, Theorem 3.5], M is a top module. Since, by Proposition 3.8, the set $\{\Gamma(m) \mid m \in M\}$ forms a base for the Zariski topology on $\operatorname{Spec}(M)$, for every open cover of $\Gamma(m)$, there exists a family $\{m_{\lambda} \mid \lambda \in \Lambda\}$ of elements of M such that

$$\Gamma(m) \subseteq \bigcup_{\lambda \in \Lambda} \Gamma(m_{\lambda}) = \operatorname{Spec}(M) \setminus \bigcap_{\lambda \in \Lambda} V(m_{\lambda}).$$

For each $\lambda \in \Lambda$, set $V(m_{\lambda}) = V(J_{\lambda}M)$, where J_{λ} is an ideal of R. Then

$$\Gamma(m) \subseteq \operatorname{Spec}(M) \setminus \bigcap_{\lambda \in \Lambda} V(J_{\lambda}M) = \operatorname{Spec}(M) \setminus V(\sum_{\lambda \in \Lambda} J_{\lambda}M).$$

Therefore $\Gamma(m) \subseteq \operatorname{Spec}(M) \setminus V((\sum_{\lambda \in \Lambda} J_{\lambda})M)$. Since R is a Noetherian ring, there exists a finite subset Λ' of Λ such that

$$\Gamma(m) \subseteq \operatorname{Spec}(M) \setminus V(\sum_{\lambda \in \Lambda'} J_{\lambda}M) = \operatorname{Spec}(M) \setminus \bigcap_{\lambda \in \Lambda'} V(m_{\lambda}) = \bigcup_{\lambda \in \Lambda'} \Gamma(m_{\lambda}).$$

Consider $M = \bigoplus_p \mathbb{Z}/p\mathbb{Z}$ as a \mathbb{Z} -module, where p runs through the set of all prime numbers. By [8, p. 113, Theorem 2.14], $\operatorname{Spec}(M)$ is a T_1 -space because each prime submodule is a maximal element in $\operatorname{Spec}(M)$.

Proposition 3.12. Let M be a top R-module. Then we have the following.

- 1. If $\operatorname{Spec}(R)$ is a T_1 -space, then $\operatorname{Spec}(M)$ is also a T_1 -space. In particular, If R is a Boolean ring, then $\operatorname{Spec}(M)$ is a T_1 -space.
- 2. If Spec(M) = Max(M) and also M is a faithful primeful module, then Spec(R) is a Hausdorff space.
- Proof. 1. Suppose Q is a prime submodule of M. Then $Cl(\{Q\}) = V(Q)$. If $P \in V(Q)$, then since every prime ideal is a maximal ideal, (Q:M) = (P:M) so that Q = P by Remark 2.2. Therefore $Cl(\{Q\}) = \{Q\}$ and this implies that Spec(M) is a T_1 -space.
 - 2. Let p be a prime ideal of R. Since M is primeful, there exists a prime submodule P of M such that (P:M)=p. Hence p is a maximal ideal of R. This implies that Spec(R) is a Hausdorff space. \square

A topological space X is called Noetherian if it satisfies the descending chain condition for closed sets, or equivalently X is a Noetherian space if and only if every open subset of X is quasi-compact (see [4, p. 79, Ex. 5]).

Lemma 3.13. Let M be a top module. Then $\operatorname{Spec}(M)$ is a Noetherian space if and only if radical submodules of M satisfies ACC. In Particular, every top Noetherian module has Noetherian spectrum.

Proof. Let N be a radical submodule of M. Then we have $N = \Im(V(N))$. Also, if N_1 and N_2 are two radical submodules of M with $V(N_1) = V(N_2)$, then $N_1 = N_2$. The two facts prove the lemma. \square

Theorem 3.14. Let M be a top module. Then Spec(M) is a Noetherian space in each of the following cases.

- 1. M is a compactly packed module.
- 2. R is an integral domain of dimension 1 and M a non-faithful Rmodule such that every closed subset of $\operatorname{Spec}(M)$ has finitely many
 irreducible components.
- 3. R is a PID and M a non-faithful R-module.

Proof. 1. Let $N_1 \subseteq N_2 \subseteq ...$ be an ascending chain of radical submodules of M and let $G := \bigcup_{i \in I} N_i$. By Lemma 3.13, it is enough to show that G is contained in N_j for some $j \in I$. To see this, we claim that $rad(G) \subseteq rad(Rx)$ for some $x \in G$. If not, then for every $x \in G$ there exists a prime submodule $P_x \in V(Rx)$ such that $G \not\subseteq P_x$. But

$$G = \bigcup_{x \in G} Rx \subseteq \bigcup_{x \in G} P_x$$

which yields a contradiction by hypothesis. Thus there exists an element $b \in G$ such that $rad(G) \subseteq rad(Rb)$. Also there exists some $j \in I$ such that $b \in N_j$. Therefore $G \subseteq rad(Rb) \subseteq N_j$, which finishes the proof.

2. Let F = V(N) be a closed subset of $\operatorname{Spec}(M)$, with $N \leq M$. By assumption $V(N) = \bigcup_{i=1}^n Z_i$, where Z_i is irreducible component of V(N). Thus M/N has finitely many minimal prime submodules P'_1, \ldots, P'_n by Theorem 3.4. Thus there exists prime submodules P_1, \ldots, P_n of M such that $P'_i = P_i/N$. Let $P \in V(N)$. We show that $P = P_j$ for some j $(1 \leq j \leq n)$. By [15, p. 213, Proposition 1], $N \subseteq P_k \subseteq P$ for some k $(1 \leq k \leq n)$. Thus we have

$$\psi(P_k) \subseteq \psi(P) \Rightarrow (0) \subset \text{Ann}(M) \subseteq (P_k : M) \subseteq (P : M).$$

Since M is a non-faithful top R-module and R is a one dimensional integral domain, we have $P = P_k$. Now the proof follows from Lemma 3.13.

3. By Lemma 3.13, it is enough to prove that for every submodule N of M, $|V(N)| < \infty$. Suppose that V(N) contains infinitely many members. Then for each $P \in V(N)$, we have $(N:M) \subseteq (P:M)$. Note that for distinct prime submodules $P,Q \in V(N)$, we have $(P:M) \neq (Q:M)$ by Remark 2.2. This implies that $\operatorname{Ann}(M) \subseteq (N:M) = 0$, which is a contradiction by hypothesis. This completes the proof.

Theorem 3.15. Let M be a top R-module such that $\operatorname{Spec}(M)$ is a Noetherian space. Then the following statements are true.

- 1. Every ascending chain of prime submodules of M is stationary.
- 2. If M is a Bezout R-module, then M is compactly packed.
- 3. If N is a proper submodule of M, then V(N) has only finitely many minimal elements.
- 4. $rad(N) = \bigcap P_i$, where the intersection is taken over the finitely many P_i of part (3).
- 5. The set of minimal prime submodules of M is finite. In particular

$$\operatorname{Spec}(M) = \bigcup_{i=1}^{n} V(P_i),$$

where P_i are all minimal prime submodules of M.

Proof. 1. This is clear.

2. Let N be a proper submodule of M. We claim that rad(N) = rad(L) for some finitely generated submodule L of M. Suppose the claim is not true and let $x_1 \in N$ and $N_1 = rad(Rx_1)$. Then $N_1 \subset N$ because if $N_1 = N$, then

$$rad(Rx_1) = rad(rad(Rx_1)) = rad(N_1) = rad(N)$$

which is a contradiction. So there exists $x_2 \in N \setminus N_1$. Let $N_2 = rad(Rx_1 + Rx_2)$. Then $N_1 \subset N_2 \subset N$. By continuing this procedure we have an ascending chain of radical submodules

$$N_1 \subset N_2 \subset N_3 \subset \cdots$$

of M which is a contradiction by Lemma 3.13. Therefore rad(N) = rad(L) for some finitely generated submodule L of M. L must be cyclic, because M is a Bezout module. Hence for each proper submodule N of M there exists $x \in N$ such that rad(N) = rad(Rx). Now let K be a proper submodule of M and let $\{P_i\}_{i\in I}$ be a family of prime submodules of M such that $K \subseteq \bigcup_{i\in I} P_i$. By above arguments, there exists $x \in K$ such that $K \subseteq rad(Rx) \subseteq P_i$ for some $j \in I$.

- 3. We have that V(N) is homeomorphic to $\operatorname{Spec}(M/N)$. Since $\operatorname{Spec}(M)$ is Noetherian, $\operatorname{Spec}(M/N)$ has finitely many irreducible components. Hence by Theorem 3.4, there is one-to-one correspondence between irreducible components of $\operatorname{Spec}(M/N)$ and minimal prime submodules of M/N. Also for $P \in \operatorname{Spec}(M)$, P/N is a minimal prime submodule of M/N if and only if P is a minimal prime submodule of N. This completes the proof.
- 4. This follows from part (3) and [15, p. 213, Proposition 1].
- 5. This follows from Theorem 3.4 and the fact that the number of irreducible components of $\operatorname{Spec}(M)$ is finite.

Proposition 3.16. Let M be a top co-semisimple R-module. Then M is a Noetherian R-module in each of the following cases.

- 1. M is compactly packed.
- 2. R is an integral domain of dimension 1 and M a non-faithful Rmodule such that every closed subset of $\operatorname{Spec}(M)$ has finitely many
 irreducible components.
- 3. R is a PID and M is a non-faithful R-module.

Proof. By Theorem 3.14, if each of the conditions (1)-(3) holds, then $\operatorname{Spec}(M)$ is a Noetherian space. Hence M satisfies ACC on radical submodules by Lemma 3.13. But every submodule of M is a radical submodule by [2, p. 122, Ex. 14]. Therefore M is a Noetherian module. This completes the proof.

We recall that an R-module M is called a multiplication module [12] if every submodule N of M is of the form IM for some ideal I of R and an R-module M is called a weak multiplication if every prime submodule P of M is of the form IM for some ideal I of R (see [1] and [5]).

Theorem 3.17. Let M be a weak multiplication top primeful R-module. Then the set

$$T = \{V(pM) \mid p \in Min(\operatorname{Supp}(M))\}\$$

is the set of all irreducible components of Spec(M).

Proof. Let Y be an irreducible component of $\operatorname{Spec}(M)$. Then by Theorem 3.3, Y = V(P) for some $P \in \operatorname{Spec}(M)$. Hence Y = V(P) = V((P:M)M), where $p := (P:M) \in V(\operatorname{Ann}(M)) = \operatorname{Supp}(M)$ by [19, p. 133, Proposition 3.4]. We must show that $p \in Min(\operatorname{Supp}(M))$. To see this let $q \in \operatorname{Supp}(M)$ and $q \subseteq p$. Then there exists a prime submodule Q of M such that Q:M = q because M is primeful. Thus $Y = V(P) \subseteq V(Q)$. Hence Y = V(P) = V(Q). Thus by [17, p. 419, Result 1], we have that p = q.

Conversely let $Y \in T$. Then there exists $p \in Min(\operatorname{Supp}(M))$ such that Y = V(pM). Since M is primeful, there exists a prime submodule P of M such that (P:M) = p. Since M is a weak multiplication module, Y = V(pM) = V((P:M)M) = V(P). Thus Y is irreducible by [8, p. 124, Theorem 3.4]. Suppose $Y = V(P) \subseteq V(Q)$, where Q is a prime submodule of M. Thus $P \in Cl(\{Q\})$. Now we have $Q \subseteq P$, so that q := (Q:M) = p. Therefore Y = V(P) = V(pM) = V(qM) = V(Q). This completes the proof.

Corollary 3.18. Let M be a finitely generated multiplication R-module. Then the set

$$T = \{V(pM) \mid p \in Min(\operatorname{Supp}(M))\}\$$

is the set of all irreducible components of Spec(M).

Following M. Hochster [13], we say that a topological space X is a spectral space in case X is homeomorphic to $\operatorname{Spec}(S)$, with the Zariski topology, for some ring S. Spectral spaces have been characterized by Hochster [13, p.52, Proposition 4] as the topological spaces X which satisfy the following conditions:

- 1. X is a T_0 -space;
- 2. X is quasi-compact;
- 3. the quasi-compact open subsets of X are closed under finite intersection and form an open base;
- 4. each irreducible closed subset of X has a generic point.

Corollary 3.19. Let M be a top R-module. Then Spec(M) is a spectral space if each of the following conditions holds.

- 1. M is compactly packed.
- 2. R is an integral domain of dimension 1 and M a non-faithful R-module such that every closed subset of Spec(M) has finitely many irreducible components.
- 3. R is a PID and M a non-faithful R-module.

Proof. As we have seen in proof of Theorem 3.14, in each of the above cases M fulfils ACC on intersection of prime submodules. Hence the result follows from [9, p. 146, Theorem 3.2].

Acknowledgments

The authors would like to thank the referee for his/her helpful comments.

References

- [1] S. Abu-Saymeh, On dimensions of finitely generated modules, Comm. Algebra 23 (1995), no. 3, 1131–1144.
- [2] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-Verlag, New York, no. 13, Graduate Texts in Math., 1992.
- [3] S. Ebrahimi Atani, Strongly irreducible submodules, Bull. Korean Math. Soc. 42 (2005), no. 1, 121–131.
- [4] M.F. Atiyah and I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley, 1969.
- [5] A. Azizi, Weak multiplication modules, Czechoslovak Math. J. 53 (2003), no. 128, 529–534.
- [6] A. Barnard, Multiplication modules, J. Algebra **71** (1981), no. 1, 174–178.
- [7] M. Behboodi, A generalization of the classical krull dimension for modules, J. Algebra 305 (2006), 1128–1148.
- [8] M. Behboodi and M. R. Haddadi, Classical zariski topology of modules and spectral spaces I, Int. Electron. J. Algebra 4 (2008), 104–130.
- [9] ______, Classical zariski topology of modules and spectral spaces II, Int. Electron.
 J. Algebra 4 (2008), 131–148.
- [10] N. Bourbaki, Commutative algebra, chap. 1-7, Paris: Hermann, 1972.
- [11] F. Çallialp and Ü. Tekir, On unions of prime submodules, Southeast Asian Bull. Math. 28 (2004), 213–218.
- [12] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779.
- [13] M. Hochster, *Prime ideal structure in commutative rings*, Trans. Amer. Math. Soc. **142** (1969), 43–60.
- [14] Chin-Pi Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli 33 (1984), no. 1, 61–69.

- [15] _____, M-radicals of submodules in modules, Math. Japonica 34 (1989), no. 2, 211–219.
- [16] _____, Spectra of modules, Comm. Algebra 23 (1995), no. 10, 3741–3752.
- [17] _____, The zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999), no. 3, 417–432.
- [18] ______, Saturations of submodules, Comm. Algebra **31** (2003), no. 6, 2655 2673.
- [19] ______, A module whose prime spectrum has the surjective natural map, Houston J. Math. **33** (2007), no. 1, 125–143.
- [20] R.L. McCasland, M.E. Moore, and P.F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997), no. 1, 79–103.
- [21] J. R. Munkres, Topology, second ed., Prentice Hall, New Jersey, 1999.
- [22] W. Stephenson, Modules whose lattice of submodules is distributive, J. Lond. Math. Soc. (2) 28 (1974), no. 2, 291–310.
- [23] P. Vamos, The decomposition of finitely generated modules and fractionally self-injective rings, J. Lond. Math. Soc. (2) 16 (1977), no. 2, 209–220.

Contact information

H. Ansari-Toroghy,
Department of Mathematics, Faculty of Science,
D. HassanzadehUniversity of Guilan, Rasht, Iran, P. O. Box 41335-19141

E-Mail: Ansari@guilan.ac.ir, Dhmath@guilan.ac.ir

Received by the editors: 19.05.2010 and in final form 19.05.2010.