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Preradical and kernel functors
over categories of S—acts

Mykola Komarnitskiy and Roman Oliynyk

ABSTRACT. We concider the big lattices of preradicals and
kernel functors over some cathegories of centered S—acts, where
S is monoid whit zero. We prove that those big lattices are two
elements if and only if monoid S— is groups with zero. A subset of
a Rees generated pretorsion theory is a subquantale of quantale of
pretorsion theory.

Introduction

The paper is devoted to our own vision of ways of development of the
theory of preradicals and hereditary preradicals, the latter we call kernel
functors, as well as Goldman. However, more important of the preradicals
and kernel functors call radicals and tortions theories, and they are studied
by many authors in different categories. General constructions and facts
of the preradical theories in the category of modules will serve as a
basic references and models or, if you want, standards in studying of the
corresponding objects in the context of the category of polygons we must
approximate to. But we were forced to ask a lot of questions, which are
mostly open (at least, the authors don’t know the answers, and couldn’t
find it in accessible literature). Further, we don’t know any article, devoted
to the theory of the preradicals in polygons. One of the most simple and
natural terms, that works in a lot of spheres of mathematics is a concept
"acts over groups". Basic technical means, connected with this concept,
are studied even by first year students. Corresponding G-sets are basic in
a theory of kogomology groups building. Historically acts over groups were
first investigated by P. Ruffini, A. Cayley, S. Lie. (see S.Lie Die Grundlagen
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fur die Theorie de unendlichen kontinujerlichen Transfomatinsgruppen, I
und II. Leipzig, Derichte,3,316-362,353-93, 1891). More general term act
over groups or monoid is not less important, but more difficult, as far as
theory of semigroup is more difficult and less developed by comparison to
the theory of groups. By the way, the word "demigroup" was first used
by Seguier (L’abbe of J.A.Seguier) in 1904 in his book "Elements of de
la theorie des groups abstractes", that was published in Paris. In 1905
an article was published , fully devoted to semigroups, where he cites
Seguier. In 1916 O. J. Schmidt introduced the term "semigroup" on a
regular basis in his Russian-language book "Abstract Group Theory". But
Schmidt in his determination of semigroup means the semigroups which
are cancellative from both sides. Acts over semigroups Lev Anatolievich
Skornyakov named "polygon" and we also will adhere to this term. It
is used by all of Russian-language mathematics, but this is not the only
concept in the articles, devoted to acts over semigroups. With the purpose
of illumination of some moments in history of origin and development of
theory of grounds it is necessary to indicate terminology, which was used
by other scientists who have played an important role in the development
of this theory. Moreover, that the category of polygons over monoid is
equal to the category of representation of this monoid. Notice, that in case
to inverse monoid, this category is a topos that substantially distinguishes
it from the categories of the acts over the associative ring. In fact the
category of acts over any ring can not be a topos. In particular category
of polygons is not Abelian. It mostly not additive, therefore methods of
investigating of polygons essentially differ from methods that are used in
theory of rings and acts, whether in any other section of algebra. Thus, it
is impossible to make equal most of theorems of the ring and acts theory to
the theory of polygons, therefore much of this facts have natural analogues
in the polygon theory.

To sum up, it can be said that the theory of the acts is a generalization
of a set theory, as it acts theory over rings. So it shows corporate properties,
which are presented in both categories. This thesis emphasizes results,
obtained by L. A. Skornjakov. The results are related to axiomatization
classes of all acts, that are some analogue of axiomatic set theory, which
was proposed by Louwer.

General results of that theory now are collected in the monograph
of M. Kilp, U. Knauer, A.V. Mikhalev. We refer to this monograph,
where it is possible quickly to acquaint with the theory, to understand the
special features and the attractiveness of the theory, especially for those
mathematics, who work in a sphere of acts theory.

The concept of quantale [7] goes back to 1920’s, when W. Krull, followed
by R. P. Dilworth and M.Ward, considered a lattice of ideals equipped with
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multiplication. The term "quantale" itself (short for "quantum locale")
was suggested by C.J. Mulvey. A quantale is a complete lattice L satisfying
the law a - (\/;c; bi) = V,er(a-b;) for all a,b; € L, where I is an index set.
Note, that in this definition we can substitute the meets by the joins, so
that we obtain the dual quantale with respect to meets.

It is well known that the set of all ideals of any ring is a complete lattice
on which an operation of multiplication of ideals is defined. It satisfies an
infinite distributive law, so the lattice of all ideals of the ring is a quantale.
By analogy, the set of all preradical filters of left ideals of an arbitrary ring
is a complete lattice. Moreover, the operation of Gabriel multiplication of
preradical filters is defined. Hence, the lattice of preradical filters is, in
fact, a quantale with respect to meets, see [1]. We prove that some analog
results are valid in cass of categories of acts.

Preliminaries

Throughout the paper, all monoids are assumed to have zero element.
Analogue of the notion of ring and module for cases of semigroups and
monoids are acts. Remark that A. K. Syshkewich was the first, who made
systematic research of acts, but he used another term. His dissertation is
named as "The theory of action as generalized group theory" (Russian),
1922).
Let’s give some basic definitions.

Definition 1. Let S be a monoid and A # 0 be a set. If there exist
mapping 1 : S X A — A, such that

1. la=ay,
2. (st)a = s(ta) for alla € A, s,t €S,
we call A a left S—act.

Recall that instead of the term "act" sometimes are used another
notions: set, operand, action, system, automat.
All acts are unitary and centered left S—act.

Definition 2. Let A and B be two left S—acts. Recall that the mapping
f A — B is called homomorphism if f(sa) = sf(a) for all s € S and
a € A.

The set of all S-homomorphisms from gA into gB will be denoted
by Hom(gsA,s B) or sometimes by Homg(A, B). We consider category of
left S—acts and their homomorphisms and denote it by S — Act.



60 PRERADICAL AND KERNEL FUNCTORS

Definition 3. An S-act is called a multiplication if for every subact B C A
exist some ideal I of S such that IA = B.

Any subact B C A defines Rees congruence pp on A, by setting appb
if a,b € B or a = b. We denote the resulting factor act by A/B.

In modern researches of acts different approaches often appear, that
are related in consideration of different category of acts. Except the
category of all acts, we research also two categories. We’ll recall to the
first construction of Lex-Wiegandt category of acts(see [4] ) and then to
the second category of multiplication acts. Denoted by S — LW Act and
S — M Act, respective categorys.

Definition 4. An S—act M is called a simple, if it contain only trivial
subacts.

Definition 5. An S—act M is called a congruence simple, if it has only
trivial congruences, i.e. Con(M) = {A,V} , where A = {(a,b) € M x
Mla=b} and V ={(a,b) € M x M|a,be M}.

Definition 6. Let I be two-sided ideal of semigroup S. Left S—act M s
called 1—divisible, if IM = M. Notion of p—divisible act is introduced in
the same way, i.e. if (p)(M x M) = (M x M).

Definition 7. A left socle of left S—act M is a union of all simple subacts
in M. This subact is denoted by Soc(M). Thus Soc(M) =|JN; , where

N; - run over all simple left subacts in M.

Insofar any two simple subacts of S—act M either don’t intersect or
coincide, this union is disjunctive union, i.e. Soc(M) = [[ N;.
i

Definition 8. By Soccon (M) we’ll denote a union of all congruence sim-
ple subacts in M. It means that Soccon(M) = |J N;, where N; - congruence
i

simple subact in M.

If any homomorphism between congruence simple subacts, then f(M)
— congruence simple subact or f(M) is equal to zero. Then o(M) = |J M;
and o(N) = JN;. Insofar f(|JM;) =U f(M;), it induce mapping [’ :
o(M) — o(N), that is restriction of f on o(M).

Note, that direct product of S—acts is not product in category C
because projections on components are not Rees’s quotient-mappings.
Besides, product of two S—acts don’t necessary exists.

Definition 9. A S—act N is called essential in M if KNN # 0 for every
no trivial subact K of M.
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1. Preradicals and kernel functors in S—Act
Definition 10. A preradical in the category S — Act is a functor
og:S—Act - S — Act

such that:
1. o(M) is subact in M for each M € S — Act;
2. For each homomorphism f: M — N, the diagram

o(M)——M

|

o(N)——=N
18 commutative.

Denote by S — pr the complete big lattice of all preradicals in S — Act.
There is a natural partial ordering in S —pr give by o < 7 if (M) C 7(M)
for each M € S — Act.

The most natural examples of the preradicals are the functors Soc(M)
and Socoon(M).

Notice that the preradicals are the subfunctors of identity functor.

Definition 11. Let S be a monoid and M be a left S—act. For allm € M
define a set
Ann(m) = {(a,b) € § x Slam = bm}.

Then Ann(m) call annihilator of element m and annihilator of M is
Ann(M) = () Ann(m).
meM
Obviously, Ann(M) is a left congruence on S.
Let S be a commutative monoid and A be a left S—act. Denoted by
Z(A) = {a € A|Ann(a) is a essential congruence on S }. Then Z(A) is
singular part of S—act A.

Lemma 1. Let S be a commutative monoid and A be a left S—act. Then
Z(A) is preradical.

Proof. If a € Z(A) then show that sa € Z(A) for all s € S. Since, Ann(a)
is a essential congruence on S and S is a commutative monoid, then
sta = sra and tsa = rsa for all s € S, follows that sa € Z(A).

We induce mapping f' : Z(M) — Z(N), that is restriction of f on
Z(M). O
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Definition 12. A left S—act A call prime if Ann(A) = Ann(B) for all
no trivial subacts B of A.

Definition 13. A left S—act A call prime if for all congruence p on S
such that for same a € A implies sa = ta for all (s,t) € p then p C Ann(A)
ora=0.

Lemma 2. Let S be a monoid and A be a left S—act. Then the following
conditions equivalent:

1. Ann(A) = Ann(B) for all no trivial subacts B of A.;

2. For all congruence p on S such that for same a € A implies sa = ta
for all (s,t) € p then p C Ann(A) or a =0.,

Proof. Let hold condition 2, but no condition 1. Then exist no trivial
subact B of A and Ann(A) # Ann(B). We have congruence o on S and
exist b € B and b # 0 such that sb # tb for all (s,t) € 0. Hence, A is not
prime by condition 2. A contradiction.
Let A is S—act and exists some congruence p on S such that for same
a € A implies sa = ta for all (s,t) € p. We need to show that p C Ann(A).
Suppose that exist s1,%; € S and b € A such that (s1,%1) € p but s1b # t1b.
Then B = Sa is subact of A. Hence, Ann(A) # Ann(B). A contradiction.
Therefore, p C Ann(A).
O

Definition 14. An S-act is called completely reducible if it is a disjoint
union of simple subacts.

Proposition 1. (see [3] p. 75) All acts over a monoid S are completely
reducible if and only if S is a group.

Theorem 1. Let S commutative monoid. Then the following statements

hold:
1. In the category S — Act all preradicals are trivial.
2. In the category S — LW Act all preradicals are trivial.
3. In the category S — M Act all preradicals are trivial.
4. S is group with zero.

Proof. (1) = (2). The category S— LW Act is subcategory of the categories
S — Act. Thus in the category S — LWact all preradicals are trivial.
(2) = (3). Let in the category S — M Act exist objects A such that o(A) is
no trivial. Then this S-act is in the category S— LW Act, but all preradicals
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are trivial in this category. A contradiction. (3) = (4). If in the category
S — M Act all preradicals are trivial. Then every S-act A from S — M Act
contains only trivial subacts. Hence, monoid S not contains no trivial
ideals and S is a group. (4) = (1). If S is a group by Proposition 1: all acts
over a monoid S are completely reducible. Then in the category S — Act
preradicals for all objects A are trivial. O

There are following classical operations in S — pr, namely A, V, - which
are defined as follows, for 0,7 € S — pr and M € S — Act:

(0 AT) (M) = o (M) 7 (M),

(o 1) (M) = o (M) U (M),

(o 7) (M) = o (v (M)).

The meet A and the join V can be defined for arbitrary families C of
preradicals as follows:

7 = A{o € C} such that 7(M) =N{o(M)|oc € C}

w=V{o € C} such that u(M)=U{o(M)|oc € C}

Notice that for each M € S — Act, {r (M) |r € C} is a set.

The operation - is called a product. It is well known that
r1-ro <riArg <ryVra.

All these operations are associative and order-preserving.

Definition 15. (see [12]) The functoro € S — pr is a left exact preradical
if for each short exact sequence

0L -1 -2 N0

the sequence
0— (L) My 22 ()

15 exact.

The functor ¢ € S — pris a radical if o (M /o (M)) = 0 for each
M e S — Act.

For any o € S — pr, we will use the following four classes of acts:

T, ={MecS—Act|o(M)=M};

Fo={MeS—Act|lo(M)=0};

T, = {o(M)|M € S — Act};

Fo = {M/o(M)|M € S — Act}

Recall that o is idempotent if and only if T, = T, o is radical if
and only if F, = F,. The functror ¢ is a left exact preradical if it is
idempotent and its pretorsion class T, is closed under taking subacts. The
functor o is a radical if and only if it is radical and its pretorsion-free
class F, is closed under taking quotient acts.
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Let o,7,n € S—pr,{oa}, CS—pr, M € S— Act. Then the following
properties hold:

l.o<7t=0V(TAn) =7A(cVn)(Modular law);

2. If {04}, is a directed family, then 7 A (Va0a) = Vo (T A 04);

3. (Na0a) T = Na (0aT);

4. (Vooa) T = Vq (0aT).

The classes of idempotent preradicals are closed under taking arbitrary
joins, and the classes of radicals and left exact preradicals are closed under
taking arbitrary meets.

A preradical ¢ : S — Act — S — Act is called a kernel functor if for
every M € S — Act and any subact N of M, o(N) = N{(o(M).

For additional information on kernel functors see [2].

Lemma 3. Let I be two-sided ideal of semigroup S. For every act M €
S — Act put o(M) = IM, where IM is essential in M. Then

1. o is a kernel functors.

2. 0 s a radical.

2. Lattices of pretorsion theories

Definition 16. A torsion theory(/5/) T for the category S — Act is a
pair (T, F) of classes of S — Act satisfying the following conditions:

1. Homg(T,F) =0 for all T € T and F € F;

2. If Homg(M,F) =0 for every F € F then M € T ;

3. If Homg(T,N) =0 for all T € T then N € F .

Definition 17. A quasi-filter ([11]) of S is defined to be subset £ of
Con(S) satisfying the following conditions:

1. Ifpe & and p C 1 € Con(S), then T € €.

2. p € & implies (p:s) € E for every s € S.

3. If pe & and T € Con(S) such that (1 : s), (7T : t) are in & for every
(s,t) € p\T, then T € .

Subset £ of Con(S) satisfying 1 and 2 condition are called preradical
quasi-filters or preradical filters.

Remind that a class T is a torsion class for a torsion theory 7 if and
only if it is closed under quotient acts, direct sums and extensions. A class
F is a torsion-free class for 7 if and only if F is closed under subacts, direct
products and extensions.

The acts in T are called 7-torsion, and the ones in F are 7-torsion-free.

Since the intersection of an arbitrary family of quasi-filters is a quasi-
filter, we may see that the set of all quasi-filters has the structure of a
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complete lattice, where the meet and the join of quasi-filters are defined
in the usual way.

A meet of the preradical filters /7 and JF> is the preradical filter
F1 \ F2 which is the intersection of F; and Fo.

A join of preradical filters F; and F» is the least preradical filter
F1\ Fa which contain both F; and Fo.

A product of preradical filters F1 and Fo is a set Fp - Fo of those left
congruence « of S for which there exists left congruence g € F3 such that
aC fand (a:s), (a:t)e F forall (s,t) € B.

We will also need the following fact.

Proposition 2. If & and & are (preradical) quasi-filters of left congru-
ence on a monoid S , then their product & - & is a (preradical) quasi-filter
of left congruence on a monoid S.

Proof. We need to show that the filter &7 - &5 satisfies the second condition.
Let o € &1 -&. Then exists such 5 € & that o C fand (a : s), (a: t) € Fy
for all (s,t) € 8. Then exist such left congruence v € &. Consider the
left congruence 7 = a7y of S. Since 7 C B()v and B[y € &, the
inclusion (7:a) = (a)v:a) 2 (a:a) and (7:b) = (a()7:b) D (a: b),
for every (a,b) € S, follows that (7 : a), (7 : b) € &. It means that
TeE& & OJ

3. Quantales of quasi-filters

A quantale Q) is a complete lattice with an associative binary multiplication

* satisfying

el el

and

(\/xi>*x:\/<xi*x>

el i€l
for all z,x; € Q, 1 € I, I is a set. By 1 denotes the greatest element of
the quantale @, by 0 is the smallest element of Q). A quantale @ is said
to be unital if there is an element v € () such that u*a = a *u = a for
all a € Q.
By a subquantale of a quantale () is meant a subset K closed under
joins and multiplication.

Proposition 3. The set of all quasi-filters of the monoid S forms a
quantale with respect to meets.
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Theorem 2. The set of all preradical quasi-filters of left congruence on a
monoid S is a quantale with respect to meets, which is a subquantale of

the

(1]

2]
3l

(4]

[5

6

(7]

B

[9

[10]
(11]

[12]

® £

quantale of all preradical filters of left congruence on a monoid S.

Proofs are straightforward and left to the reader.
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