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Abstract. Let G be a finite non-abelian group, R a ring
with 1, and G the inner automorphism group of the group ring RG
over R induced by the elements of G. Then three main results are
shown for the separable group ring RG over R: (i) RG is not a

Galois extension of (RG)G with Galois group G when the order of
G is invertible in R, (ii) an equivalent condition for the Galois map
from the subgroups H of G to (RG)H by the conjugate action of
elements in H on RG is given to be one-to-one and for a separable
subalgebra of RG having a preimage, respectively, and (iii) the
Galois map is not an onto map.

1. Introduction

Galois extensions for rings and Hopf algebras have been intensively in-
vestigated ([3], [7], [8], [10], [11]) and many examples are constructed. In
[8], the following question was asked: which Azumaya algebra with an
automorphism group is also a Galois algebra? In [3], it was shown that
any Azumaya projective group algebra RGf over R is a central Galois
algebra over R with an inner Galois group G induced by the base elements
{Ug | g ∈ G} of RGf where f : G×G −→ {units of R} is a factor set ([3],
Theorem 3). Recently, this fact was generalized to any separable projective
group algebra RGf ([9]), and equivalent conditions were found for Galois
separable skew polynomial rings and Galois crossed products with an inner
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Galois group ([6], [9]). The purpose of the present paper is to show that
any separable group ring RG of a non-abelian group G is not a Galois
extension of (RG)G with an inner Galois group G induced by the elements
of G. Then we discuss the Galois map α : H −→ (RG)H by conjugation
from the set of subgroups H of G to the set of separable subalgebras
of RG. Also, an equivalent condition is obtained for α being one-to-one
and for a separable subalgebra of RG having a preimage, respectively.
Moreover, it is shown that α is not onto.

2. Basic definitions and notations

Let B be a ring with 1 and A a subring of B with the same identity 1. Then
B is called a separable extension of A if there exist {ai, bi in B, i = 1, 2, ..., k
for some integer k} such that

∑
aibi = 1 and

∑
xai ⊗ bi =

∑
ai ⊗ bix

for all x in B where ⊗ is over A. In particular, B is called an Azumaya
algebra if it is a separable extension over its center ([5], Introduction
or [8], Definition 2.2). Let G be a finite automorphism group of B and
BG = {x ∈ B | g(x) = x for all g ∈ G}. Then B is called a Galois
extension of BG with Galois group G if there exist elements {ci, di in B,
i = 1, 2, ...,m for some integer m} such that

∑
cidi = 1 and

∑
cig(di) = 0

for each g 6= 1 in G. A Galois extension B of BG is called a Galois algebra
if BG is contained in the center of B, and a central Galois algebra if BG

is equal to the center of B. The order of a group G is denoted by |G|. Let
D be a subring of B. We denote VB(D) the centralizer subring of D in B
and G(D) = {g ∈ G | g(d) = d for all d ∈ D}.

Let R be a ring with identity 1 and G a finite group. Then RG
denotes the group ring of G over R, and RGf a projective group ring
with a factor set f : G × G −→ {units in the center of R} such that
f(gh, l)f(g, h) = f(g, hl)f(h, l) if RGf is a free R-module with a basis
{Ug | g ∈ G} such that UgUh = f(g, h)Ugh; in particular, when R is
commutative, a projective group ring RGf is called a projective group
algebra.

3. Group rings of non-abelian groups

In this section, let R be a ring with 1, G a finite non-abelian group of order
n for some integer n invertible in R, RG the group ring of G over R, and
G the inner automorphism group of RG over R induced by the elements
of G. It is well known that RG is a separable extension of R. We shall
show that the separable group ring RG over R is not a Galois extension
of (RG)G with Galois group G. There are two cases in the proof: (i) R
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is commutative and (ii) R is noncommutative. We begin with a group
algebra RG over a commutative ring R.

Theorem 1. Let RG be a group algebra of a finite non-abelian group over
a commutative ring R and G the inner automorphism group of RG over
R induced by the elements of G. Then RG is not a Galois extension of
(RG)G with Galois group G.

Proof. Let k be the number of conjugate classes of G and Z the center of G.
Then G ∼= G/Z and |Z| < k < n for G is non-abelian where |Z| is the order
of Z and n is the order of G. Let Ci be the sum of all distinct conjugate
elements of the ith conjugate class of G for i = 1, 2, . . . , k, and C the center
of RG. Then it is known that C =

∑k
i=1RCi which is a free R-module of

rank k. Now assume that RG is a Galois extension of (RG)G with Galois

group G. Since (RG)G = C, RG is a central Galois algebra with an inner
Galois group G. Hence RG = CGf which is a projective group algebra
of G over C with a factor set f : G×G −→ {units of C} ([2], Theorem
6). Thus n = rankR(RG) = rankR(CGf ) = rankR(C) · rankC(CGf ) =
k · |G| > |Z| · n/|Z| = n. This is a contradiction. Thus RG is not a Galois

extension of (RG)G with Galois group G.

Next, we want to extend Theorem 1 to the case of a non-commutative
ring R. Let R0 be the center of R, C the center of RG, and Z the center
of G. We first show some properties of G.

Lemma 1. By keeping the notations in the above remarks, (1) the center
of R0G is C (the center of RG) and (2) the restriction of G to R0G is
isomorphic to G, that is, G|R0G

∼= G.

Proof. (1) Let k be the number of conjugate classes of G and Ci the sum of
all distinct conjugate elements of the ith conjugate class for i = 1, 2, . . . , k.
Then C = VRG(RG) = V∑k

i=1
RCi

(R) =
∑k

i=1R0Ci = the center of R0G.

(2) Since G|R0G
∼= G/Z ∼= G, the statement holds.

The following lemma which is Theorem 2.1 in [13] will play an impor-
tant role.

Lemma 2. Let B be a Galois extension of BG with an inner Galois group
G, G = {g | g(x) = UgxU

−1
g for some Ug ∈ B and for all x ∈ B}, and C

the center of B. Then
∑

g∈GCUg is a projective group algebra of G over
C with a factor set f : G×G −→ {units of C}.

Now, we extend Theorem 1 to a separable group ring RG.
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Theorem 2. Let RG be a group ring of a non-abelian group G of order
n invertible in R, R0 the center of R, and C the center of RG. Then RG
is not a Galois extension of (RG)G with an inner Galois group G induced
by the elements of G.

Proof. Assume that RG is a Galois extension of (RG)G with Galois
group G induced by the elements of G. Then, by Lemma 2,

∑
g∈GCg =

CGf which is a projective group algebra of G over C with factor set
f : G × G −→ {units of C}. Since G ∼= G/Z where Z is the center of
G, R0G =

∑
g∈GR0Zg ⊂

∑
g∈GCg ⊂

∑
g∈GR0Gg = R0G by Lemma 1.

Hence R0G =
∑

g∈GCg = CGf . By Lemma 1 again, the center of R0G

is C, so the center of CGf is also C. Moreover, since the order n of G is
invertible in R, CGf is a separable C-algebra. Thus CGf is an Azumaya
C-algebra; and so CGf is a central Galois algebra over C with an inner
Galois group G ([3], Theorem 3). Therefore the group algebra R0G is a
Galois algebra over C with an inner Galois group G. This contradicts
to Theorem 1, so RG is not a Galois extension of (RG)G with an inner
Galois group G.

4. The Galois map

It is well known that the fundamental theorem holds for any indecompos-
able commutative ring Galois extension S with Galois group G ([1]), that
is, the Galois map α : H −→ SH for a subgroup H of G is a one-to-one
correspondence between the set of subgroups of G and the set of separable
subalgebras of S. Moreover, Galois extensions of a ring satisfying the
fundamental theorem were studied in [12]. In this section, we shall discuss
two questions of the Galois map for a non-Galois extension RG of (RG)G,
α : H −→ (RG)H for a subgroup H of G where the action of H on RG
is the conjugation by the elements in H: (1) when does H = G((RG)H)
where G((RG)H) = {g ∈ G | g(x) = x for each x ∈ (RG)H}, that is, is α
one-to-one? (2) which separable subalgebra A of RG is (RG)G(A), that is,
is α onto? For a subgroup H of G, let H act on G by conjugation and Oi

be the sum of all distinct conjugate elements of the ith conjugate class
of G under the action of H, for i = 1, 2, . . . , h where h is the number of
conjugate classes of G under the action of H.

Lemma 3. By keeping the notations in the above remark, then (RG)H =∑h
i=1ROi.

Proof. Since H is a subgroup of G and {g | g ∈ G} is a basis for RG over
R, (RG)H =

∑h
i=1ROi by a direct computation.
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Corollary 1. Let H and L be subgroups of G. If (RG)H = (RG)L, then
(1) h = l, where h and l are the numbers of conjugate classes of G under the
conjugation action of H and L respectively, and (2) {O1, O2, . . . , Oh} =
{O′

1, O
′
2, . . . , O

′
l} where Oi is the sum of all distinct conjugate elements of

the ith conjugate class of G under the action of H and O′
i is the sum of

all distinct conjugate elements of the ith conjugate class of G under the
action of L.

Proof. (1) By Lemma 3, (RG)H =
∑h

i=1ROi and (RG)L =
∑l

i=1RO′
i,

so
∑h

i=1ROi = (RG)H = (RG)L =
∑l

i=1RO′
i. Since RG is a free R-

module with basis {g | g ∈ G}, (RG)H is a free R-module with basis
{O1, O2, . . . , Oh} and (RG)L is a free R-module with basis {O′

1, . . . , O
′
l}.

Thus h = l.

(2) Since (RG)H = (RG)L, for each i = 1, 2, . . . , h, Oi ∈ (RG)L =∑l
j=1RO′

j . Hence Oi =
∑l

j=1 rjO
′
j for some rj ∈ R. Noting that {g | g ∈

G} is a basis for RG over R, we have that rj is either 0 or 1. Thus
Oi =

∑
j∈Ji

O′
j for some subset Ji of {1, 2, . . . , l}. But {Ji | i = 1, 2, . . . , h}

are disjoint subsets of {1, 2, . . . , l} where h = l, so each Ji contains
only one O′

j , that is, Oi = O′
j for some j. Therefore {O1, O2, . . . , Oh} =

{O′
1, O

′
2, . . . , O

′
l}.

Now we show an equivalent condition for α being a one-to-one map:
(RG)H = (RG)L implies that H = L for subgroups H and L of G.

Theorem 3. Let H and L be subgroups of G. Then H = L if and
only if (RG)H = (RG)L and there exists an element x ∈ G such that
VH(x) = VL(x) = VHL(x) where VT (x) is the centralizer of x in T for a
subset T of G.

Proof. (=⇒) Since H = L, the necessity is clear.

(⇐=) Since (RG)H = (RG)L, we can assume that Oi = O′
i for each i

by Corollary 1. By hypothesis, there exists an element x ∈ G such that
VH(x) = VL(x) = VHL(x). Since x is a term of Oi for some i and Oi = O′

i,
for any a ∈ H , axa−1 = bxb−1 for some b ∈ L; and so (b−1a)x = x(b−1a),
that is, b−1a ∈ VHL(x). But VL(x) = VHL(x), so b−1a ∈ L. Thus a ∈ L
for any a ∈ H. This implies that H ⊂ L. Similarly, L ⊂ H. Therefore
H = L.

We recall that for a subset S ⊂ RG, the set {g ∈ G | g(s) = s for all
s ∈ S} is denoted by G(S).

Corollary 2. Let H be a subgroup of G. Then H = G((RG)H) if and
only if there exists an element x ∈ G such that VG((RG)H))(x) ⊂ VH(x).
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Proof. (=⇒) The necessity is clear.

(⇐=) Since (RG)H = (RG)G((RG)H) and H ⊂ G((RG)H), the state-
ment is an immediate consequence of Theorem 3.

Since the order of G is invertible in R, RG is a separable group algebra
over R; and so it is an Azumaya algebra over its center ([4], Example
III, page 41 and Theorem 3.8, page 55). We shall show which separable
subalgebra A of the Azumaya algebra RG is equal to (RG)G(A).

Proposition 1. Assume the order of G is invertible in R. Then for any
subgroup H of G, (RG)H is a separable R-subalgebra of RG.

Proof. Let |H| = n and Tr(x) =
∑

g∈H g(x) =
∑

g∈H gxg−1. Then the

map π : RG −→ (RG)H by π(x) = Tr(n−1x) is surjective as a bimodule
homomorphism over (RG)H . Hence π splits. Thus (RG)H is a direct
summand of RG as a bimodule over (RG)H . Since |G| is invertible in R,
RG is a projective separable R-algebra. This implies that (RG)H is also a
separable R-subalgebra by the proof of Theorem 3.8 in [4] on page 55.

Theorem 4. Let C be the center of RG and A a separable subalgebra of
the Azumaya algebra RG. Assume the order of G is invertible in R. Then
A = (RG)G(A) if and only if rankCp

(((RG)G(A))p) = rankCp
(Ap) for each

prime ideal p of C.

Proof. (=⇒) The necessity is clear.
(⇐=) Since RG is an Azumaya algebra over C, it is a finitely generated

and projective C-module. Noting that A is a separable subalgebra of RG
overC, we have that A is a direct summand of RG as an A-bimodule. Hence
RG = A⊕A′ for some A-bimodule A′; and so rankCp

(Ap) is defined for each
prime ideal p of C ([4], page 27). Moreover, since the order of G is invertible
in R, the group algebra C(G(A)) of G(A) over C is a separable subalgebra
of RG over C. Thus VRG(C(G(A))) is a separable subalgebra of RG over
C by the commutator theorem for Azumaya algebras ([4], Theorem 4.3,
page 57). But VRG(C(G(A))) = (RG)G(A), so (RG)G(A) is a separable
subalgebra of RG over C. Clearly, A ⊂ (RG)G(A), so (RG)G(A) = A⊕(A′∩
(RG)G(A)) (for RG = A ⊕ A′). By hypothesis, rankCp

(((RG)G(A))p) =

rankCp
(Ap) for each prime ideal p of C, so rankCp

((A′ ∩ (RG)G(A))p) = 0

for each prime ideal p of C. Thus A′ ∩ (RG)G(A) = {0}. Therefore A =
(RG)G(A).

Next, we want to show that there are separable subalgebras of a group
algebra RG of a non-abelian group G not satisfying Theorem 4, so the
Galois map is not onto from the set of subgroups of G to the set of
separable subalgebras of RG.
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Theorem 5. Let RG be a group algebra of a non-abelian group G whose
order is invertible in R. Then the Galois map α : H −→ (RG)H for a
subgroup H of G is not onto from the set of subgroups of G to the set of
separable subalgebras of RG.

Proof. Let g 6= e (the identity of G) and R〈g〉 the subalgebra of RG
generated by g. Since |G|−1 ∈ R, R〈g〉 is a separable subalgebra of RG.
By hypothesis, G is non-abelian, so R〈g〉 is a proper separable subalgebra
of RG. On the other hand, G(R〈g〉) = {h ∈ G |hgh−1 = g}, so G(R〈g〉)
is the commutator subgroup of 〈g〉 in G. Let (RG)G(R〈g〉) = ⊕

∑k
i=1Oi

where k is the number of conjugate classes of G under the action of
G(R〈g〉) and Oi is the sum of the distinct conjugate elements in the ith
conjugate class of G under the action. Noting that each element in 〈g〉
is a conjugate class of G under the action of G(R〈g〉) and that 〈g〉 6= G,
we have that |〈g〉| < k. But rankR(R〈g〉) = |〈g〉| = the order of 〈g〉 and
rankR((RG)G(R〈g〉)) = k = the number of conjugate classes of G under the
action of G(R〈g〉), so R〈g〉 6= (RG)G(R〈g〉). Thus the separable subalgebra
R〈g〉 does not have a preimage of α; and so the Galois map α is not
onto.

We conclude the present paper with an example to show that the
Galois map α : H −→ (RG)H is one-to-one, but not onto.

Example 1. Let S3 be the permutation group on 3 symbols {1, 2, 3, }, that
is, S3 = {e, (12), (13), (23), (123), (132)}, and R the field of real numbers.
Then the group algebra RS3 is not a Galois extension of (RS3)

S3 with
an inner Galois group S3 induced by the elements of S3, and α : H −→
(RS3)

H is one-to-one from the set of subgroups of S3 to the set of separable
subalgebras of the Azumaya algebra RS3 over its center C where

(1) C = Re⊕R((12) + (13) + (23))⊕R((123) + (132)),

(2) S3
∼= S3 = the inner automorphism group induced by the elements

of S3,

(3) (RS3)
〈e〉 = RS3,

(RS3)
〈(12)〉 = Re⊕R(12)⊕R((13) + (23))⊕R((123) + (132)),

(RS3)
〈(13)〉 = Re⊕R(13)⊕R((12) + (23))⊕R((123) + (132)),

(RS3)
〈(23)〉 = Re⊕R(23)⊕R((12) + (13))⊕R((123) + (132)),

(RS3)
〈(123)〉 = Re⊕R((12) + (13) + (23))⊕R(123)⊕R(132),

(RS3)
S3 = C.

(4) Re⊕R(12) is a separable subalgebra of RS3 which is not an image

under α, so α is not onto.
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