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Abstract. In the universe of finite groups the descrip-

tion of τ -closed n-multiply ω-composition formations with Boolean

sublattices of τ -closed n-multiply ω-composition subformations is

obtained.

Introduction

Let H be a nonempty nilpotent saturated formation, and let F be a
nonempty τ -closed n-multiply ω-composition formation such that F 6⊆
H. Then F/τωn

F ∩ H denotes the sublattice of all τ -closed n-multiply ω-
composition formations M such that F ∩ H ⊆ M ⊆ F. In this paper we
obtain the description of τ -closed n-multiply ω-composition formations
F such that F 6⊆ H and the lattice F/τωn

F ∩ H is Boolean, where H is
a nonempty nilpotent saturated formation. This is the solution of the
following problem [1]:

Problem (A.N. Skiba, L.A. Shemetkov). Describe τ -closed n-
multiply ω-composition formations F 6⊆ H such that the lattice F/τωn

F∩H

is Boolean, where H is a nonempty nilpotent saturated formation.

The solution of that problem in the case, when τ is the trivial subgroup
functor (i.e., τ(G) = {G} for all groups G) and H = N is the formation
of all nilpotent groups is obtained in paper [2]. In the other case, when
τ is the trivial subgroup functor, n = 1 and H = N, the solution of that
problem was given in [3].
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1. Preliminaries

All groups considered in this paper are finite. We use the terminology of
[1, 4, 5, 6]. Here, we recall some definitions and notation.

Let ω be a nonempty set of prime numbers. Every function of the
form f : ω ∪ {ω′} → {formations of groups} is called an ω-composition
satellite. Following Doerk and Hawkes [7] we use Cp(G) to denote the
intersection of all centralizers of abelian chief p-factors of G (we note that
Cp(G) = G if G has no such chief factors). If X is a set of groups, then
we use Com+(X) to denote the class of all abelian simple groups A such
that A ≃ H/K for some composition factor H/K of a group G ∈ X. We
write Com+(G) for the set Com+({G}).

Let f be an ω-composition satellite. Then following [1] we put

CFω(f) =
{

G | G/Rω(G) ∈ f(ω′)

and G/Cp(G) ∈ f(p) for all p ∈ π(Com(G)) ∩ ω} .

Here Rω(G) denotes the largest normal soluble ω-subgroup of G. If F is a
formation such that F = CFω(f) for some ω-composition satellite f , then
F is called an ω-composition formation, and f is its an ω-composition
satellite.

Every group formation is considered as 0-multiply ω-composition
formation. For n ≥ 1, a formation F is called n-multiply ω-composition
formation, if F = CFω(f), where all values of an ω-composition satellite
f are (n− 1)-multiply ω-composition formations.

Let τ be a functor such that for any group G, τ(G) is a set of subgroups
of G, and G ∈ τ(G). Following [5] we say that τ is a subgroup functor
if for every epimorphism ϕ : A → B and any groups H ∈ τ(A) and
T ∈ τ(B) we have Hϕ ∈ τ(B) and Tϕ

−1

∈ τ(A). A group F is called
τ -closed if τ(G) ⊆ F for all G ∈ F. The set of all τ -closed n-multiply
ω-composition formations is denoted by cτωn

. A satellite f is called a
cτωn−1

-valued ω-composition sattelite if all values of f belong to cτωn−1
.

A τ -closed n-multiply ω-composition formation F is called Hτωn
-criti-

cal (or a minimal τ -closed n-multiply ω-composition non-H-formation) if
F * H but all proper τ -closed n-multiply ω-composition subformations of
F are contaned in H.

Let X be a set of groups. Then cτωn
formX is the τ -closed n-multiply ω-

composition formation generated by X, i.e., cτωn
formX is the intersection of

all τ -closed n-multiply ω-composition formation containing X. If X = {G},
then cτωn

formX = cτωn
formG is called an one-generated τ -closed n-multiply

ω-composition formation.
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For any set {Fi | i ∈ I} of τ -closed n-multiply ω-composition forma-
tions, we put

∨τωn
(Fi | i ∈ I) = cτωn

form(
⋃

i∈I

Fi).

In particulary, M ∨τωn
H = cτωn

form (M ∪ H).

A lattice is called modular if and only if its elements satisfy the modular
identity: if x ≤ z, then x ∨ (y ∧ z) = (x ∨ y) ∧ z.

A lattice is called distributive if and only if it satisfies the following:

L1. (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) = (x ∨ y) ∧ (y ∧ z) ∧ (z ∧ x),

L2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

L3. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

An element which covers 0 in a partly ordered set P (i.e., a minimal
element in the subset of P obtained by excluding 0) is called an atom.

By a complement of an element x of a lattice L with 0 and 1 is meant an
element y ∈ L such that x∧y = 0 and x∨y = 1; L is called complemented
if all its elements have complements.

In the paper we consider only subgroup functors τ such that the set
τ(G) is contained in the set of all subnormal subgroups of G, for any group
G.

Lemma 1 ([8], Theorem 2). The lattice cτωn
of all τ -closed n-multiply

ω-composition formations is modular for any non-negative number n.

Lemma 2 ([6, p. 65]). Any sublattice of a modular lattice is modular.

Lemma 3 ([6, p. 73], Theorem 6). Let L be any modular lattice, and let
u and v be any two elements of L. Then the correspondences x→ u ∨ x
and y → v ∧ y are inverse isomorphisms between [u ∧ v, v] and [u, u ∨ v].
Moreover, they carry quotients in these intervals into transposed quotients.

Lemma 4 ([9], Theorem 2). Let H be a nonempty nilpotent saturated
formation, and let F be a τ -closed n-multiply ω-composition formation
such that F 6⊆ H (n ≥ 1). Then Hτωn

-defect of the formation F is equal
1 if and only if F = M ∨τωn

K, where M ⊆ H, K is a minimal τ -closed
n-multiply ω-composition non-H-formation, besides:

1) if τ -closed n-multiply ω-composition subformation F1 of F, such
that F1 ⊆ H, then F1 ⊆ M ∨τωn

(K ∩ H);

2) if τ -closed n-multiply ω-composition subformation F1 of F, such
that F1 6⊆ H, then F1 = K ∨τωn

(F1 ∩ H).
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Lemma 5 ([9], Lemma 17). Let H be a nonempty nilpotent saturated
formation, M ⊆ H, and let Ω = {Ki | i ∈ I} be some set of minimal τ -
closed n-multiply ω-composition non-H-formations. If K is some τ -closed
n-multiply ω-composition non-H-formation of M∨τωn

(∨τωn
Ki | i ∈ I), then

K ∈ Ω.

Lemma 6 ([9], Theorem 4). Let H be a nonempty nilpotent saturated
formation, and let F be an one-generated τ -closed n-multiply ω-composi-
tion formation such that F 6⊆ H (n ≥ 1). If F/τωn

F ∩ H is a complemented
lattice and M is an element of F/τωn

F ∩ H, then

M = ∨τωn
((F ∩ H) ∨τωn

Ki | i ∈ I),

where {Ki | i ∈ I} is the set of all minimal τ -closed n-multiply ω-composi-
tion non-H-subformations of M.

Lemma 7 ([9], Theorem 1). Let H be a nonempty nilpotent saturated
formation, and let F be a τ -closed n-multiply ω-composition formation
such that F 6⊆ H (n ≥ 1). Then F has at least one a minimal τ -closed
n-multiply ω-composition non-H-subformation.

Lemma 8 ([9], Lemma 24). Let H be a nonempty nilpotent saturated
formation, and let F be a τ -closed n-multiply ω-composition formation
such that F 6⊆ H (n ≥ 1). Then M is an atom of the lattice F/τωn

F ∩ H if
and only if M = (F ∩H) ∨τωn

K, where K is a minimal τ -closed n-multiply
ω-composition non-H-subformation of F.

Lemma 9 ([10, p. 50], Lemma 9). The following inequalities hold in any
lattice:

1) (x ∧ y) ∨ (x ∧ z) ≤ x ∧ (y ∨ z);

2) x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z);

3) (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) ≤ (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x);

4) (x ∧ y) ∨ (x ∧ z) ≤ x ∧ (y ∨ (x ∧ z)).

The first three are called distributive inequalities, and the last is the
modular inequality.

2. The Main result

Lemma 10. Let F ∩ H ⊆ M1 ⊆ M ⊆ F, where M1, M, F are τ -closed
n-multiply ω-composition formations, and let H be a nonempty nilpotent
saturated formation (n ≥ 1). If H1 is a complement of M1 in the lattice
F/τωn

F∩H, then M∩H1 is a complement of M1 in the lattice M/τωn
M∩H.
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Proof. By the conditions of the lemma we have that M1∩H1 = F∩H and
M1 ∨

τ
ωn

H = F. It follows from Lemmas 1 and 2 that M = M ∩ (M1 ∨
τ
ωn

H1) = M1∨
τ
ωn

(M∩H1). Moreover, it is clear that (M∩H1)∩M1 = M∩H.
Hence M ∩ H1 is a complement of M1 in the lattice M/τωn

M ∩ H.

Lemma 11. Let H be a nonempty nilpotent saturated formation, let F

and M be τ -closed n-multiply ω-composition formations such that M ⊆ F

(n ≥ 1). If F/τωn
F∩H is a complemented lattice, then M/τωn

M∩H is also
a complemented lattice.

Proof. From Lemmas 1 and 2 we see that the lattice F/τωn
F∩H is modular.

By Lemma 3 we have the following isomorphism of lattices:

((F ∩ H) ∨τωn
M)/τωn

F ∩ H ≃ M/τωn
(M ∩ F ∩ H) = M/τωn

M ∩ H.

Since ((F ∩ H) ∨τωn
M)/τωn

F ∩ H is a sublattice of F/τωn
F ∩ H, then by

Lemma 10, it follows that (F ∩ H ∨τωn
M)/τωn

F ∩ H is a complemented
lattice. Consequently, M/τωn

M ∩ H is also a complemented lattice.

Lemma 12. Let H be a nonempty nilpotent saturated formation, and let F
be a τ -closed n-multiply ω-composition formation such that F 6⊆ H (n ≥ 1).
Denote by Ω the set of all τ -closed n-multiply ω-composition formations Fi
of F (i ∈ I) such that Fi 6⊆ H and F ∩ H is a maximal τ -closed n-multiply
ω-composition subformation of Fi. Put

R = cτωn
form (

⋃

i∈I

Fi),

where Fi ∈ Ω. If M is a τ -closed n-multiply ω-composition subformation
of R with maximal subformation F ∩ H and M 6⊆ H, then M ∈ Ω.

Proof. Following Lemma 4, for every i ∈ I we have Fi = (F ∩ H) ∨τωn
Ki,

where Ki is a minimal τ -closed n-multiply ω-composition non-H-formation.
Then

R = cτωn
form (

⋃

i∈I

Fi) = cτωn
form (

⋃

i∈I

((F ∩ H) ∨τωn
Ki)) =

= cτωn
form ((F ∩ H) ∪ (∨τωn

Ki | i ∈ I)) = (F ∩ H) ∨τωn
(∨τωn

Ki | i ∈ I).

From Lemma 4 we have M = (F ∩ H) ∨τωn
K, where K is a minimal

τ -closed n-multiply ω-composition non-H-formation. Consequently, by
Lemma 5 we get K ∈ {Ki | i ∈ I}, i.e. K = Ki for some i ∈ I. Thus,

M = (F ∩ H) ∨τωn
K ∈ {(F ∩ H) ∨τωn

Ki | i ∈ I} = Ω.
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Theorem 1. Let H be a nonempty nilpotent saturated formation, and
let F be a τ -closed n-multiply ω-composition formation such that F 6⊆ H

(n ≥ 1). Then the following statements are equivalent:
1) F/τωn

F ∩ H is a complemented lattice;
2) F = (F ∩ H) ∨τωn

(∨τωn
Ki | i ∈ I), where {Ki | i ∈ I} is the set of all

minimal τ -closed n-multiply ω-composition non-H-subformation of F;
3) F/τωn

F ∩ H is a Boolean lattice.

Proof. 1)⇒2). Let M be an one-generated τ -closed n-multiply ω-compo-
sition subformation of F. Then by Lemma 11 the lattice M/τωn

M ∩ H is
complemented. From Lemma 6 we have:

M = ∨τωn
((M ∩ H) ∨τωn

Ki | i ∈ I) = (M ∩ H) ∨τωn
(∨τωn

Kj | j ∈ J),

where {Kj | j ∈ J ⊆ I} is the set of all minimal τ -closed n-multiply ω-
composition non-H-subformations ofM. Obviously, any τ -closed n-multiply
ω-composition formation is a join (in the lattice cτωn

) of all proper one-
generated τ -closed n-multiply ω-composition subformations, i.e.,

F = ∨τωn
(cτωn

formG | G ∈ F) = ∨τωn
(Mi | i ∈ I).

Then

F = ∨τωn
(Mi | i ∈ I) = ∨τωn

((Mi ∩ H) ∨τωn
(∨τωn

Kj | j ∈ Ji) | i ∈ I) =

= ∨τωn
(Mi ∩ H | i ∈ I) ∨τωn

(∨τωn
Ki | i ∈ I).

For every i ∈ I we have Mi ⊆ F. Then Mi ∩ H ⊆ F ∩ H. Therefore,
∨τωn

(Mi ∩ H | i ∈ I) ⊆ F ∩ H. Suppose that F∩H 6⊆ ∨τωn
((Mi)∩H | i ∈ I),

and let G ∈ (F ∩ H) \ ∨τωn
(Mi ∩ H | i ∈ I). Since

cτωn
formG = (cτωn

formG) ∩ H ⊆ ∨τωn
(Mi ∩ H | i ∈ I),

we have G ∈ ∨τωn
(Mi ∩ H | i ∈ I). A contradiction. Hence, we get

F ∩ H ⊆ ∨τωn
(Mi ∩ H | i ∈ I) and F ∩ H = ∨τωn

(Mi ∩ H | i ∈ I).

Thus, F = (F ∩ H) ∨τωn
(∨τωn

Ki | i ∈ I), i.e., 2) is true.
2)⇒1). First we shall show that every element of F/τωn

F ∩ H is a join
of atoms which are contained in that element.

Let M be an element of F/τωn
F ∩ H. Then M is τ -closed n-multiply

ω-composition formation. Let ψ = {Ki | i ∈ I} be the set of all minimal
τ -closed n-multiply ω-composition non-H-subformations of F, ψ1 = {Ki |
i ∈ I1} be a set of all minimal τ -closed n-multiply ω-composition non-H-
subformations of F such that Ki ⊆ M for all i ∈ I1 ⊆ I, and let ψ2 is a
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complement to ψ1 in ψ. Then Ri = cτωn
form (ψi) is the τ -closed n-multiply

ω-composition formation generated by ψi, where i = 1, 2. Since the lattice
cτωn

is modular, we have:

M = M ∩ F = M ∩ ((F ∩ H) ∨τωn
(∨τωn

Ki | i ∈ I)) =

= (F ∩ H) ∨τωn
(M ∩ (∨τωn

Ki | i ∈ I)) =

= (F ∩ H) ∨τωn
(M ∩ (R1 ∨

τ
ωn

R2)) = (F ∩ H) ∨τωn
R1 ∨

τ
ωn

(M ∩R2).

Assume that M ∩ R2 6⊆ F ∩ H. Then by Lemma 7 M ∩ R2 has a
minimal τ -closed n-multiply ω-composition non-H-formation Ki for some
i ∈ I. Hence, by Lemma 5 we get Ki ∈ ψ1 ∩ ψ2 = ∅. A contradiction.
Therefore, M ∩R2 ⊆ F ∩ H. Thus,

M = (F ∩ H) ∨τωn
R1 = (F ∩ H) ∨τωn

(∨τωn
Ki | Ki ∈ ψ1) =

= ∨τωn
((F ∩ H) ∨τωn

Ki | Ki ∈ ψ1).

From Lemma 6 we see that every element M of the lattice F/τωn
F∩H is a

join of an atoms which are contained in M.
Now we shall show that every element M of the lattice F/τωn

F∩H has
a complement. If M = F, then F ∩ H is complement to M in F/τωn

F ∩ H.
Therefore, we can assume that M 6= F. Denote by Σ the set of all atoms
of F/τωn

F∩H, and denote by Ω1 a set of all atoms of F/τωn
F∩H contained

in M. If Σ = Ω1, then

M = (F ∩ H) ∨τωn
(∨τωn

Ki | i ∈ I) = F.

A contradiction. Therefore, Σ 6= Ω1. Let Ω2 be a complement of Ω1 in
Σ, and let K = cτωn

form (Ω2). We prove that K is a complement of M
in F/τωn

F ∩ H. Since by the condition F = (F ∩ H) ∨τωn
(∨τωn

Ki | i ∈ I),
then by Lemma 8 we have F = M ∨τωn

K. Let R = M ∩ K. Since M and
K are elements of the lattice F/τωn

F ∩ H, we have F ∩ H ⊆ R. Assume
that R 6⊆ F ∩ H. According to Lemma 7, the formation R has a minimal
τ -closed n-multiply ω-composition non-H-formation Ki for some i ∈ I.
Hence, (F ∩ H) ∨τωn

Ki ⊆ R. By Lemma 4, (F ∩ H) ∨τωn
Ki has a maximal

τ -closed n-multiply ω-composition subformation which is contained in H.
Now by Lemma 12 and applying the result of previous paragraph, we have
(F ∩ H) ∨τωn

Ki ∈ Ω1 ∩ Ω2 = ∅. A contradiction. Hence, M ∩ K = F ∩ H.
Thus, K is a complement of M in F/τωn

F ∩H. So, the lattice F/τωn
F ∩H is

complemented.
3)⇒1). This case is obvious.
1)⇒3). We need to show that for any elements M1, M2, M3 of the

lattice F/τωn
F ∩ H the following equality is true:

M1 ∩ (M2 ∨
τ
ωn

M3) = (M1 ∩M2) ∨
τ
ωn

(M1 ∩M3). (∗)
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According to Lemma 9, for the lattice F/τωn
F∩H the following inclusion

holds:

(M1 ∩M2) ∨
τ
ωn

(M1 ∩M3) ⊆ M1 ∩ (M2 ∨
τ
ωn

M3).

Put X = M1 ∩ (M2 ∨
τ
ωn

M3) and Y = (M1 ∩M2)∨
τ
ωn

(M1 ∩M3). We
show X ⊆ Y. By Lemma 11 for every element M of F/τωn

F ∩ H a lattice
M/τωn

M ∩ H is complemented. Since 1)⇒2) is true, it follows that

M = (M ∩ H) ∨τωn
(∨τωn

Ki | i ∈ I), (∗∗)

where {Ki | i ∈ I} is the set of all minimal τ -closed n-multiply ω-composi-
tion non-H-subformations of M. Since X and Y are elements of F/τωn

F∩H,
(∗∗) is true. Therefore, now we need to show that every minimal τ -closed
n-multiply ω-composition non-H-subformation K of X is contained in Y.
Denote by ψj the set of all minimal τ -closed n-multiply ω-composition
non-H-subformations of Mj , where j = 1, 2, 3. Clearly, K ⊆ M1. From
(∗∗) for M1 we have K ∈ ψ1. Besides, we have

K ⊆
(

(M2 ∩ H) ∨τωn

(

cτωn
form

(

⋃

Ki∈ψ2

Ki

)))

∨τωn

∨τωn

(

(M3 ∩ H) ∨τωn

(

cτωn
form

(

⋃

Ki∈ψ3

Ki

)))

=

= ((M2 ∨
τ
ωn

M3) ∩ H) ∨τωn

(

cτωn
form

(

⋃

Ki∈ψ2∪ψ3

Ki

))

.

From Lemma 12 we get K ∈ ψ2 ∪ ψ3. Then either K ⊆ M1 ∩M2 or
K ⊆ M1 ∩M3. Therefore, K ⊆ Y, i.e., equality (∗) is true. So, 3) is true.

Recall that Lτωn
(F) denotes the lattice of all τ -closed n-multiply ω-

composition subformations of F. In the case H = (1) from theorem 1 we
obtain

Corollary 1. Let F be a non-identity τ -closed n-multiply ω-composition
formation (n ≥ 1). Then the following statements are equivalent:

1) Lτωn
(F) is a complemented lattice;

2) F = ⊗i∈IFi, where {Fi | i ∈ I} is the set of all atoms of the lattice
Lτωn

(F);
3) Lτωn

(F) is a Boolean lattice.

In the case when τ is trivial subgroup functor, n = 1, ω = P and
H = (1) from theorem 1 we get
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Corollary 2 ([11], Theorem 2.3). Let F be a non-identity composition
formation. Then the following statements are equivalent:

1) Lc(F) is a complemented lattice;
2) for any group G ∈ F, we have G = A×A1 × · · · ×At, where A is

nilpotent and G, A1, . . . , At are simple non-abelian groups.

Corollary 3 ([2], Theorem 6). Let F be a non-nilpotent n-multiply ω-
composition formation (n ≥ 1). Then the following statements are equiva-
lent:

1) F/ωnF ∩N is a complemented lattice;
2) F = (F ∩N) ∨ωn (∨ωnKi | i ∈ I), where {Ki | i ∈ I} is the set of all

minimal n-multiply ω-composition non-nilpotent subformations of F;
3) F/ωnF ∩N is a Boolean lattice.

Corollary 4 ([3], Theorem 1). Let F be a non-nilpotent ω-composition
formation. Then the following statements are equivalent:

1) F/ωF ∩N is a complemented lattice;
2) F = (F ∩N) ∨ω (∨ωKi | i ∈ I), where {Ki | i ∈ I} is the set of all

minimal ω-composition non-nilpotent subformations of F;
3) F/ωF ∩N is a Boolean lattice.
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