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Abstract. Let R be a ring and M be a left R-module. M
is called generalized ⊕- supplemented if every submodule of M has

a generalized supplement that is a direct summand of M . In this

paper we give various properties of such modules. We show that

any finite direct sum of generalized ⊕-supplemented modules is

generalized ⊕-supplemented. If M is a generalized ⊕-supplemented

module with (D3), then every direct summand of M is generalized

⊕-supplemented. We also give some properties of generalized cover.

1. Introduction

In this note R will be an associative ring with identity and all modules
unital left R-modules. Let M be an R-module. The notation N ≤ M
means that N is a submodule of M. Rad (M) will indicate Jacobson
radical of M. A submodule N of an R-module M is called small in
M (notation N << M), if N + L 6= M for every proper submodule
L of M . An epimorphism f : K → M is called a small cover (cover
in [9]) if Ker f << K. Let M be an R-module and let N and K be
any submodules of M . K is called a supplement of N in M if K is
minimal with respect to M = N + K. K is a supplement of N in M
iff M = N + K and N

⋂

K << K(see [8]). Following [8], M is called
supplemented if every submodule of M has a supplement in M , and is
called amply supplemented (supplemented in [6]) if for any two submodules
U and V of M with M = U + V , V contains a supplement of U in M .
Cleary amply supplemented modules are supplemented. If M = N +K
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and N
⋂

K << M , then K is called a weak supplement of N in M(see [5]).
Then clearly N is a weak supplement of K, too. A module M is called
weakly supplemented if every submodule of M has a weak supplement in
M .

Let M be an R-module and let N and K be any submodules of M with
M = N +K. If (N

⋂

K ⊆ Rad (M))N
⋂

K ⊆ Rad (K) then K is called
a (weak) generalized supplement of N in M . Since Rad (K) is the sum of
all small submodules of K, every supplement submodule is a generalized
supplement in M . Following [9], M is called generalized supplemented or
briefly GS- module if every submodule N of M has a generalized supple-
ment K in M , and it is called generalized amply supplemented or briefly
GAS-module in case M = K +L implies that K has a generalized supple-
ment L′ ≤ L. Clearly every (amply) supplemented module is generalized
(amply) supplemented. In [7], a module M is called weakly generalized
supplemented or briefly WGS-module if every submodule K of M has a
weak generalized supplement N in M . For characterizations of generalized
(amply) supplemented and weakly generalized supplemented modules we
refer to [7] and [9].

Recall from [1] that an epimorphism f : P → M is called a generalized
cover if Ker f ⊆ Rad (P ), and a generalized cover f : P → M is called
generalized projective cover in case P is a projective module. Clearly
every small cover is a generalized cover. In [1], M is called (generalized)
semiperfect if every factor module of M has a (generalized) projective
cover. The concepts of (generalized) semiperfect modules were introduced
in [1] and [9].

This note consists of two sections. We obtain some properties of
generalized cover in section 2. In section 3 we introduce generalized ⊕-
supplemented modules. We show that every finite direct sum of generalized
⊕-supplemented modules is generalized ⊕-supplemented.

2. Generalized cover

It was shown in [9, Lemma 1.1] that if f : M → N and g : N → K are
generalized covers, then gf : M → K is a generalized cover, too. We prove
that the converse of this fact is also true.

Proposition 2.1. If f : M → N and g : N → K are two epimorphisms,
then f and g are generalized covers if and only if gf : M → K is a
generalized cover.

Proof. (⇒) Let m ∈ Ker gf . Then (gf) (m) = 0 and f (m) ∈ Ker g ⊆

Rad (N). Note that Rf (m) << N . Suppose that m /∈ Rad (M). Then
there exists a maximal submodule P of M such that P +Rm = M . Then
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f (P ) +Rf (m) = N , and since Rf (m) << N it follows that f (P ) = N .
Hence P = f−1 (f (P )) = P +Ker f = M . This is a contraction.

(⇐) Let m ∈ Ker f . Then g (f (m)) = 0 and by assumption, m ∈

Ker gf ⊆ Rad (M), i.e. Ker f ⊆ Rad (M).

Let n ∈ Ker g. Since f is an epimorphism there exists an element m
of M such that f (m) = n. Then (gf) (m) = g (n) = 0 and hence m ∈

Ker gf ⊆ Rad (M), which implies n = f (m) ∈ f (Rad (M)) ⊆ Rad (N)
by [8, 21.6]. Hence Ker g ⊆ Rad (N).

Theorem 2.2. An epimorphism f : M → N is a generalized cover if and
only if for every homomorphism h : L → M such that f h : L → N is
epic, h (L) is a weak generalized supplement of Ker f .

Proof. (⇒) Let f : M → N be a generalized cover and let m ∈ M .
Since f h is epic there exists l ∈ L such that f (m) = (f h) (l). Then
m − h (l) ∈ Ker f and hence m ∈ h (L) + Ker f , which means that
M = Ker f + h (L). By assumption, Ker f

⋂

h (L) ⊆ Rad (M) and so
h (L) is a weak generalized supplement of Ker f .

(⇐) It is clear that 1Mf = f is epic, for the identity homomorphism
1M : M → M . By the hypothesis, 1M (M) = M is a weak generalized
supplement of Ker f , that is, Ker f ⊆ Rad (M). Hence f : M → N is a
generalized cover.

Proposition 2.3. Any homomorphic image of a WGS-module is a WGS-
module.

Proof. Let f : M → N be a homomorphism and M be a WGS−module.
Suppose that U is a submodule of f (M). Then f−1 (U) is a submodule of
M . Since M is a WGS-module, f−1 (U) has a weak generalized supplement
V in M, i.e. f−1 (U) + V = M and f−1 (U)

⋂

V ⊆ Rad (M). Then
f
(

f−1 (U)
)

+ f (V ) = f (M). It follows that U + f (V ) = f (M). Note
that U

⋂

f (V ) = f
(

f−1 (U)
⋂

V
)

⊆ f (Rad (M)) ⊆ Rad (f(M)) by [8,
23.2]. Hence f (M) is a WGS-module.

3. Generalized ⊕-supplemented modules

Recall from [6] that a module M is called ⊕-supplemented if every sub-
module of M has a supplement that is a direct summand of M . Clearly
⊕-supplemented modules are supplemented.

In this section, we define the concept of generalized ⊕-supplemented
modules, which is adapted from Xue’s generalized supplemented modules,
and give the properties of these modules.
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Definition 3.1. A module M is called generalized ⊕-supplemented if every
submodule of M has a generalized supplement that is a direct summand of
M .

Clearly ⊕-supplemented modules are generalized ⊕-supplemented.
Also, finitely generated generalized ⊕-supplemented modules are ⊕-supp-
lemented by [8, 19.3], but it is not generally true that every generalized ⊕-
supplemented module is ⊕- supplemented. Let R be a non-local dedekind
domain with quotient field K. Then the module K is generalized ⊕-
supplemented, but it is not ⊕-supplemented. If K is ⊕-supplemented, R
is a local ring by [10]. This is a contradiction by assumption. Later we
shall give other examples of such modules (see Example 3.11).

To prove that a finite direct sum of generalized ⊕-supplemented mod-
ules is generalized ⊕-supplemented, we use the following standard lemma
(see [8, 41.2]).

Lemma 3.2. Let N and K be submodules of a module M such that N+K
has a generalized supplement X in M and N

⋂

(K +X) has a generalized
supplement Y in N . Then X + Y is a generalized supplement of K in M .

Proof. Let X be a generalized supplement of N +K in M . Then M =
(N +K) + X and (N +K)

⋂

X ⊆ Rad (X). Since N
⋂

(K +X) has a
generalized supplement Y in N , we have N = N

⋂

(K +X) + Y and
(K +X)

⋂

Y ⊆ Rad (Y ). Then

M = N +K +X =
[

N
⋂

(K +X) + Y
]

+K +X = K + (X + Y )

and

K
⋂

(X + Y ) ≤ X
⋂

(K + Y ) + Y
⋂

(K +X)
≤ X

⋂

(K +N) + Y
⋂

(K +X)
≤ Rad (X) + Rad (Y )
≤ Rad (X + Y ) .

Hence X + Y is a generalized supplement of K in M .

Theorem 3.3. For any ring R, any finite direct sum of generalized ⊕-
supplemented R-modules is generalized ⊕-supplemented.

Proof. Let n be any positive integer and Mi (1 ≤ i ≤ n) be any finite
collection of generalized ⊕-supplemented R-modules. Let M = M1⊕M2⊕

...⊕Mn.
Suppose that n = 2, that is, M = M1 ⊕ M2. Let K be any sub-

module of M . Then M = M1 + M2 + K and so M1 + M2 + K has a
generalized supplement 0 in M . Since M1 is generalized ⊕- supplemented,
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M1
⋂

(M2 +K) has a generalized supplement X in M1 such that X is a
direct summand of M1. By Lemma 3.2, X is a generalized supplement of
M2 +K in M . Since M2 is generalized ⊕-supplemented, M2

⋂

(K +X)
has a generalized supplement Y in M2 such that Y is a direct summand
of M2. Again applying Lemma 3.2, we have that X + Y is a generalized
supplement of K in M . Since X is a direct summand of M1 and Y is a
direct summand of M2, it follows that X ⊕ Y is a direct summand of M .
The proof is completed by induction on n.

We prove the following proposition, which is a modified form of Propo-
sition 2.5 in [3]. We need the following lemma.

Lemma 3.4. Let M be a module and N be a submodule of M . If U is a
generalized supplement of N in M , then U+L

L
is a generalized supplement

of N
L

in M
L

for every submodule L of N .

Proof. By the hypothesis, M = N + U and U
⋂

N ⊆ Rad (U). Hence
M
L

= N
L
+ U+L

L
for every submodule L of N . Consider that the natural

epimorphism φ : N → N
L

. Then by [8, p. 191], φ (Rad (U)) ⊆ Rad
(

U+L
L

)

.
Since U

⋂

N ⊆ Rad (U) it follows that

N

L

⋂ U + L

L
=

L+ (N
⋂

U)

L
=

= φ
(

N
⋂

U
)

⊆ φ (Rad (U)) ⊆ Rad

(

U + L

L

)

.

Hence U+L
L

is a generalized supplement of N
L

in M
L

.

Proposition 3.5. Let M be a nonzero generalized ⊕-supplemented R-
module and let U be a submodule of M such that f (U) ≤ U for each
f ∈ EndR (M). Then

(1) The factor module M
U

is generalized ⊕-supplemented.

(2) If, moreover, U is a direct summand of M , then U is also generalized
⊕-supplemented.

Proof. (1) Let L
U

be any submodule of M
U

. Since M is generalized ⊕-
supplemented, there exist submodules N and N ′ of M such that M =
L + N , L

⋂

N ⊆ Rad (N) and M = N ⊕ N ′. By Lemma 3.4, N+U
U

is
a generalized supplement of L

U
in M

U
. Since f (U) ≤ U for each f ∈

EndR (M), it follows from [3, Lemma 2.4] that U = (U
⋂

N)⊕ (U
⋂

N ′).
Hence (N + U)

⋂

(N ′ + U) ≤ U and so N+U
U

⋂

N ′+U
U

= 0, i.e. N+U
U

is a
direct summand of M

U
. Thus M

U
is generalized ⊕-supplemented.
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(2) Let U be a direct summand of M and let X be a submodule of U .
Since M is generalized ⊕-supplemented, there exist submodules Y and
Y ′ of M such that M = X + Y , X

⋂

Y ⊆ Rad (Y ) and M = Y ⊕ Y ′.
Hence U = X + (U

⋂

Y ). Again applying [3, Lemma 2.4], we have that
U = (U

⋂

Y ) ⊕ (U
⋂

Y ′). Now we show that X
⋂

(U
⋂

Y ) = X
⋂

Y ⊆

Rad (U
⋂

Y ). Let m be any element of X
⋂

Y . Then m ∈ Rad (Y ) and
so Rm is small in Y . Since U is a direct summand of M , by [8, 19.3],
Rm is small in U . Again by [8, 19.3], Rm is also small in U

⋂

Y because
U
⋂

Y is direct summand of U . Hence m ∈ Rad (U
⋂

Y ). Consequently,
U is generalized ⊕-supplemented.

Corollary 3.6. Let M be a nonzero generalized ⊕-supplemented module.
If Rad (M) is a direct summand of M , then Rad (M) is also generalized
⊕-supplemented.

For a positive integer n, the modules Mi (1 ≤ i ≤ n) are called rela-
tively projective if Mi is Mj-projective for all 1 ≤ i 6= j ≤ n.

Theorem 3.7. Let Mi (1 ≤ i ≤ n) be any finite collection of relatively
projective modules and let M = M1⊕M2⊕...⊕Mn. Then M is generalized
⊕-supplemented module if and only if Mi is generalized ⊕-supplemented
for each 1 ≤ i ≤ n.

Proof. (⇐) It follows from Theorem 3.3.
(⇒) Clearly, it suffices to prove that M1 is generalized ⊕-supplemented.

Let U be any submodule of M1. Since M is generalized ⊕-supplemented,
there exist submodules V and V ′ of M such that M = U + V , U

⋂

V ⊆

Rad (V ) and M = V ⊕ V ′. By [6, Lemma 4.47], there exists a submodule
V1 of V such that M = M1⊕V1. Then V = (M1

⋂

V )⊕V1 and so M1
⋂

V
is a direct summand of M1. Now U

⋂

(M1
⋂

V ) = U
⋂

V ⊆ Rad (V ) and
thus U

⋂

V ⊆ Rad (M1
⋂

V ) because M1
⋂

V is a direct summand of V .
Hence M1 is generalized ⊕-supplemented.

Let R be a ring and M be an R-module. We consider the following
condition.

(D3) If M1 and M2 are direct summands of M with M = M1 +M2, then
M1

⋂

M2 is also a direct summand of M (see [6, p. 57]).

Proposition 3.8. Let M be a generalized ⊕-supplemented module with
(D3). Then every direct summand of M is generalized ⊕-supplemented.

Proof. Let N be a direct summand of M and U be a submodule of N .
Then there exists a direct summand V of M such that M = U + V and
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U
⋂

V ⊆ Rad (V ). It follows that N = U + (N
⋂

V ). Since M has (D3)
N

⋂

V is a direct summand of M and so it is also a direct summand
of N . Note that U

⋂

(N
⋂

V ) = U
⋂

V ⊆ Rad (V ). Since N
⋂

V is a
direct summand of M , it follows that U

⋂

V ⊆ Rad (N
⋂

V ). Hence N is
generalized ⊕-supplemented.

Proposition 3.9 (see [2, Proposition 2.10]). Let M be a ⊕-supplemented
module. Then M = M1⊕M2, where M1 is a module with Rad (M1) small
in M1 and M2 is a module with Rad (M2) = M2.

We give an analogous characterization of this fact for generalized
⊕-supplemented modules.

Proposition 3.10. Let M be a generalized ⊕-supplemented module. Then
M = M1 ⊕M2, where M1 is a module with Rad (M1) = M1

⋂

Rad (M)
and M2 is a module with Rad (M2) = M2.

Proof. Since M is generalized ⊕-supplemented, there exist submodules
M1 and M2 of M such that M = Rad (M) + M1, Rad (M)

⋂

M1 ⊆

Rad (M1) and M = M1 ⊕ M2. Then Rad (M1) = M1
⋂

Rad (M) and
M = M1 ⊕ Rad (M2). It follows that M2 = Rad (M2).

Now we give some examples of module, which is generalized ⊕-supple-
mented, but not ⊕-supplemented.

Example 3.11. Let M be a non-torsion Z-module with Rad(M) = M . It
is clear that M = Rad(M) is a generalized supplement of every submodule
of M . Hence M is generalized ⊕-supplemented, but M is not supplemented
by [10].

Consider the Z-module M = Q⊕ Z
pZ

, for any prime p. Note that M
has a unique maximal submodule, i.e. Rad(M) 6= M . By Theorem 3.3,
M is generalized ⊕-supplemented. If M is ⊕-supplemented, then Q is
supplemented. It is a contradiction by [10].

Theorem 3.12. Let M be a module with (D3). Then the following state-
ments are equivalent.

(1) M is generalized ⊕-supplemented.

(2) Every direct summand of M is generalized ⊕-supplemented.

(3) There exists decomposition M = M1 ⊕M2 such that M1 is semisim-
ple and M2 is a generalized ⊕-supplemented module with Rad (M2)
essential in M2.
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(4) There exists a decomposition M = M1 ⊕ M2 of M such that M1

is a generalized ⊕-supplemented module and M2 is a module with
Rad (M2) = M2.

Proof. (1) ⇒ (2) It follows from Proposition 3.8.
(2) ⇒ (3) By [7, Proposition 2.3], M = M1 ⊕ M2, where M1 is

semisimple and M2 is a module with Rad (M2) essential in M2. By (2),
M2 is a generalized ⊕-supplemented.

(3) ⇒ (1) By Theorem 3.3, M is generalized ⊕-supplemented.
(1) ⇒ (4) By Proposition 3.10, there exist submodules M1 and M2 of

M such that M = M1 ⊕M2 and Rad (M2) = M2. Since M has (D3), by
Proposition 3.8, M1 is generalized ⊕-supplemented.

(4) ⇒ (1) Since Rad (M2) = M2, M2 is generalized ⊕-supplemented.
By (4) and Theorem 3.3, M is generalized ⊕-supplemented.

A ring R is semiperfect if R
Rad(R) is semisimple and idempotents can

be lifted modulo Rad(R). It is known that a ring R is semiperfect if and
only if every simple left R-module has a projective cover (see [8, 42.6]).
Therefore it is shown in [4, Theorem 2.1] that R is semiperfect if and only
if every finitely generated free R-module is ⊕-supplemented.

Remark 3.13. For a ring R if every finitely generated free R-module is
generalized ⊕-supplemented, then R is semiperfect. If RR is generalized
⊕-supplemented, RR is ⊕-supplemented because RR is a finitely generated
R-module. It follows from [4, Theorem 2.1] that R is semiperfect.
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