Algebra and Discrete Mathematics Volume 10 (2010). Number 2. pp. 118 – 127 © Journal "Algebra and Discrete Mathematics"

On τ -closed *n*-multiply ω -composition formations with Boolean sublattices

Pavel Zhiznevsky

Communicated by L. A. Shemetkov

ABSTRACT. In the universe of finite groups the description of τ -closed *n*-multiply ω -composition formations with Boolean sublattices of τ -closed *n*-multiply ω -composition subformations is obtained.

Introduction

Let \mathfrak{H} be a nonempty nilpotent saturated formation, and let \mathfrak{F} be a nonempty τ -closed *n*-multiply ω -composition formation such that $\mathfrak{F} \not\subseteq$ \mathfrak{H} . Then $\mathfrak{F}/_{\omega_n}^{\tau} \mathfrak{F} \cap \mathfrak{H}$ denotes the sublattice of all τ -closed *n*-multiply ω composition formations \mathfrak{M} such that $\mathfrak{F} \cap \mathfrak{H} \subseteq \mathfrak{M} \subseteq \mathfrak{F}$. In this paper we obtain the description of τ -closed *n*-multiply ω -composition formations \mathfrak{F} such that $\mathfrak{F} \not\subseteq \mathfrak{H}$ and the lattice $\mathfrak{F}/_{\omega_n}^{\tau} \mathfrak{F} \cap \mathfrak{H}$ is Boolean, where \mathfrak{H} is a nonempty nilpotent saturated formation. This is the solution of the following problem [1]:

Problem (A.N. Skiba, L.A. Shemetkov). Describe τ -closed *n*multiply ω -composition formations $\mathfrak{F} \not\subseteq \mathfrak{H}$ such that the lattice $\mathfrak{F}/_{\omega_n}^{\tau} \mathfrak{F} \cap \mathfrak{H}$ is Boolean, where \mathfrak{H} is a nonempty nilpotent saturated formation.

The solution of that problem in the case, when τ is the trivial subgroup functor (i.e., $\tau(G) = \{G\}$ for all groups G) and $\mathfrak{H} = \mathfrak{N}$ is the formation of all nilpotent groups is obtained in paper [2]. In the other case, when τ is the trivial subgroup functor, n = 1 and $\mathfrak{H} = \mathfrak{N}$, the solution of that problem was given in [3].

²⁰⁰⁰ Mathematics Subject Classification: 20D10, 20F17.

Key words and phrases: finite group, formation, τ -closed n-multiply ω composition formation, Boolean lattice, complemented lattice.

1. Preliminaries

All groups considered in this paper are finite. We use the terminology of [1, 4, 5, 6]. Here, we recall some definitions and notation.

Let ω be a nonempty set of prime numbers. Every function of the form $f: \omega \cup \{\omega'\} \to \{\text{formations of groups}\}$ is called an ω -composition satellite. Following Doerk and Hawkes [7] we use $C^p(G)$ to denote the intersection of all centralizers of abelian chief *p*-factors of *G* (we note that $C^p(G) = G$ if *G* has no such chief factors). If \mathfrak{X} is a set of groups, then we use $Com^+(\mathfrak{X})$ to denote the class of all abelian simple groups *A* such that $A \simeq H/K$ for some composition factor H/K of a group $G \in \mathfrak{X}$. We write $Com^+(G)$ for the set $Com^+(\{G\})$.

Let f be an ω -composition satellite. Then following [1] we put

$$CF_{\omega}(f) = \left\{ G \mid G/R_{\omega}(G) \in f(\omega') \\ \text{and } G/C^{p}(G) \in f(p) \text{ for all } p \in \pi(Com(G)) \cap \omega \right\}.$$

Here $R_{\omega}(G)$ denotes the largest normal soluble ω -subgroup of G. If \mathfrak{F} is a formation such that $\mathfrak{F} = CF_{\omega}(f)$ for some ω -composition satellite f, then \mathfrak{F} is called an ω -composition formation, and f is its an ω -composition satellite.

Every group formation is considered as 0-multiply ω -composition formation. For $n \geq 1$, a formation \mathfrak{F} is called *n*-multiply ω -composition formation, if $\mathfrak{F} = CF_{\omega}(f)$, where all values of an ω -composition satellite f are (n-1)-multiply ω -composition formations.

Let τ be a functor such that for any group G, $\tau(G)$ is a set of subgroups of G, and $G \in \tau(G)$. Following [5] we say that τ is a subgroup functor if for every epimorphism $\varphi : A \to B$ and any groups $H \in \tau(A)$ and $T \in \tau(B)$ we have $H^{\varphi} \in \tau(B)$ and $T^{\varphi^{-1}} \in \tau(A)$. A group \mathfrak{F} is called τ -closed if $\tau(G) \subseteq \mathfrak{F}$ for all $G \in \mathfrak{F}$. The set of all τ -closed *n*-multiply ω -composition formations is denoted by $c_{\omega_n}^{\tau}$. A satellite f is called a $c_{\omega_{n-1}}^{\tau}$ -valued ω -composition sattelite if all values of f belong to $c_{\omega_{n-1}}^{\tau}$.

A τ -closed *n*-multiply ω -composition formation \mathfrak{F} is called $\mathfrak{H}_{\omega_n}^{\tau}$ -critical (or a minimal τ -closed *n*-multiply ω -composition non- \mathfrak{H} -formation) if $\mathfrak{F} \not\subseteq \mathfrak{H}$ but all proper τ -closed *n*-multiply ω -composition subformations of \mathfrak{F} are contaned in \mathfrak{H} .

Let \mathfrak{X} be a set of groups. Then $c_{\omega_n}^{\tau}$ form \mathfrak{X} is the τ -closed *n*-multiply ω composition formation generated by \mathfrak{X} , i.e., $c_{\omega_n}^{\tau}$ form \mathfrak{X} is the intersection of
all τ -closed *n*-multiply ω -composition formation containing \mathfrak{X} . If $\mathfrak{X} = \{G\}$,
then $c_{\omega_n}^{\tau}$ form $\mathfrak{X} = c_{\omega_n}^{\tau}$ form G is called an one-generated τ -closed *n*-multiply ω -composition formation.

For any set $\{\mathfrak{F}_i \mid i \in I\}$ of τ -closed *n*-multiply ω -composition formations, we put

$$\forall_{\omega_n}^{\tau}(\mathfrak{F}_i \mid i \in I) = c_{\omega_n}^{\tau} \operatorname{form}(\bigcup_{i \in I} \mathfrak{F}_i).$$

In particulary, $\mathfrak{M} \vee_{\omega_n}^{\tau} \mathfrak{H} = c_{\omega_n}^{\tau} \operatorname{form} (\mathfrak{M} \cup \mathfrak{H}).$

A lattice is called modular if and only if its elements satisfy the modular identity: if $x \leq z$, then $x \vee (y \wedge z) = (x \vee y) \wedge z$.

A lattice is called distributive if and only if it satisfies the following: L1. $(x \land y) \lor (y \land z) \lor (z \land x) = (x \lor y) \land (y \land z) \land (z \land x),$ L2. $x \land (y \lor z) = (x \land y) \lor (x \land z),$

 $L3. \ x \lor (y \land z) = (x \lor y) \lor (x \land z),$ $L3. \ x \lor (y \land z) = (x \lor y) \land (x \lor z).$

An element which covers 0 in a partly ordered set P (i.e., a minimal element in the subset of P obtained by excluding 0) is called an atom.

By a complement of an element x of a lattice L with 0 and 1 is meant an element $y \in L$ such that $x \wedge y = 0$ and $x \vee y = 1$; L is called complemented if all its elements have complements.

In the paper we consider only subgroup functors τ such that the set $\tau(G)$ is contained in the set of all subnormal subgroups of G, for any group G.

Lemma 1 ([8], Theorem 2). The lattice $c_{\omega_n}^{\tau}$ of all τ -closed n-multiply ω -composition formations is modular for any non-negative number n.

Lemma 2 ([6, p. 65]). Any sublattice of a modular lattice is modular.

Lemma 3 ([6, p. 73], Theorem 6). Let L be any modular lattice, and let u and v be any two elements of L. Then the correspondences $x \to u \lor x$ and $y \to v \land y$ are inverse isomorphisms between $[u \land v, v]$ and $[u, u \lor v]$. Moreover, they carry quotients in these intervals into transposed quotients.

Lemma 4 ([9], Theorem 2). Let \mathfrak{H} be a nonempty nilpotent saturated formation, and let \mathfrak{F} be a τ -closed n-multiply ω -composition formation such that $\mathfrak{F} \not\subseteq \mathfrak{H}$ $(n \geq 1)$. Then $\mathfrak{H}_{\omega_n}^{\tau}$ -defect of the formation \mathfrak{F} is equal 1 if and only if $\mathfrak{F} = \mathfrak{M} \lor_{\omega_n}^{\tau} \mathfrak{K}$, where $\mathfrak{M} \subseteq \mathfrak{H}$, \mathfrak{K} is a minimal τ -closed n-multiply ω -composition non- \mathfrak{H} -formation, besides:

1) if τ -closed n-multiply ω -composition subformation \mathfrak{F}_1 of \mathfrak{F} , such that $\mathfrak{F}_1 \subseteq \mathfrak{H}$, then $\mathfrak{F}_1 \subseteq \mathfrak{M} \vee_{\omega_n}^{\tau} (\mathfrak{K} \cap \mathfrak{H});$

2) if τ -closed n-multiply ω -composition subformation \mathfrak{F}_1 of \mathfrak{F} , such that $\mathfrak{F}_1 \not\subseteq \mathfrak{H}$, then $\mathfrak{F}_1 = \mathfrak{K} \vee_{\omega_n}^{\tau} (\mathfrak{F}_1 \cap \mathfrak{H}).$

Lemma 5 ([9], Lemma 17). Let \mathfrak{H} be a nonempty nilpotent saturated formation, $\mathfrak{M} \subseteq \mathfrak{H}$, and let $\Omega = {\mathfrak{K}_i \mid i \in I}$ be some set of minimal τ closed n-multiply ω -composition non- \mathfrak{H} -formations. If \mathfrak{K} is some τ -closed n-multiply ω -composition non- \mathfrak{H} -formation of $\mathfrak{M} \vee_{\omega_n}^{\tau} (\vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid i \in I)$, then $\mathfrak{K} \in \Omega$.

Lemma 6 ([9], Theorem 4). Let \mathfrak{H} be a nonempty nilpotent saturated formation, and let \mathfrak{F} be an one-generated τ -closed n-multiply ω -composition formation such that $\mathfrak{F} \not\subseteq \mathfrak{H}$ $(n \geq 1)$. If $\mathfrak{F}/_{\omega_n}^{\tau} \mathfrak{F} \cap \mathfrak{H}$ is a complemented lattice and \mathfrak{M} is an element of $\mathfrak{F}/_{\omega_n}^{\tau} \mathfrak{F} \cap \mathfrak{H}$, then

$$\mathfrak{M} = \vee_{\omega_n}^{\tau} ((\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid i \in I),$$

where $\{\mathfrak{R}_i \mid i \in I\}$ is the set of all minimal τ -closed n-multiply ω -composition non- \mathfrak{H} -subformations of \mathfrak{M} .

Lemma 7 ([9], Theorem 1). Let \mathfrak{H} be a nonempty nilpotent saturated formation, and let \mathfrak{F} be a τ -closed n-multiply ω -composition formation such that $\mathfrak{F} \not\subseteq \mathfrak{H}$ $(n \geq 1)$. Then \mathfrak{F} has at least one a minimal τ -closed n-multiply ω -composition non- \mathfrak{H} -subformation.

Lemma 8 ([9], Lemma 24). Let \mathfrak{H} be a nonempty nilpotent saturated formation, and let \mathfrak{F} be a τ -closed n-multiply ω -composition formation such that $\mathfrak{F} \not\subseteq \mathfrak{H}$ $(n \geq 1)$. Then \mathfrak{M} is an atom of the lattice $\mathfrak{F}/_{\omega_n}^{\tau} \mathfrak{F} \cap \mathfrak{H}$ if and only if $\mathfrak{M} = (\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \mathfrak{K}$, where \mathfrak{K} is a minimal τ -closed n-multiply ω -composition non- \mathfrak{H} -subformation of \mathfrak{F} .

Lemma 9 ([10, p. 50], Lemma 9). The following inequalities hold in any lattice:

 $\begin{array}{l} 1) \ (x \wedge y) \lor (x \wedge z) \leq x \land (y \lor z); \\ 2) \ x \lor (y \wedge z) \leq (x \lor y) \land (x \lor z); \\ 3) \ (x \wedge y) \lor (y \wedge z) \lor (z \wedge x) \leq (x \lor y) \land (y \lor z) \land (z \lor x); \\ 4) \ (x \wedge y) \lor (x \wedge z) \leq x \land (y \lor (x \wedge z)). \\ The first three are called distributive inequalities, and the last is the \\ \end{array}$

modular inequality.

2. The Main result

Lemma 10. Let $\mathfrak{F} \cap \mathfrak{H} \subseteq \mathfrak{M}_1 \subseteq \mathfrak{M} \subseteq \mathfrak{F}$, where $\mathfrak{M}_1, \mathfrak{M}, \mathfrak{F}$ are τ -closed *n*-multiply ω -composition formations, and let \mathfrak{H} be a nonempty nilpotent saturated formation $(n \geq 1)$. If \mathfrak{H}_1 is a complement of \mathfrak{M}_1 in the lattice $\mathfrak{F}/_{\omega_n}^{\tau} \mathfrak{F} \cap \mathfrak{H}$, then $\mathfrak{M} \cap \mathfrak{H}_1$ is a complement of \mathfrak{M}_1 in the lattice $\mathfrak{M}/_{\omega_n}^{\tau} \mathfrak{M} \cap \mathfrak{H}$. *Proof.* By the conditions of the lemma we have that $\mathfrak{M}_1 \cap \mathfrak{H}_1 = \mathfrak{F} \cap \mathfrak{H}$ and $\mathfrak{M}_1 \vee_{\omega_n}^{\tau} \mathfrak{H} = \mathfrak{F}$. It follows from Lemmas 1 and 2 that $\mathfrak{M} = \mathfrak{M} \cap (\mathfrak{M}_1 \vee_{\omega_n}^{\tau} \mathfrak{H}_1) = \mathfrak{M}_1 \vee_{\omega_n}^{\tau} (\mathfrak{M} \cap \mathfrak{H}_1)$. Moreover, it is clear that $(\mathfrak{M} \cap \mathfrak{H}_1) \cap \mathfrak{M}_1 = \mathfrak{M} \cap \mathfrak{H}$. Hence $\mathfrak{M} \cap \mathfrak{H}_1$ is a complement of \mathfrak{M}_1 in the lattice $\mathfrak{M}/_{\omega_n}^{\tau} \mathfrak{M} \cap \mathfrak{H}$.

Lemma 11. Let \mathfrak{H} be a nonempty nilpotent saturated formation, let \mathfrak{F} and \mathfrak{M} be τ -closed n-multiply ω -composition formations such that $\mathfrak{M} \subseteq \mathfrak{F}$ $(n \geq 1)$. If $\mathfrak{F}/_{\omega_n}^{\tau} \mathfrak{F} \cap \mathfrak{H}$ is a complemented lattice, then $\mathfrak{M}/_{\omega_n}^{\tau} \mathfrak{M} \cap \mathfrak{H}$ is also a complemented lattice.

Proof. From Lemmas 1 and 2 we see that the lattice $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F}\cap\mathfrak{H}$ is modular. By Lemma 3 we have the following isomorphism of lattices:

 $((\mathfrak{F}\cap\mathfrak{H})\vee_{\omega_n}^\tau\mathfrak{M})/_{\omega_n}^\tau\mathfrak{F}\cap\mathfrak{H}\simeq\mathfrak{M}/_{\omega_n}^\tau(\mathfrak{M}\cap\mathfrak{F}\cap\mathfrak{H})=\mathfrak{M}/_{\omega_n}^\tau\mathfrak{M}\cap\mathfrak{H}.$

Since $((\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \mathfrak{M})/_{\omega_n}^{\tau} \mathfrak{F} \cap \mathfrak{H}$ is a sublattice of $\mathfrak{F}/_{\omega_n}^{\tau} \mathfrak{F} \cap \mathfrak{H}$, then by Lemma 10, it follows that $(\mathfrak{F} \cap \mathfrak{H} \vee_{\omega_n}^{\tau} \mathfrak{M})/_{\omega_n}^{\tau} \mathfrak{F} \cap \mathfrak{H}$ is a complemented lattice. Consequently, $\mathfrak{M}/_{\omega_n}^{\tau} \mathfrak{M} \cap \mathfrak{H}$ is also a complemented lattice. \Box

Lemma 12. Let \mathfrak{H} be a nonempty nilpotent saturated formation, and let \mathfrak{F} be a τ -closed n-multiply ω -composition formation such that $\mathfrak{F} \not\subseteq \mathfrak{H}$ $(n \geq 1)$. Denote by Ω the set of all τ -closed n-multiply ω -composition formations \mathfrak{F}_i of \mathfrak{F} $(i \in I)$ such that $\mathfrak{F}_i \not\subseteq \mathfrak{H}$ and $\mathfrak{F} \cap \mathfrak{H}$ is a maximal τ -closed n-multiply ω -composition subformation of \mathfrak{F}_i . Put

$$\mathfrak{R} = c_{\omega_n}^{\tau} \text{form}\left(\bigcup_{i \in I} \mathfrak{F}_i\right),$$

where $\mathfrak{F}_i \in \Omega$. If \mathfrak{M} is a τ -closed n-multiply ω -composition subformation of \mathfrak{R} with maximal subformation $\mathfrak{F} \cap \mathfrak{H}$ and $\mathfrak{M} \not\subseteq \mathfrak{H}$, then $\mathfrak{M} \in \Omega$.

Proof. Following Lemma 4, for every $i \in I$ we have $\mathfrak{F}_i = (\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \mathfrak{K}_i$, where \mathfrak{K}_i is a minimal τ -closed *n*-multiply ω -composition non- \mathfrak{H} -formation. Then

$$\mathfrak{R} = c_{\omega_n}^{\tau} \operatorname{form}\left(\bigcup_{i \in I} \mathfrak{F}_i\right) = c_{\omega_n}^{\tau} \operatorname{form}\left(\bigcup_{i \in I} ((\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \mathfrak{K}_i)\right) = c_{\omega_n}^{\tau} \operatorname{form}\left((\mathfrak{F} \cap \mathfrak{H}) \cup (\vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid i \in I)\right) = (\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} (\vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid i \in I).$$

=

From Lemma 4 we have $\mathfrak{M} = (\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \mathfrak{K}$, where \mathfrak{K} is a minimal τ -closed *n*-multiply ω -composition non- \mathfrak{H} -formation. Consequently, by Lemma 5 we get $\mathfrak{K} \in {\mathfrak{K}_i \mid i \in I}$, i.e. $\mathfrak{K} = \mathfrak{K}_i$ for some $i \in I$. Thus,

$$\mathfrak{M} = (\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \mathfrak{K} \in \{ (\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid i \in I \} = \Omega.$$

Theorem 1. Let \mathfrak{H} be a nonempty nilpotent saturated formation, and let \mathfrak{F} be a τ -closed n-multiply ω -composition formation such that $\mathfrak{F} \not\subseteq \mathfrak{H}$ $(n \geq 1)$. Then the following statements are equivalent:

1) $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F}\cap\mathfrak{H}$ is a complemented lattice;

2) $\mathfrak{F} = (\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} (\vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid i \in I)$, where $\{\mathfrak{K}_i \mid i \in I\}$ is the set of all minimal τ -closed n-multiply ω -composition non- \mathfrak{H} -subformation of \mathfrak{F} ;

3) $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F} \cap \mathfrak{H}$ is a Boolean lattice.

Proof. 1) \Rightarrow 2). Let \mathfrak{M} be an one-generated τ -closed *n*-multiply ω -composition subformation of \mathfrak{F} . Then by Lemma 11 the lattice $\mathfrak{M}/_{\omega_n}^{\tau}\mathfrak{M} \cap \mathfrak{H}$ is complemented. From Lemma 6 we have:

$$\mathfrak{M}=\vee_{\omega_n}^\tau((\mathfrak{M}\cap\mathfrak{H})\vee_{\omega_n}^\tau\mathfrak{K}_i\mid i\in I)=(\mathfrak{M}\cap\mathfrak{H})\vee_{\omega_n}^\tau(\vee_{\omega_n}^\tau\mathfrak{K}_j\mid j\in J),$$

where $\{\mathfrak{K}_j \mid j \in J \subseteq I\}$ is the set of all minimal τ -closed *n*-multiply ω composition non- \mathfrak{H} -subformations of \mathfrak{M} . Obviously, any τ -closed *n*-multiply ω -composition formation is a join (in the lattice $c_{\omega_n}^{\tau}$) of all proper onegenerated τ -closed *n*-multiply ω -composition subformations, i.e.,

$$\mathfrak{F} = \vee_{\omega_n}^\tau (c_{\omega_n}^\tau \operatorname{form} G \mid G \in \mathfrak{F}) = \vee_{\omega_n}^\tau (\mathfrak{M}_i \mid i \in I).$$

Then

$$\begin{split} \mathfrak{F} &= \vee_{\omega_n}^{\tau}(\mathfrak{M}_i \mid i \in I) = \vee_{\omega_n}^{\tau}((\mathfrak{M}_i \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} (\vee_{\omega_n}^{\tau} \mathfrak{K}_j \mid j \in J_i) \mid i \in I) = \\ &= \vee_{\omega_n}^{\tau}(\mathfrak{M}_i \cap \mathfrak{H} \mid i \in I) \vee_{\omega_n}^{\tau} (\vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid i \in I). \end{split}$$

For every $i \in I$ we have $\mathfrak{M}_i \subseteq \mathfrak{F}$. Then $\mathfrak{M}_i \cap \mathfrak{H} \subseteq \mathfrak{F} \cap \mathfrak{H}$. Therefore, $\vee_{\omega_n}^{\tau}(\mathfrak{M}_i \cap \mathfrak{H} \mid i \in I) \subseteq \mathfrak{F} \cap \mathfrak{H}$. Suppose that $\mathfrak{F} \cap \mathfrak{H} \not\subseteq \vee_{\omega_n}^{\tau}((\mathfrak{M}_i) \cap \mathfrak{H} \mid i \in I)$, and let $G \in (\mathfrak{F} \cap \mathfrak{H}) \setminus \vee_{\omega_n}^{\tau}(\mathfrak{M}_i \cap \mathfrak{H} \mid i \in I)$. Since

$$c_{\omega_n}^{\tau}$$
 form $G = (c_{\omega_n}^{\tau}$ form $G) \cap \mathfrak{H} \subseteq \bigvee_{\omega_n}^{\tau} (\mathfrak{M}_i \cap \mathfrak{H} \mid i \in I),$

we have $G \in \bigvee_{\omega_n}^{\tau} (\mathfrak{M}_i \cap \mathfrak{H} \mid i \in I)$. A contradiction. Hence, we get

$$\mathfrak{F} \cap \mathfrak{H} \subseteq \vee_{\omega_n}^{\tau} (\mathfrak{M}_i \cap \mathfrak{H} \mid i \in I) \text{ and } \mathfrak{F} \cap \mathfrak{H} = \vee_{\omega_n}^{\tau} (\mathfrak{M}_i \cap \mathfrak{H} \mid i \in I).$$

Thus, $\mathfrak{F} = (\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} (\vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid i \in I)$, i.e., 2) is true.

2) \Rightarrow 1). First we shall show that every element of $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F}\cap\mathfrak{H}$ is a join of atoms which are contained in that element.

Let \mathfrak{M} be an element of $\mathfrak{F}/_{\omega_n}\mathfrak{F} \cap \mathfrak{H}$. Then \mathfrak{M} is τ -closed *n*-multiply ω -composition formation. Let $\psi = \{\mathfrak{K}_i \mid i \in I\}$ be the set of all minimal τ -closed *n*-multiply ω -composition non- \mathfrak{H} -subformations of $\mathfrak{F}, \psi_1 = \{\mathfrak{K}_i \mid i \in I_1\}$ be a set of all minimal τ -closed *n*-multiply ω -composition non- \mathfrak{H} -subformations of \mathfrak{F} such that $\mathfrak{K}_i \subseteq \mathfrak{M}$ for all $i \in I_1 \subseteq I$, and let ψ_2 is a

complement to ψ_1 in ψ . Then $\Re_i = c_{\omega_n}^{\tau}$ form (ψ_i) is the τ -closed *n*-multiply ω -composition formation generated by ψ_i , where i = 1, 2. Since the lattice $c_{\omega_n}^{\tau}$ is modular, we have:

$$\begin{split} \mathfrak{M} &= \mathfrak{M} \cap \mathfrak{F} = \mathfrak{M} \cap \left(\left(\mathfrak{F} \cap \mathfrak{H} \right) \vee_{\omega_n}^{\tau} \left(\vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid i \in I \right) \right) = \\ &= \left(\mathfrak{F} \cap \mathfrak{H} \right) \vee_{\omega_n}^{\tau} \left(\mathfrak{M} \cap \left(\vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid i \in I \right) \right) = \\ &= \left(\mathfrak{F} \cap \mathfrak{H} \right) \vee_{\omega_n}^{\tau} \left(\mathfrak{M} \cap \left(\mathfrak{R}_1 \vee_{\omega_n}^{\tau} \mathfrak{R}_2 \right) \right) = \left(\mathfrak{F} \cap \mathfrak{H} \right) \vee_{\omega_n}^{\tau} \mathfrak{R}_1 \vee_{\omega_n}^{\tau} \left(\mathfrak{M} \cap \mathfrak{R}_2 \right). \end{split}$$

Assume that $\mathfrak{M} \cap \mathfrak{R}_2 \not\subseteq \mathfrak{F} \cap \mathfrak{H}$. Then by Lemma 7 $\mathfrak{M} \cap \mathfrak{R}_2$ has a minimal τ -closed *n*-multiply ω -composition non- \mathfrak{H} -formation \mathfrak{K}_i for some $i \in I$. Hence, by Lemma 5 we get $\mathfrak{K}_i \in \psi_1 \cap \psi_2 = \emptyset$. A contradiction. Therefore, $\mathfrak{M} \cap \mathfrak{R}_2 \subseteq \mathfrak{F} \cap \mathfrak{H}$. Thus,

$$\begin{split} \mathfrak{M} &= (\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \mathfrak{R}_1 = (\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} (\vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid \mathfrak{K}_i \in \psi_1) = \\ &= \vee_{\omega_n}^{\tau} ((\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid \mathfrak{K}_i \in \psi_1). \end{split}$$

From Lemma 6 we see that every element \mathfrak{M} of the lattice $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F}\cap\mathfrak{H}$ is a join of an atoms which are contained in \mathfrak{M} .

Now we shall show that every element \mathfrak{M} of the lattice $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F}\cap\mathfrak{H}$ has a complement. If $\mathfrak{M} = \mathfrak{F}$, then $\mathfrak{F}\cap\mathfrak{H}$ is complement to \mathfrak{M} in $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F}\cap\mathfrak{H}$. Therefore, we can assume that $\mathfrak{M} \neq \mathfrak{F}$. Denote by Σ the set of all atoms of $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F}\cap\mathfrak{H}$, and denote by Ω_1 a set of all atoms of $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F}\cap\mathfrak{H}$ contained in \mathfrak{M} . If $\Sigma = \Omega_1$, then

$$\mathfrak{M} = (\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} (\vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid i \in I) = \mathfrak{F}.$$

A contradiction. Therefore, $\Sigma \neq \Omega_1$. Let Ω_2 be a complement of Ω_1 in Σ , and let $\Re = c_{\omega_n}^{\tau}$ form (Ω_2) . We prove that \Re is a complement of \mathfrak{M} in $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F} \cap \mathfrak{H}$. Since by the condition $\mathfrak{F} = (\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} (\vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid i \in I)$, then by Lemma 8 we have $\mathfrak{F} = \mathfrak{M} \vee_{\omega_n}^{\tau} \mathfrak{K}$. Let $\mathfrak{R} = \mathfrak{M} \cap \mathfrak{K}$. Since \mathfrak{M} and \mathfrak{K} are elements of the lattice $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F} \cap \mathfrak{H}$, we have $\mathfrak{F} \cap \mathfrak{H} \subseteq \mathfrak{K}$. Assume that $\mathfrak{R} \not\subseteq \mathfrak{F} \cap \mathfrak{H}$. According to Lemma 7, the formation \mathfrak{R} has a minimal τ -closed *n*-multiply ω -composition non- \mathfrak{H} -formation \mathfrak{K}_i for some $i \in I$. Hence, $(\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \mathfrak{K}_i \subseteq \mathfrak{R}$. By Lemma 4, $(\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \mathfrak{K}_i$ has a maximal τ -closed *n*-multiply ω -composition subformation which is contained in \mathfrak{H} . Now by Lemma 12 and applying the result of previous paragraph, we have $(\mathfrak{F} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \mathfrak{K}_i \in \Omega_1 \cap \Omega_2 = \emptyset$. A contradiction. Hence, $\mathfrak{M} \cap \mathfrak{K} = \mathfrak{F} \cap \mathfrak{H}$. Thus, \mathfrak{K} is a complement of \mathfrak{M} in $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F} \cap \mathfrak{H}$. So, the lattice $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F} \cap \mathfrak{H}$ is complemented.

 $3) \Rightarrow 1$). This case is obvious.

1) \Rightarrow 3). We need to show that for any elements $\mathfrak{M}_1, \mathfrak{M}_2, \mathfrak{M}_3$ of the lattice $\mathfrak{F}/_{\omega_n}\mathfrak{F} \cap \mathfrak{H}$ the following equality is true:

$$\mathfrak{M}_1 \cap (\mathfrak{M}_2 \vee_{\omega_n}^{\tau} \mathfrak{M}_3) = (\mathfrak{M}_1 \cap \mathfrak{M}_2) \vee_{\omega_n}^{\tau} (\mathfrak{M}_1 \cap \mathfrak{M}_3).$$
(*)

According to Lemma 9, for the lattice $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F}\cap\mathfrak{H}$ the following inclusion holds:

$$(\mathfrak{M}_1 \cap \mathfrak{M}_2) \vee_{\omega_n}^{\tau} (\mathfrak{M}_1 \cap \mathfrak{M}_3) \subseteq \mathfrak{M}_1 \cap (\mathfrak{M}_2 \vee_{\omega_n}^{\tau} \mathfrak{M}_3).$$

Put $\mathfrak{X} = \mathfrak{M}_1 \cap (\mathfrak{M}_2 \vee_{\omega_n}^{\tau} \mathfrak{M}_3)$ and $\mathfrak{Y} = (\mathfrak{M}_1 \cap \mathfrak{M}_2) \vee_{\omega_n}^{\tau} (\mathfrak{M}_1 \cap \mathfrak{M}_3)$. We show $\mathfrak{X} \subseteq \mathfrak{Y}$. By Lemma 11 for every element \mathfrak{M} of $\mathfrak{F}/_{\omega_n}^{\tau} \mathfrak{F} \cap \mathfrak{H}$ a lattice $\mathfrak{M}/_{\omega_n}^{\tau} \mathfrak{M} \cap \mathfrak{H}$ is complemented. Since 1) \Rightarrow 2) is true, it follows that

$$\mathfrak{M} = (\mathfrak{M} \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} (\vee_{\omega_n}^{\tau} \mathfrak{K}_i \mid i \in I), \qquad (**)$$

where $\{\mathfrak{K}_i \mid i \in I\}$ is the set of all minimal τ -closed *n*-multiply ω -composition non- \mathfrak{H} -subformations of \mathfrak{M} . Since \mathfrak{X} and \mathfrak{Y} are elements of $\mathfrak{F}/_{\omega_n}^{\tau}\mathfrak{F}\cap\mathfrak{H}$, (**) is true. Therefore, now we need to show that every minimal τ -closed *n*-multiply ω -composition non- \mathfrak{H} -subformation \mathfrak{K} of \mathfrak{X} is contained in \mathfrak{Y} . Denote by ψ_j the set of all minimal τ -closed *n*-multiply ω -composition non- \mathfrak{H} -subformations of \mathfrak{M}_j , where j = 1, 2, 3. Clearly, $\mathfrak{K} \subseteq \mathfrak{M}_1$. From (**) for \mathfrak{M}_1 we have $\mathfrak{K} \in \psi_1$. Besides, we have

$$\begin{split} \mathfrak{K} &\subseteq \left((\mathfrak{M}_2 \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \left(c_{\omega_n}^{\tau} \operatorname{form} \left(\bigcup_{\mathfrak{K}_i \in \psi_2} \mathfrak{K}_i \right) \right) \right) \vee_{\omega_n}^{\tau} \\ & \vee_{\omega_n}^{\tau} \left((\mathfrak{M}_3 \cap \mathfrak{H}) \vee_{\omega_n}^{\tau} \left(c_{\omega_n}^{\tau} \operatorname{form} \left(\bigcup_{\mathfrak{K}_i \in \psi_3} \mathfrak{K}_i \right) \right) \right) = \\ &= \left((\mathfrak{M}_2 \vee_{\omega_n}^{\tau} \mathfrak{M}_3) \cap \mathfrak{H} \right) \vee_{\omega_n}^{\tau} \left(c_{\omega_n}^{\tau} \operatorname{form} \left(\bigcup_{\mathfrak{K}_i \in \psi_2 \cup \psi_3} \mathfrak{K}_i \right) \right). \end{split}$$

From Lemma 12 we get $\mathfrak{K} \in \psi_2 \cup \psi_3$. Then either $\mathfrak{K} \subseteq \mathfrak{M}_1 \cap \mathfrak{M}_2$ or $\mathfrak{K} \subseteq \mathfrak{M}_1 \cap \mathfrak{M}_3$. Therefore, $\mathfrak{K} \subseteq \mathfrak{Y}$, i.e., equality (*) is true. So, 3) is true.

Recall that $L^{\tau}_{\omega_n}(\mathfrak{F})$ denotes the lattice of all τ -closed *n*-multiply ω composition subformations of \mathfrak{F} . In the case $\mathfrak{H} = (1)$ from theorem 1 we
obtain

Corollary 1. Let \mathfrak{F} be a non-identity τ -closed n-multiply ω -composition formation $(n \geq 1)$. Then the following statements are equivalent:

1) $L^{\tau}_{\omega_n}(\mathfrak{F})$ is a complemented lattice;

2) $\mathfrak{F} = \bigotimes_{i \in I} \mathfrak{F}_i$, where $\{\mathfrak{F}_i \mid i \in I\}$ is the set of all atoms of the lattice $L_{\omega_n}^{\tau}(\mathfrak{F})$;

3) $L^{\tau}_{\omega_n}(\mathfrak{F})$ is a Boolean lattice.

In the case when τ is trivial subgroup functor, $n = 1, \omega = \mathbb{P}$ and $\mathfrak{H} = (1)$ from theorem 1 we get

Corollary 2 ([11], Theorem 2.3). Let \mathfrak{F} be a non-identity composition formation. Then the following statements are equivalent:

1) $L_c(\mathfrak{F})$ is a complemented lattice;

2) for any group $G \in \mathfrak{F}$, we have $G = A \times A_1 \times \cdots \times A_t$, where A is nilpotent and G, A_1, \ldots, A_t are simple non-abelian groups.

Corollary 3 ([2], Theorem 6). Let \mathfrak{F} be a non-nilpotent n-multiply ω composition formation ($n \geq 1$). Then the following statements are equivalent:

1) $\mathfrak{F}/_{n}^{\omega}\mathfrak{F}\cap\mathfrak{N}$ is a complemented lattice;

2) $\mathfrak{F} = (\mathfrak{F} \cap \mathfrak{N}) \vee_n^{\omega} (\vee_n^{\omega} \mathfrak{K}_i \mid i \in I)$, where $\{\mathfrak{K}_i \mid i \in I\}$ is the set of all minimal n-multiply ω -composition non-nilpotent subformations of \mathfrak{F} ;

3) $\mathfrak{F}/_n^{\omega}\mathfrak{F} \cap \mathfrak{N}$ is a Boolean lattice.

Corollary 4 ([3], Theorem 1). Let \mathfrak{F} be a non-nilpotent ω -composition formation. Then the following statements are equivalent:

1) $\mathfrak{F}^{/\omega}\mathfrak{F} \cap \mathfrak{N}$ is a complemented lattice;

2) $\mathfrak{F} = (\mathfrak{F} \cap \mathfrak{N}) \vee^{\omega} (\vee^{\omega} \mathfrak{K}_i \mid i \in I)$, where $\{\mathfrak{K}_i \mid i \in I\}$ is the set of all minimal ω -composition non-nilpotent subformations of \mathfrak{F} ;

3) $\mathfrak{F}^{/\omega}\mathfrak{F} \cap \mathfrak{N}$ is a Boolean lattice.

References

- A.N.Skiba, L.A.Shemetkov "Multiply L-composition formations of finite groups" [in Russian], Ukrainian Math. J., v. 52, No. 6, 2000, pp. 783-797.
- [2] P.A. Zhiznevsky "To the theory of multiply partially composition formations of finite groups" [in Russian], Preprint GGU im. F.Skoriny, 2008, No. 30, 35p.
- P.A. Zhiznevsky, V.G.Safonov "On L-composition formations with complemented sublattices" [in Russian], Izvestiya vitebskogo gos. universiteta, 2008, No. 3(49), pp. 93-100.
- [4] L.A. Shemetkov, A.N. Skiba Formations of Algebraic Systems [in Russian], Nauka, Moscow, 1989.
- [5] A.N. Skiba, Algebra of Formations [in Russian], Bel. Navuka, Minsk, 1997.
- [6] G. Birkhoff "Lattice theory" New York: American mathematical society colloquium publications, Vol. XXV, 1948.
- [7] K. Doerk, T. Hawkes *Finite Soluble Groups*, Berlin; New York: Walter de Gruyter, 1992.
- [8] P.A. Zhiznevsky "On modularity and inductance of the lattice of all τ-closed nmultiply ω-composition finite groups formations" [in Russian], Izvestiya gomelskogo gos. universiteta, 2010, No. 1(58), pp. 185-191.
- [9] P.A. Zhiznevsky "On τ-closed n-multiply ω-composition formations with Boolean sublattice" [in Russian], Preprint GGU im. F.Skoriny, 2010, No. 3, 24p.
- [10] G. Grätzer "General lattice theory" New York: Academic Press, 1978.
- [11] I.V. Bliznets, A.N. Skiba "Critical and directly-reducible ω-composition formations" [in Russian], Preprint GGU im. F.Skoriny, 2002, No. 33, 23p.

CONTACT INFORMATION

 P. A. Zhiznevsky
 Mathematics Department, Francisk Scorina Gomel State University, Sovetskaya Str., 104, 246019 Gomel, Belarus
 E-Mail: pzhiznevsky@yahoo.com

Received by the editors: 07.02.2011 and in final form 26.02.2011.