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ABSTRACT. Let G be a finite non-abelian group, R a ring
with 1, and G the inner automorphism group of the group ring RG
over R induced by the elements of G. Then three main results are
shown for the separable group ring RG over R: (i) RG is not a
Galois extension of (RG)“ with Galois group G when the order of
G is invertible in R, (ii) an equivalent condition for the Galois map
from the subgroups H of G to (RG) by the conjugate action of
elements in H on RG is given to be one-to-one and for a separable
subalgebra of RG having a preimage, respectively, and (iii) the
Galois map is not an onto map.

1. Introduction

Galois extensions for rings and Hopf algebras have been intensively in-
vestigated ([3], |7], [8], [10], [11]) and many examples are constructed. In
[8], the following question was asked: which Azumaya algebra with an
automorphism group is also a Galois algebra? In [3], it was shown that
any Azumaya projective group algebra RG; over R is a central Galois
algebra over R with an inner Galois group G induced by the base elements
{Uy |9 € G} of RGy where f : G x G — {units of R} is a factor set ([3],
Theorem 3). Recently, this fact was generalized to any separable projective
group algebra RG (|9]), and equivalent conditions were found for Galois
separable skew polynomial rings and Galois crossed products with an inner
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Galois group ([6], [9]). The purpose of the present paper is to show that
any separable group ring RG of a non-abelian group G is not a Galois
extension of (RG)Y with an inner Galois group G induced by the elements
of G. Then we discuss the Galois map o : H — (RG)" by conjugation
from the set of subgroups H of G to the set of separable subalgebras
of RG. Also, an equivalent condition is obtained for a being one-to-one
and for a separable subalgebra of RG having a preimage, respectively.
Moreover, it is shown that « is not onto.

2. Basic definitions and notations

Let B be aring with 1 and A a subring of B with the same identity 1. Then
B is called a separable extension of A if there exist {a;,b; in B,i =1,2,...,k
for some integer k} such that > a;b; = 1 and Y za; ® b; = Y a; ® bz
for all  in B where ® is over A. In particular, B is called an Azumaya
algebra if it is a separable extension over its center (|5], Introduction
or [8], Definition 2.2). Let G be a finite automorphism group of B and
BY = {r € B|g(z) = z for all g € G}. Then B is called a Galois
extension of B® with Galois group G if there exist elements {¢;,d; in B,
i =1,2,...,m for some integer m} such that ) ¢;d; =1 and ) ¢;9(d;) =0
for each g # 1 in G. A Galois extension B of B% is called a Galois algebra
if BY is contained in the center of B, and a central Galois algebra if B¢
is equal to the center of B. The order of a group G is denoted by |G|. Let
D be a subring of B. We denote Vi(D) the centralizer subring of D in B
and G(D) ={g € G|g(d) =d for all d € D}.

Let R be a ring with identity 1 and G a finite group. Then RG
denotes the group ring of G over R, and RG; a projective group ring
with a factor set f : G x G — {units in the center of R} such that
f(gh,1)f(g,h) = f(g,hl)f(h,l) if RGy is a free R-module with a basis
{Uglg € G} such that U,U, = f(g,h)Ugp; in particular, when R is
commutative, a projective group ring RGy is called a projective group
algebra.

3. Group rings of non-abelian groups

In this section, let R be a ring with 1, G a finite non-abelian group of order
n for some integer n invertible in R, RG the group ring of G over R, and
G the inner automorphism group of RG over R induced by the elements
of G. It is well known that RG is a separable extension of R. We shall
show that the separable group ring RG over R is not a Galois extension
of (RG)% with Galois group G. There are two cases in the proof: (i) R
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is commutative and (ii) R is noncommutative. We begin with a group
algebra RG over a commutative ring R.

Theorem 1. Let RG be a group algebra of a finite non-abelian group over
a commutative ring R and G the inner automorphism group of RG over
R induced by the elements of G. Then RG is not a Galois extension of
(RG)Y with Galois group G.

Proof. Let k be the number of conjugate classes of G and Z the center of G.
Then G = G/Z and | Z| < k < n for G is non-abelian where |Z| is the order
of Z and n is the order of G. Let C; be the sum of all distinct conjugate
elements of the ith conjugate class of G fori = 1,2,..., k, and C the center
of RG. Then it is known that C' = Zle RC; which is a free R-module of
rank k. Now assume that RG is a Galois extension of (RG)“ with Galois
group G. Since (RG)Y = C, RG is a central Galois algebra with an inner
Galois group G. Hence RG = Céf which is a projective group algebra
of G over C' with a factor set f: G x G — {units of C'} (|2], Theorem
6). Thus n = rankr(RG) = rankr(CGy) = rankg(C) - rankc(CGy) =
k|G| > |Z|-n/|Z| = n. This is a contradiction. Thus RG is not a Galois
extension of (RG)Y with Galois group G. O

Next, we want to extend Theorem 1 to the case of a non-commutative
ring R. Let Ry be the center of R, C the center of RG, and Z the center
of GG. We first show some properties of G.

Lemma 1. By keeping the notations in the above remarks, (1) the center
of RoG is C (the center of RG) and (2) the restriction of G to RoG is
isomorphic to G, that is, G|r,c = G.

Proof. (1) Let k be the number of conjugate classes of G and C; the sum of

all distinct conjugate elements of the ith conjugate class fort =1,2,..., k.
Then C = Vra(RG) = VZ@_I re, (1) = Ele RyC; = the center of RyG.
(2) Since G|g,c = G/Z = G, the statement holds. O

The following lemma which is Theorem 2.1 in [13] will play an impor-
tant role.

Lemma 2. Let B be a Galois extension of BS with an inner Galois group
G, G={g|g(z) = Ug$U;1 for some Uy € B and for all x € B}, and C
the center of B. Then deG CUy is a projective group algebra of G over
C with a factor set f: G x G — {units of C'}.

Now, we extend Theorem 1 to a separable group ring RG.
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Theorem 2. Let RG be a group ring of a non-abelian group G of order
n wnvertible in R, Ry the center of R, and C the center of RG. Then RG
is not a Galois extension of (RG)Y with an inner Galois group G induced
by the elements of G.

Proof. Assume that RG is a Galois extension of (RG)® with Galois
group G induced by the elements of G. Then, by Lemma 2, de@ Cqg=
Céf which is a projective group algebra of G over C' with factor set
f: G x G — {units of C}. Since G = G/Z where Z is the center of
G, RyG = deé RoZg C dea Cg C deé RyGg = RyG by Lemma 1.
Hence RyG = Zye@ Cg = CGy. By Lemma 1 again, the center of RoG
is C', so the center of Céf is also C'. Moreover, since the order n of G is
invertible in R, CGy is a separable C-algebra. Thus CG is an Azumaya
C-algebra; and so Céf is a central Galois algebra over C' with an inner
Galois group G ([3], Theorem 3). Therefore the group algebra RyG is a
Galois algebra over C' with an inner Galois group G. This contradicts
to Theorem 1, so RG is not a Galois extension of (RG)® with an inner

Galois group G. Ol

4. The Galois map

It is well known that the fundamental theorem holds for any indecompos-
able commutative ring Galois extension S with Galois group G ([1]), that
is, the Galois map a : H — S for a subgroup H of G is a one-to-one
correspondence between the set of subgroups of G and the set of separable
subalgebras of S. Moreover, Galois extensions of a ring satisfying the
fundamental theorem were studied in [12]. In this section, we shall discuss
two questions of the Galois map for a non-Calois extension RG of (RG)C,
a: H — (RG)M for a subgroup H of G where the action of H on RG
is the conjugation by the elements in H: (1) when does H = G((RG)™)
where G((RG)) = {g € G| g(x) = x for each x € (RG)"}, that is, is «
one-to-one? (2) which separable subalgebra A of RG is (RG)““), that is,
is a onto? For a subgroup H of G, let H act on G by conjugation and O;
be the sum of all distinct conjugate elements of the ith conjugate class
of G under the action of H, for : = 1,2,..., h where h is the number of
conjugate classes of G under the action of H.

Lemma 3. By keeping the notations in the above remark, then (RG)H" =

Proof. Since H is a subgroup of G and {g|g € G} is a basis for RG over
R, (RG)H = Z?:l RO; by a direct computation. O
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Corollary 1. Let H and L be subgroups of G. If (RG)" = (RG)*, then
(1) h =1, where h andl are the numbers of conjugate classes of G under the
conjugation action of H and L respectively, and (2) {O1,02,...,0} =
{01,05,...,0;} where O; is the sum of all distinct conjugate elements of
the ith conjugate class of G under the action of H and O} is the sum of
all distinct conjugate elements of the ith conjugate class of G under the
action of L.

Proof. (1) By Lemma 3, (RG)T = S RO; and (RG)F = 321, RO,
S0 Z?Zl RO; = (RG)? = (RG) = 22:1 RO}. Since RG is a free R-
module with basis {g|g € G}, (RG)" is a free R-module with basis
{01,04,...,0} and (RG)* is a free R-module with basis {O},...,0]}.
Thus h = 1.

(2) Since (RG)H = (RG)L, for each i = 1,2,...,h, O; € (RG)F =
Zé-:l RO. Hence O; = Zg.:l r;O} for some 7; € R. Noting that {g|g €
G} is a basis for RG over R, we have that r; is either 0 or 1. Thus
0; =3¢, Oj for some subset J; of {1,2,...,1}. But {J;[i =1,2,...,h}

are disjoint subsets of {1,2,...,l} where h = [, so each J; contains
only one O3, that is, O; = O] for some j. Therefore {O1,02,...,0,} =
{01,05,...,0;}. O

Now we show an equivalent condition for a being a one-to-one map:
(RG)" = (RG)” implies that H = L for subgroups H and L of G.

Theorem 3. Let H and L be subgroups of G. Then H = L if and
only if (RG)? = (RG)* and there exists an element x € G such that
Vi (x) = Vi(x) = Vir(x) where Vp(z) is the centralizer of x in T for a
subset T of G.

Proof. (=) Since H = L, the necessity is clear.

(«<=) Since (RG)! = (RG)', we can assume that O; = O/ for each i
by Corollary 1. By hypothesis, there exists an element x € G such that
Vi (xz) = Vi(x) = Vgr(x). Since z is a term of O; for some ¢ and O; = O},
for any a € H, aza™! = bzb~! for some b € L; and so (b~la)zr = z(b~ta),
that is, b'a € V(). But V(z) = Vyr(z), so b~ la € L. Thus a € L
for any a € H. This implies that H C L. Similarly, L C H. Therefore
H=L. OJ

We recall that for a subset S C RG, the set {g € G| g(s) = s for all
s € S} is denoted by G(S5).

Corollary 2. Let H be a subgroup of G. Then H = G((RG)®) if and
only if there exists an element x € G such that Vgrayny)(z) C Vi (z).
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Proof. (=) The necessity is clear.
(«<=) Since (RG)Y = (RG)“((ES™) and H ¢ G((RG)M), the state-

ment is an immediate consequence of Theorem 3. OJ

)

Since the order of GG is invertible in R, RG is a separable group algebra
over R; and so it is an Azumaya algebra over its center ([4], Example
I1I, page 41 and Theorem 3.8, page 55). We shall show which separable
subalgebra A of the Azumaya algebra RG is equal to (RG)%().

Proposition 1. Assume the order of G is invertible in R. Then for any
subgroup H of G, (RG)! is a separable R-subalgebra of RG.

Proof. Let |[H| = n and Tr(z) = > cpy 9(x) = X cp grg~—'. Then the
map 7 : RG — (RG) by 7(z) = Tr(n~'2) is surjective as a bimodule
homomorphism over (RG)?. Hence m splits. Thus (RG) is a direct
summand of RG as a bimodule over (RG)*. Since |G| is invertible in R,
RG is a projective separable R-algebra. This implies that (RG)* is also a
separable R-subalgebra by the proof of Theorem 3.8 in [4] on page 55. [

Theorem 4. Let C be the center of RG and A a separable subalgebra of
the Azumaya algebra RG. Assume the order of G is invertible in R. Then
A = (RG)SAW if and only if mnk‘cp(((RG)G(A))p) = rankc, (Ap) for each
prime ideal p of C.

Proof. (=) The necessity is clear.

(«<=) Since RG is an Azumaya algebra over C it is a finitely generated
and projective C-module. Noting that A is a separable subalgebra of RG
over C', we have that A is a direct summand of RG as an A-bimodule. Hence
RG = A@ A’ for some A-bimodule A’; and so rankc, (A,) is defined for each
prime ideal p of C' ([4], page 27). Moreover, since the order of G is invertible
in R, the group algebra C'(G(A)) of G(A) over C'is a separable subalgebra
of RG over C. Thus Vre(C(G(A))) is a separable subalgebra of RG over
C' by the commutator theorem for Azumaya algebras (|4], Theorem 4.3,
page 57). But Vra(C(G(A))) = (RG)“™, so (RG)“™ is a separable
subalgebra of RG over C. Clearly, A C (RG)% so (RG)“X) = Ap(A'N
(RG)W) (for RG = A @ A'). By hypothesis, rankc, (((RG)¢W),) =
ranke, (Ap) for each prime ideal p of C, so ranke, (A’ N (RG)¢AW),) =0
for each prime ideal p of C. Thus A’ N (RG)““) = {0}. Therefore A =
(RG)EM), O

Next, we want to show that there are separable subalgebras of a group
algebra RG of a non-abelian group G not satisfying Theorem 4, so the
Galois map is not onto from the set of subgroups of G' to the set of
separable subalgebras of RG.
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Theorem 5. Let RG be a group algebra of a non-abelian group G whose
order is invertible in R. Then the Galois map o : H — (RG)H for a
subgroup H of G is not onto from the set of subgroups of G to the set of
separable subalgebras of RG.

Proof. Let g # e (the identity of G) and R(g) the subalgebra of RG
generated by g¢. Since |G|~! € R, R(g) is a separable subalgebra of RG.
By hypothesis, G is non-abelian, so R{g) is a proper separable subalgebra
of RG. On the other hand, G(R({g)) = {h € G |hgh™! = g}, so G(R{g))
is the commutator subgroup of (g) in G. Let (RG)¢(9) = @Zle O;
where k is the number of conjugate classes of G under the action of
G(R(g)) and O; is the sum of the distinct conjugate elements in the ith
conjugate class of G under the action. Noting that each element in (g)
is a conjugate class of G under the action of G(R(g)) and that (g) # G,
we have that |(g)| < k. But rankr(R(g)) = |(g9)| = the order of (g) and
rankp((RG)“9)) = k = the number of conjugate classes of G’ under the
action of G(R(g)), so R(g) # (RG)“9)). Thus the separable subalgebra
R{g) does not have a preimage of a; and so the Galois map « is not
onto. 0

We conclude the present paper with an example to show that the
Galois map a : H — (RG)™ is one-to-one, but not onto.

Example 1. Let S3 be the permutation group on 3 symbols {1, 2, 3, }, that
is, S3 = {e, (12),(13), (23), (123), (132)}, and R the field of real numbers.
Then the group algebra RS3 is not a Galois extension of (RS3)™® with
an inner Galois group S5 induced by the elements of S3, and o : H —
(RS3)H is one-to-one from the set of subgroups of S5 to the set of separable
subalgebras of the Azumaya algebra RSs over its center C' where

(1) C = Re® R((12) + (13) + (23)) @ R((123) + (132)),

(2) S3 = S3 = the inner automorphism group induced by the elements

(3) (RS3)'® = RS,
(RS3){(12)) = Re @ R(12) @ R((13) + (23)) @& R((123) + (132)),
(RS3){13) = Re @ R(13) @ R((12) + (23)) ® R((123) + (132)),
(RS3){3)) = Re @ R(23) @ R((12) + (13)) ® R((123) + (132)),
(RS3){(123)) = Re @ R((12) + (13) + (23)) @ R(123) @ R(132),
(RS3)% = C

(4) Re ® R(12) is a separable subalgebra of RSs which is not an image
under «, so « is not onto.
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