Projectivity and flatness over the graded ring of semi-coinvariants

T. Guédénon

Communicated by V. Mazorchuk

Abstract. Let k be a field, C a bialgebra with bijective antipode, A a right C-comodule algebra, G any subgroup of the monoid of grouplike elements of C. We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of semi-coinvariants of A. When A and C are commutative and G is any subgroup of the monoid of grouplike elements of the coring $A \otimes C$, we prove similar results for the graded ring of conormalizing elements of A.

Introduction

In the theory of Hopf-Galois extension, it is often important to know whether certain modules over the ring of coinvariants are projective or flat. These properties reflect the notions of principal bundles and homogeneous spaces in a noncommutative setting. In [4], with S. Caenepeel, we gave sufficient conditions for the projectivity over the subring of coinvariants of an H-comodule algebra, where H is a Hopf algebra. In [6], we gave necessary and sufficient conditions for the projectivity and flatness over the endomorphism ring of a finitely generated module. In [9], necessary and sufficient conditions for the projectivity and flatness over the endomorphism ring of a finitely generated comodule over coring have been studied. In [10], these results have been extended to the colour endomorphism ring of a finitely generated G-graded comodule over a G-graded coring, where G is an abelian group with a bicharacter. To establish all these results the methods and techniques are inspired from [7]. In the present paper, C is a bialgebra, A is a C-comodule algebra and G is any subgroup of the monoid of grouplike elements of C. We consider the G-graded ring $\mathcal{S}(A)$ of
semi-coinvariants of A which is a subring of A containing the subalgebra of coinvariants of A. We adapt to the graded set-up the methods and techniques of [7] and [9] to give necessary and sufficient conditions for the projectivity and flatness over the graded ring $\mathcal{S}(A)$.

In an appendix, when A and C are commutative and G is any subgroup of the monoid of grouplike elements of the coring $A \otimes C$, we give necessary and sufficient conditions for the projectivity and flatness over the graded ring $\mathcal{N}(A)$ of conormalizing elements of A which is a subring of A.

Throughout we will be working over a field k. All algebras and coalgebras are over k. Background information on comodules over coalgebras and comodules over corings can be found in [1], [2], [3] and [11]. Except where otherwise stated, all unlabelled tensor products and Hom are tensor products and Hom over k. We denote by \mathcal{M} the category of vector spaces.

1. Preliminary results

We will use the following well-known results of graded ring theory [12]. Let G be a group, B a G-graded ring and $\mathcal{M}_{g r-B}$, the category of right G-graded B-modules.

- Let N be a right G-graded B-module. For every x in $G, N(x)$ is the graded B-module obtained from N by a shift of the gradation by x. As vector spaces, N and $N(x)$ coincide, and the actions of B on N and $N(x)$ are the same, but the gradations are related by $N(x)_{y}=N_{x y}$ for all $y \in G$.
- An object of $\mathcal{M}_{g r-B}$ is projective (resp. flat) in $\mathcal{M}_{g r-B}$ if and only if it is projective (resp. flat) in \mathcal{M}_{B}, the category of right B-modules.
- An object of $\mathcal{M}_{g r-B}$ is free in $\mathcal{M}_{g r-B}$ if it has a B-basis consisting of homogeneous elements or equivalently, if it is isomorphic to some $\oplus_{i \in I} N\left(x_{i}\right)$, where $\left(x_{i}, i \in I\right)$ is a family of elements of G.
- Any object of $\mathcal{M}_{g r-B}$ is a quotient of a free object in $\mathcal{M}_{g r-B}$, and any projective object in $\mathcal{M}_{g r-B}$ is isomorphic to a direct summand of a free object.
- An object of $\mathcal{M}_{g r-B}$ is flat in $\mathcal{M}_{g r-B}$ if and only if it is the inductive limit of finitely generated free objects in $\mathcal{M}_{g r-B}$.

We will recall some preliminaries on corings and comodules over corings. Let A be a k-algebra. An A-coring \mathcal{C} is an (A, A)-bimodule together with two (A, A)-bimodule maps $\Delta_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C} \otimes_{A} \mathcal{C}$ and $\epsilon_{\mathcal{C}}: \mathcal{C} \rightarrow A$ such that the usual coassociativity and counit properties hold. Let \mathcal{C} be an A-coring. A right \mathcal{C}-comodule is a right A-module M together with a right A-linear $\operatorname{map} \rho_{M, \mathcal{C}}: M \rightarrow M \otimes_{A} \mathcal{C}$ such that
$\left(i d_{M} \otimes_{A} \epsilon_{\mathcal{C}}\right) \circ \rho_{M, \mathcal{C}}=i d_{M}, \quad$ and $\left(i d_{M} \otimes_{A} \Delta_{\mathcal{C}}\right) \circ \rho_{M, \mathcal{C}}=\left(\rho_{M, \mathcal{C}} \otimes_{A} i d_{\mathcal{C}}\right) \circ \rho_{M, \mathcal{C}}$.

We will use Sweedler-Heyneman notation but we will omit the symbol \sum :

$$
\left.\Delta_{\mathcal{C}}(c)=c_{1} \otimes_{A} c_{2} \quad \rho_{(M, \mathcal{C}}\right)(m)=m_{0} \otimes_{A} m_{1}
$$

The algebra A is an A-coring called the trivial A coring. Any k-coalgebra is a k-coring. A morphism of right \mathcal{C}-comodules $f: M \rightarrow N$ is a right A-linear map such that $\rho_{N, \mathcal{C}} \circ f=\left(f \otimes_{A} i d_{M}\right) \circ \rho_{M, \mathcal{C}}$; or equivalently, a right A-linear map such that $f(m)_{0} \otimes_{A} f(m)_{1}=f\left(m_{0}\right) \otimes_{A} m_{1}$. We denote the set of comodule morphisms between M and N by $\operatorname{Hom}^{\mathcal{C}}(M, N)$, by $\mathcal{M}^{\mathcal{C}}$ the category formed by right \mathcal{C}-comodules and morphisms of right \mathcal{C}-comodules. By [2], the category $\mathcal{M}^{\mathcal{C}}$ has direct sum.

We write ${ }^{*} \mathcal{C}={ }_{A} \operatorname{Hom}\left({ }_{A} \mathcal{C},{ }_{A} A\right)$, the left dual ring of \mathcal{C}. Then ${ }^{*} \mathcal{C}$ is an associative ring with unit $\epsilon_{\mathcal{C}}$ (see $\left.[2,17.8]\right)$: its multiplication is defined by

$$
f \# g=f \circ\left(i d_{\mathcal{C}} \otimes_{A} g\right) \circ \Delta_{\mathcal{C}}, \quad \text { or equivalently } \quad f \# g(c)=f\left(c_{1} g\left(c_{2}\right)\right)
$$

for all left A-linear maps $f, g: \mathcal{C} \rightarrow A$ and $c \in \mathcal{C}$. We will denote by ${ }^{*} \mathcal{C} \mathcal{M}$ the category of left ${ }^{*} \mathcal{C}$-modules. Any right \mathcal{C}-comodule M is a left ${ }^{*} \mathcal{C}$-module: the action is defined by $f . m=m_{0} f\left(m_{1}\right)$ (see $[2,19.1]$).

A grouplike element of \mathcal{C} is an element $X \in \mathcal{C}$ such that $\Delta_{\mathcal{C}}(X)=$ $X \otimes_{A} X$ and $\epsilon_{\mathcal{C}}(X)=1_{A}$. We know from [1] that if \mathcal{C} contains a grouplike element X, then A becomes a right \mathcal{C}-comodule: the coaction is defined by $\rho_{A, X}(a)=X a$. So we have $a_{0} \otimes_{A} a_{1}=a_{0} a_{1}=X a$. The algebra A equipped with this structure of a right \mathcal{C}-module will be denoted A^{X}.

Lemma 1.1. Assume that \mathcal{C} contains a grouplike element X. Then A^{X} is a cyclic left ${ }^{*} \mathcal{C}$-module under the action defined by $f . a=f(X a)$ for all $f \in{ }^{*} \mathcal{C}$ and $a \in A$.

Proof. We already noticed that A^{X} is a left ${ }^{*} \mathcal{C}$-module with the given ${ }^{*} \mathcal{C}$-action. By [2], there is a ring anti-morphism $i: A \rightarrow{ }^{*} \mathcal{C}$ defined by $i(a)(c)=a \epsilon_{\mathcal{C}}(c) ; a \in A, c \in \mathcal{C}$. Now for every $a \in A^{X}$, we have $i(a) \cdot 1_{A}=i(a)(X)=a \epsilon_{\mathcal{C}}(X)=a$.

Let M be a right \mathcal{C}-comodule. We define $M_{X}=\left\{m \in M \mid \rho_{M, \mathcal{C}}(m)=\right.$ $\left.m \otimes_{A} X\right\}$. We have $A_{X}=\left\{a \in A \mid \rho_{A, \mathcal{C}}(a)=a \otimes_{A} X=a X\right\}$. An element $m \in M_{X}$ is called a X-coinvariant element in ([2], section 28.4) and will be called a conormal element in this paper.

Lemma 1.2. For every right \mathcal{C}-comodule $M, M_{X}=\operatorname{Hom}^{\mathcal{C}}\left(A^{X}, M\right)$.
Proof. (See [2], section 28.4).

Assume that \mathcal{C} is projective as a left A-module. By $[2,18.14], \mathcal{M}^{\mathcal{C}}$ is a Grothendieck category and by [2, 19.3], it is a full subcategory of $*_{\mathcal{C}} \mathcal{M}$; i.e.,

$$
\operatorname{Hom}^{\mathcal{C}}(M, N)=*_{\mathcal{C}} \operatorname{Hom}(M, N) \quad \text { for any } \quad M, N \in \mathcal{M}^{\mathcal{C}}
$$

As a consequence, an object of $\mathcal{M}^{\mathcal{C}}$ that is projective in ${ }^{*} \mathcal{C} \mathcal{M}$ is projective in $\mathcal{M}^{\mathcal{C}}$. From now on all comodules are right comodules.

Let C be a bialgebra with comultiplication Δ_{C} and counit ϵ_{C}. We will write $\Delta_{C}(c)=c_{1} \otimes c_{2} \quad$ for all $\quad c \in C$. If M is a C-comodule, we write $\rho_{M, C}(m)=m_{(0)} \otimes m_{(1)}$ for every $m \in M$. Let A be an algebra. We say that A is a right C-comodule algebra if A is a C-comodule and the unit and the multiplication are right C-colinear; i.e.,
$\rho_{A, C}\left(a a^{\prime}\right)=\left(a a^{\prime}\right)_{(0)} \otimes\left(a a^{\prime}\right)_{(1)}=a_{(0)} a_{(0)}^{\prime} \otimes a_{(1)} a_{(1)}^{\prime}$ and $\rho_{A, C}\left(1_{A}\right)=1_{A} \otimes 1_{C}$.
By [2] or [3], $\mathcal{C}=A \otimes C$ is an A-coring with A-multiplications

$$
a^{\prime}(a \otimes c) a^{\prime \prime}=a^{\prime} a a_{(0)}^{\prime \prime} \otimes c a_{(1)}^{\prime \prime}
$$

and comultiplication $i d_{A} \otimes \Delta_{C}$. The category $\mathcal{M}^{\mathcal{C}}$ is isomorphic to the category \mathcal{M}_{A}^{C} of relative right-right (A, C) Hopf modules, that is the category of right A-modules M which are also C-comodules such that $\rho_{M, C}(m a)=m_{(0)} a_{(0)} \otimes m_{(1)} a_{(1)}$.

Note that for $M \in \mathcal{M}^{\mathcal{C}}$ we have $m_{0} \otimes_{A} m_{1}=m_{(0)} \otimes_{A}\left(1_{A} \otimes m_{(1)}\right)$. The morphisms of $\mathcal{M}^{\mathcal{C}}$ are just the A-linear maps which are also C colinear maps. We will use the notation $\mathcal{M}^{\mathcal{C}}$ instead of \mathcal{M}_{A}^{C}. The left dual ${ }^{*} \mathcal{C}$ of \mathcal{C} is anti-isomorphic to the Koppinen smash product $\#(C, A)$; i.e., the vector space $\operatorname{Hom}(C, A)$ endowed with the product $f \# g(c)=$ $f\left(c_{2}\right)_{(0)} g\left(c_{1} f\left(c_{2}\right)_{(1)}\right)$ and unit $\iota \circ \epsilon_{C}$, where ι is the unit of A. Every grouplike element x of C induces a grouplike element $1_{A} \otimes x$ of \mathcal{C}. So the coring \mathcal{C} contains $1_{A} \otimes 1_{C}$ as a grouplike element, therefore A is an object of $\mathcal{M}^{\mathcal{C}}$.

2. Main results

We keep the notations and conventions of the preceding paragraph, A is an algebra, C is a bialgebra, $\mathcal{C}=A \otimes C$ and $\mathcal{M}^{\mathcal{C}}$ is the category of \mathcal{C}-comodules.

Let us denote by G any subgroup of the monoid of grouplike elements of C and by $k G$ the group algebra of G. Let $x \in G$, and let M be a right \mathcal{C}-comodule. Set $M_{1 \otimes x}=M_{x}$. So

$$
M_{x}=\left\{m \in M \quad \mid \rho_{M, \mathcal{C}}(m)=m_{0} \otimes_{A}\left(1_{A} \otimes x\right)=m \otimes x=\rho_{M, C}(m)\right\} .
$$

When $x=1_{C}, M_{1_{C}}=M^{c o C}$ is the subspace of C-coinvariants of M and $A_{1_{C}}=A^{c o C}$ is the subring of C-coinvariants of A. An element $m \in M_{x}$ will be called a semi-coinvariant element. We set $\mathcal{S}(M)=\oplus_{x \in G} M_{x}$, so $\mathcal{S}(A)=\oplus_{x \in G} A_{x}$. It is easy to see that $\mathcal{S}(A)$ is a G-graded algebra called the subalgebra of semi-coinvariants of A and $\mathcal{S}(M)$ is a right G graded $\mathcal{S}(A)$-module called the submodule of semi-coinvariants of M. When C is a Hopf algebra and $G=G(C)$, the algebra $\mathcal{S}(A)$ is called the semi-invariant subalgebra of A in [13]. We will denote by $\mathcal{M}_{g r-\mathcal{S}(A)}$, the category of right G-graded $\mathcal{S}(A)$-modules. The morphisms of this category are the graded morphisms of degree 1_{C}. Recall that $\mathcal{M}_{g r-\mathcal{S}(A)}=$ $\mathcal{M}_{\mathcal{S}(A)}^{k G}$, the category of relative $(\mathcal{S}(A), k G)$-Hopf modules. For any object $N \in \mathcal{M}_{g r-\mathcal{S}(A)}, N \otimes_{\mathcal{S}(A)} A$ is an object of $\mathcal{M}^{\mathcal{C}}:$ the A-module structure is the obvious one, while the C-coaction comes from both N and A; i.e., $\rho_{N, C}\left(n \otimes_{\mathcal{S}(A)} a\right)=n_{x} \otimes_{\mathcal{S}(A)} a_{(0)} \otimes x a_{(1)}$ for every $n \in N_{x}, x \in G$, $a \in A$, where $\rho_{N, k G}(n)=n_{x} \otimes x$. To each $x \in G$, we associate the functor $(-)_{x}: \mathcal{M}^{\mathcal{C}} \rightarrow \mathcal{M} ; \quad M \mapsto M_{x}$. We also have the semi-coinvariant functor

$$
\mathcal{S}(-): \mathcal{M}^{\mathcal{C}} \rightarrow \mathcal{M}_{g r-\mathcal{S}(A)}, \quad M \mapsto \mathcal{S}(M)=\oplus_{x} M_{x}
$$

and an induction functor

$$
F(-)=-\otimes_{\mathcal{S}(A)} A: \mathcal{M}_{g r-\mathcal{S}(A)} \rightarrow \mathcal{M}^{\mathcal{C}} ; \quad N \mapsto F(N)=N \otimes_{\mathcal{S}(A)} A
$$

It is easy to show that $(F(-), \mathcal{S}(-))$ is an adjoint pair of functors; in other words: for any $M \in \mathcal{M}^{\mathcal{C}}$ and $N \in \mathcal{M}_{g r-\mathcal{S}(A)}, \operatorname{Hom}^{\mathcal{C}}\left(N \otimes_{\mathcal{S}(A)} A, M\right) \cong$ $\operatorname{Hom}_{g r-\mathcal{S}(A)}(N, \mathcal{S}(M))$. The unit and counit of the pair $(F(-), \mathcal{S}(-))$ are the following: for $N \in \mathcal{M}_{g r-\mathcal{S}(A)}$ and $M \in \mathcal{M}^{\mathcal{C}}$:

$$
\begin{gathered}
u_{N}: N \rightarrow \mathcal{S}\left(N \otimes_{\mathcal{S}(A)} A\right), \quad u_{N}(n)=n \otimes_{\mathcal{S}(A)} 1 \\
c_{M}: \mathcal{S}(M) \otimes_{\mathcal{S}(A)} A \rightarrow M, \quad c_{M}\left(m \otimes_{\mathcal{S}(A)} a\right)=m a
\end{gathered}
$$

The adjointness property means that we have

$$
\mathcal{S}\left(c_{M}\right) \circ u_{\mathcal{S}(M)}=i d_{\mathcal{S}(M)}, \quad c_{F(N)} \circ F\left(u_{N}\right)=i d_{F(N)}
$$

Let $x \in G$, and let M be a \mathcal{C}-comodule. We can define (see [13, page 346], where C is a Hopf algebra and $G=G(C))$ a new \mathcal{C}-comodule M^{x}, the underlying A-module of which is the same as that of M, while the C-coaction is new and is given by

$$
\rho_{M, x}(m)=m_{(0)} \otimes x m_{(1)}=m_{(0)} \otimes_{A}\left(1_{A} \otimes x m_{(1)}\right)=m_{(0)} \otimes_{A}\left(1_{A} \otimes x\right)\left(1_{A} \otimes m_{(1)}\right) .
$$

We call M^{x} the twisted \mathcal{C}-comodule obtained from M and x. Note that $M^{1 C}$ is exactly M with its original \mathcal{C}-comodule structure. Note also that
A^{x} is A with the \mathcal{C}-coaction defined by the grouplike element $1 \otimes x$ of \mathcal{C}, that is, $A^{x}=A^{1_{A} \otimes x}$. So $A^{1_{C}}$ is exactly the \mathcal{C}-comodule A.

By Lemma 1.1, A^{x} is a cyclic left ${ }^{*} \mathcal{C}$-module, so [6] or [9] gives necessary and sufficient conditions for the projectivity and flatness over the endomorphism ring $\operatorname{Hom}^{\mathcal{C}}\left(A^{x}, A^{x}\right)={ }_{*} \mathcal{C} \operatorname{Hom}\left(A^{x}, A^{x}\right)$.

We have $\left(M^{x}\right)^{y}=M^{x y},\left(M^{x}\right)_{y}=M_{x^{-1} y}$ and $A^{x} \otimes M=M^{x}$, for all $x, y \in G$. To each element $x \in G$, we associate an equivalent functor

$$
(-)^{x}: \mathcal{M}^{\mathcal{C}} \rightarrow \mathcal{M}^{\mathcal{C}} ; \quad M \mapsto M^{x}
$$

which has inverse $(-)^{x^{-1}}$. Lemma 1.2 implies that the functor $(-)_{x}$ is isomorphic to $\operatorname{Hom}^{\mathcal{C}}\left(A^{x},-\right)$.

Let us recall that over any ring A, a left module Λ is called finitely presented if there is an exact sequence $A^{m} \rightarrow A^{n} \rightarrow \Lambda \rightarrow 0$ for some natural integers m and n. If A is left noetherian, every finitely generated left A-module is finitely presented.

Lemma 2.1. The functor $\mathcal{S}(-)$ commutes with direct sums; it commutes with direct limits if ${ }^{*} \mathcal{C}$ is left noetherian.

Proof. Let $\left\{M_{i}\right\}_{i \in I}$ be a family of objects in $\mathcal{M}^{\mathcal{C}}$. By Lemma 1.1, every A^{x} is a cyclic ${ }^{*} \mathcal{C}$-module. So the functor $\operatorname{Hom}^{\mathcal{C}}\left(A^{x},-\right)={ }_{*} \mathcal{C} \operatorname{Hom}\left(A^{x},-\right)$ commutes with direct sums in $\mathcal{M}^{\mathcal{C}}$. We have

$$
\begin{aligned}
\mathcal{S}\left(\oplus_{i} M_{i}\right) & =\oplus_{x} \operatorname{Hom}^{\mathcal{C}}\left(A^{x}, \oplus_{i} M_{i}\right) \\
& =\oplus_{x} \oplus_{i} \operatorname{Hom}^{\mathcal{C}}\left(A^{x}, M_{i}\right) \\
& =\oplus_{i} \oplus_{x} \operatorname{Hom}^{\mathcal{C}}\left(A^{x}, M_{i}\right) \\
& =\oplus_{i} \mathcal{S}\left(M_{i}\right)
\end{aligned}
$$

and we get the first assertion. Assume that ${ }^{*} \mathcal{C}$ is left noetherian, and let $\left\{M_{i}\right\}_{i \in I}$ be a directed family of objects in $\mathcal{M}^{\mathcal{C}}$. Then every A^{x} is a finitely presented left ${ }^{*} \mathcal{C}$-module since A^{x} is a finitely generated left ${ }^{*} \mathcal{C}$-module and ${ }^{*} \mathcal{C}$ is left noetherian. So the functor $\operatorname{Hom}^{\mathcal{C}}\left(A^{x},-\right)={ }^{*} \mathcal{C} \operatorname{Hom}\left(A^{x},-\right)$ commutes with direct limits in $\mathcal{M}^{\mathcal{C}}$, and

$$
\begin{aligned}
\mathcal{S}\left(\underset{\longrightarrow}{\left.\lim M_{i}\right)}\right. & =\oplus_{x} \operatorname{Hom}^{\mathcal{C}}\left(A^{x}, \underline{\lim } M_{i}\right) \\
& =\oplus_{x} \xrightarrow[\longrightarrow]{\lim \operatorname{Hom}^{\mathcal{C}}}\left(\overrightarrow{A^{x}}, M_{i}\right) \\
& =\underset{\longrightarrow}{\lim } \oplus_{x} \operatorname{Hom}^{\mathcal{C}}\left(A^{x}, M_{i}\right) \\
& =\underset{\longrightarrow}{\lim }\left(M_{i}\right)
\end{aligned}
$$

Lemma 2.2. Let M be a \mathcal{C}-comodule. Then
(1) $\mathcal{S}(M)(x)=\mathcal{S}\left(M^{x^{-1}}\right)$ for every $x \in G$
(2) The k-linear map $f: \mathcal{S}\left(A^{x}\right) \otimes_{\mathcal{S}(A)} A \rightarrow A^{x} ; u \otimes_{\mathcal{S}(A)} a \mapsto u a$ is an isomorphism in $\mathcal{M}^{\mathcal{C}}$ for all $u \in \mathcal{S}\left(A^{x}\right)$ and $a \in A$.

Proof. (1) We have $\mathcal{S}(M)(x)=\oplus_{y \in G} M_{x y}$ and $\mathcal{S}\left(M^{x^{-1}}\right)=\oplus_{y \in G}\left(M^{x^{-1}}\right)_{y}$. On the other hand, $m \in M_{x y}$ if and only if $\rho_{M, C}(m)=m \otimes x y$ if and only if $m_{(0)} \otimes m_{(1)}=m \otimes x y$ if and only if $m_{(0)} \otimes x^{-1} m_{(1)}=m \otimes y$ if and only if $\rho_{M^{x-1}, C}(m)=m \otimes y$ if and only if $m \in\left(M^{x^{-1}}\right)_{y}$.
(2) Assume that u is homogeneous of degree y. Note that $u \otimes_{\mathcal{S}(A)} a=$ $1 \otimes_{\mathcal{S}(A)} u a$ for every $a \in A$. Then f is an A-linear isomorphism: its inverse is defined by $a \mapsto 1 \otimes_{\mathcal{S}(A)} a$. Now we have $\rho_{A^{x}, C}(u)=u \otimes y$; i.e., $u_{(0)} \otimes x u_{(1)}=u \otimes y$; i.e., $u_{(0)} \otimes u_{(1)}=u \otimes x^{-1} y$. It follows that

$$
\begin{aligned}
(u a)_{(0)} \otimes x(u a)_{(1)} & =u a_{(0)} \otimes x x^{-1} y a_{(1)} \\
& =u a_{(0)} \otimes y a_{(1)} \\
& =f\left(\left(u \otimes_{\mathcal{S}(A)} a\right)_{(0)}\right) \otimes\left(\left(u \otimes_{\mathcal{S}(A)} a\right)_{(1)}\right.
\end{aligned}
$$

So f is C-colinear.
Let A be projective in $\mathcal{M}^{\mathcal{C}}$. Then each A^{x} is also projective in $\mathcal{M}^{\mathcal{C}}$. Therefore Lemma 1.2 implies that the functor $(-)_{x}$ is exact for every $x \in G$. It follows that the functor $\mathcal{S}(-)$ is exact. We refer the reader to [13, Proposition 1.3] for necessary and sufficient conditions for A to be projective in $\mathcal{M}^{\mathcal{C}}$ if C is a Hopf algebra.

In the remainder of this section, $\left(x_{i}, i \in I\right)$ is a family of elements of G.

Lemma 2.3. For every index set I,
(1) $c_{\oplus_{i \in I} A^{x_{i}^{-1}}}$ is an isomorphism;
(2) $u_{\oplus_{i \in I} \mathcal{S}(A)\left(x_{i}\right)}$ is an isomorphism;
(3) if A is projective in $\mathcal{M}^{\mathcal{C}}$, then u is a natural isomorphism; in other words, the induction functor $F=(-) \otimes_{\mathcal{S}(A)} A$ is fully faithful.

Proof. (1) It is straightforward to check that the canonical isomorphism

$$
\oplus_{i \in I} \mathcal{S}(A)\left(x_{i}\right) \otimes_{\mathcal{S}(A)} A \simeq \oplus_{i \in I} A^{x_{i}^{-1}} \text { is just } c_{\oplus_{i \in I} A^{x_{i}^{-1}}} \circ\left(\kappa \otimes i d_{A}\right)
$$

where κ is the isomorphism $\oplus_{i \in I} \mathcal{S}(A)\left(x_{i}\right) \cong \mathcal{S}\left(\oplus_{i \in I} A^{x_{i}^{-1}}\right.$), (see Lemmas 2.1 and 2.2). So $c_{\oplus_{i \in I} A^{x_{i}^{-1}}}$ is an isomorphism.
(2) Putting $M=\oplus_{i \in I} A^{x_{i}^{-1}}$ in (\star), we find

$$
\mathcal{S}\left(c_{\oplus_{i \in I} A^{x_{i}^{-1}}}\right) \circ u_{\mathcal{S}\left(\oplus_{i \in I} A^{x_{i}^{-1}}\right)}=i d_{\mathcal{S}\left(\oplus_{i \in I} A^{x_{i}^{-1}}\right)}
$$

From Lemmas 2.1 and 2.2, we get

$$
\mathcal{S}\left(c_{\oplus_{i \in I} A^{x_{i}^{-1}}}\right) \circ u_{\oplus_{i \in I} \mathcal{S}(A)\left(x_{i}\right)}=i d_{\oplus_{i \in I} \mathcal{S}(A)\left(x_{i}\right)} .
$$

From (1), $\mathcal{S}\left(c_{\oplus_{i \in I} A^{x_{i}^{-1}}}\right)$ is an isomorphism, hence $u_{\oplus_{i \in I} \mathcal{S}(A)\left(x_{i}\right)}$ is an isomorphism.
(3) Take a free resolution $\oplus_{j \in J} \mathcal{S}(A)\left(x_{j}\right) \rightarrow \oplus_{i \in I} \mathcal{S}(A)\left(x_{i}\right) \rightarrow N \rightarrow 0$ of a right graded $\mathcal{S}(A)$-module N. Since u is natural, we have a commutative diagram

The top row is exact. The bottom row is exact, since the sequence $\oplus_{j \in J} A^{x_{j}^{-1}} \rightarrow \oplus_{i \in I} A^{x_{i}^{-1}} \rightarrow N \otimes_{\mathcal{S}(A)} A \rightarrow 0$ is exact in $\mathcal{M}^{\mathcal{C}}$ (because $-\otimes_{\mathcal{S}(A)} A$ is right exact) and $\mathcal{S}(-)$ is an exact functor. By $(2), u_{\oplus_{i \in I}} \mathcal{S}(A)\left(x_{i}\right)$ and $u_{\oplus_{j \in J} \mathcal{S}(A)\left(x_{j}\right)}$ are isomorphisms. It follows from the five lemma that u_{N} is an isomorphism.

We can now give equivalent conditions for projectivity and flatness of $P \in \mathcal{M}_{g r-\mathcal{S}(A)}$.

Theorem 2.4. For $P \in \mathcal{M}_{g r-\mathcal{S}(A)}$, we consider the following statements.
(1) $P \otimes_{\mathcal{S}(A)} A$ is projective in $\mathcal{M}^{\mathcal{C}}$ and u_{P} is injective;
(2) P is projective as a right graded $\mathcal{S}(A)$-module;
(3) $P \otimes_{\mathcal{S}(A)} A$ is a direct summand in $\mathcal{M}^{\mathcal{C}}$ of some $\oplus_{i \in I} A^{x_{i}^{-1}}$, and u_{P} is bijective;
(4) there exists $Q \in \mathcal{M}^{\mathcal{C}}$ such that Q is a direct summand of some $\oplus_{i \in I} A^{x_{i}^{-1}}$, and $P \cong \mathcal{S}(Q)$ in $\mathcal{M}_{g r-\mathcal{S}(A)}$;
(5) $P \otimes_{\mathcal{S}(A)} A$ is a direct summand in $\mathcal{M}^{\mathcal{C}}$ of some $\oplus_{i \in I} A^{x_{i}^{-1}}$.

Then $(1) \Rightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4) \Rightarrow$ (5).
If A is projective in $\mathcal{M}^{\mathcal{C}}$, then (5) $\Rightarrow(3) \Rightarrow(1)$.
Proof. (2) $\Rightarrow(3)$. If P is projective as a right graded $\mathcal{S}(A)$-module, then we can find an index set I and $P^{\prime} \in \mathcal{M}_{g r-\mathcal{S}(A)}$ such that $\oplus_{i \in I} \mathcal{S}(A)\left(x_{i}\right) \cong$ $P \oplus P^{\prime}$. Then obviously $\oplus_{i \in I} A^{x_{i}^{-1}} \cong \oplus_{i \in I} \mathcal{S}(A)\left(x_{i}\right) \otimes_{\mathcal{S}(A)} A \cong\left(P \otimes_{\mathcal{S}(A)} A\right) \oplus$ $\left(P^{\prime} \otimes_{\mathcal{S}(A)} A\right)$. Since u is a natural transformation, we have a commutative diagram:

From the fact that $u_{\oplus i \in I} \mathcal{S}(A)\left(x_{i}\right)$ is an isomorphism, it follows that u_{P} (and $u_{P^{\prime}}$) are isomorphisms.
(3) \Rightarrow (4). Take $Q=P \otimes_{\mathcal{S}_{(A)}} A$.
(4) \Rightarrow (2). Let $f: \oplus_{i \in I} A^{x_{i}^{-1}} \rightarrow Q$ be a split epimorphism in $\mathcal{M}^{\mathcal{C}}$. Then the map $\mathcal{S}(f): S\left(\oplus_{i \in I} A^{x_{i}^{-1}}\right) \cong \oplus_{i \in I} \mathcal{S}(A)\left(x_{i}\right) \rightarrow \mathcal{S}(Q) \cong P$ is split surjective in $\mathcal{M}_{g r-\mathcal{S}(A)}$, hence P is projective as a right graded $\mathcal{S}(A)$-module.
(4) \Rightarrow (5). We already proved that $(2) \Leftrightarrow(3) \Leftrightarrow(4)$. Since (5) is contained in (3), we get $(4) \Rightarrow(5)$.
$(1) \Rightarrow(2)$. Take an epimorphism $f: \oplus_{i \in I} \mathcal{S}(A)\left(x_{i}\right) \rightarrow P$ in $\mathcal{M}_{g r-\mathcal{S}(A)}$. Then

$$
F(f)=: \oplus_{i \in I} \mathcal{S}(A)\left(x_{i}\right) \otimes_{\mathcal{S}(A)} A \cong \oplus_{i \in I} A^{x_{i}^{-1}} \rightarrow P \otimes_{\mathcal{S}(A)} A
$$

is surjective, and splits in $\mathcal{M}^{\mathcal{C}}$ since $P \otimes_{\mathcal{S}(A)} A$ is projective in $\mathcal{M}^{\mathcal{C}}$. Consider the commutative diagram

The bottom row is split exact, since any functor, in particular $\mathcal{S}(-)$ preserves split exact sequences. By Lemma 2.3(2), $u_{\oplus_{i \in I} \mathcal{S}(A)\left(x_{i}\right)}$ is an isomorphism. A diagram chasing argument tells us that u_{P} is surjective. By assumption, u_{P} is injective, so u_{P} is bijective. We deduce that the top row is isomorphic to the bottom row, and therefore splits. Thus $P \in \mathcal{M}_{g r-\mathcal{S}(A)}$ is projective.
$(5) \Rightarrow(3)$. Under the assumption that A is projective in $\mathcal{M}^{\mathcal{C}},(5) \Rightarrow$ (3) follows from Lemma 2.3(3).
$(3) \Rightarrow(1)$. $\mathrm{By}(3), P \otimes_{\mathcal{S}(A)} A$ is a direct summand of some $\oplus_{i \in I} A^{x_{i}^{-1}}$. If A is projective in $\mathcal{M}^{\mathcal{C}}$, then $\oplus_{i \in I} A^{x_{i}^{-1}}$ is projective in $\mathcal{M}^{\mathcal{C}}$. So $P \otimes_{\mathcal{S}(A)} A$ being a direct summand of a projective object of $\mathcal{M}^{\mathcal{C}}$ is projective in $\mathcal{M}^{\mathcal{C}}$.

Theorem 2.5. Assume that ${ }^{*} \mathcal{C}$ is left noetherian. For $P \in \mathcal{M}_{g r-\mathcal{S}(A)}$, the following assertions are equivalent.
(1) P is flat as a right graded $\mathcal{S}(A)$-module;
(2) $P \otimes_{\mathcal{S}(A)} A=\underset{\longrightarrow}{\lim } Q_{i}$, where $Q_{i} \cong \oplus_{j \leq n_{i}} A^{x_{i j}^{-1}}$ in $\mathcal{M}^{\mathcal{C}}$ for some positive integer n_{i}, and \vec{u}_{P} is bijective;
(3) $P \otimes_{\mathcal{S}(A)} A=\underset{\longrightarrow}{\lim } Q_{i}$, where $Q_{i} \in \mathcal{M}^{\mathcal{C}}$ is a direct summand of some $\oplus_{j \in I_{i}} A^{x_{i j}^{-1}}$ in $\mathcal{M}^{\mathcal{C}}$, and u_{P} is bijective;
(4) there exists $Q=\underset{\longrightarrow}{\lim } Q_{i} \in \mathcal{M}^{\mathcal{C}}$, such that $Q_{i} \cong \oplus_{j \leq n_{i}} A^{x_{i j}^{-1}}$ for some positive integer n_{i} and $\mathcal{S}(Q) \cong P$ in $\mathcal{M}_{g r-\mathcal{S}(A)}$;
(5) there exists $Q=\underset{\longrightarrow}{\lim } Q_{i} \in \mathcal{M}^{\mathcal{C}}$, such that Q_{i} is a direct summand of some $\oplus_{j \in I_{i}} A^{x_{i j}^{-1}}$ in $\mathcal{M}^{\mathcal{C}}$, and $\mathcal{S}(Q) \cong P$ in $\mathcal{M}_{g r-\mathcal{S}(A)}$.

If A is projective in $\mathcal{M}^{\mathcal{C}}$, these conditions are also equivalent to conditions (2) and (3) without the assumption that u_{P} is bijective.
Proof. (1) $\Rightarrow(2) . P=\underset{\longrightarrow}{\lim } N_{i}$, with $N_{i}=\oplus_{j \leq n_{i}} \mathcal{S}(A)\left(x_{i j}\right)$. Take $Q_{i}=$ $\oplus_{j \leq n_{i}} A^{x_{i j}^{-1}}$, then

$$
\underset{\longrightarrow}{\lim } Q_{i} \cong \lim _{\longrightarrow}\left(N_{i} \otimes_{\mathcal{S}(A)} A\right) \cong\left(\lim _{\longrightarrow} N_{i}\right) \otimes_{\mathcal{S}(A)} A \cong P \otimes_{\mathcal{S}(A)} A .
$$

Consider the following commutative diagram:

By Lemma 2.3(2), the $u_{N_{i}}$ are isomorphisms. By Lemma 2.1, the natural homomorphism f is an isomorphism. Hence u_{P} is an isomorphism.
$(2) \Rightarrow(3)$ and $(4) \Rightarrow(5)$ are obvious.
$(2) \Rightarrow(4)$ and $(3) \Rightarrow(5)$. Put $Q=P \otimes_{\mathcal{S}(A)} A$. Then $u_{P}: P \rightarrow$ $\mathcal{S}\left(P \otimes_{\mathcal{S}(A)} A\right)$ is the required isomorphism.
$(5) \Rightarrow(1)$. We have a split exact sequence $0 \rightarrow N_{i} \rightarrow P_{i}=\oplus_{j \in I_{i}} A^{x_{i j}^{-1}} \rightarrow$ $Q_{i} \rightarrow 0$ in $\mathcal{M}^{\mathcal{C}}$. Consider the following commutative diagram:

We know from Lemma 2.3(1) that $c_{P_{i}}$ is an isomorphism. Both rows in the diagram are split exact, so it follows that $c_{N_{i}}$ and $c_{Q_{i}}$ are also isomorphisms. Next consider the commutative diagram:
where h is the natural homomorphism and f is the isomorphism $\underset{\longrightarrow}{\lim } \mathcal{S}\left(Q_{i}\right) \cong$ $\mathcal{S}\left(\underset{\longrightarrow}{\lim }\left(Q_{i}\right)\right)$ (see Lemma 2.1). h is an isomorphism, because the functor $(-) \vec{\otimes}_{\mathcal{S}(A)} A$ preserves inductive limits. $\operatorname{limc}_{Q_{i}}$ is an isomorphism, because every $c_{Q_{i}}$ is an isomorphism. It follows that c_{Q} is an isomorphism, hence $\mathcal{S}\left(c_{Q}\right)$ is an isomorphism. From (\star), we get $\mathcal{S}\left(c_{Q}\right) \circ u_{\mathcal{S}(Q)}=i d_{\mathcal{S}(Q)}$. It follows that $u_{\mathcal{S}(Q)}$ is also an isomorphism. Since $\mathcal{S}(Q) \cong P, u_{P}$ is an isomorphism. Consider the isomorphisms

$$
P \cong \mathcal{S}\left(P \otimes_{\mathcal{S}(A)} A\right) \cong \mathcal{S}\left(\mathcal{S}(Q) \otimes_{\mathcal{S}(A)} A\right) \cong \mathcal{S}(Q) \cong \lim _{\longrightarrow} \mathcal{S}\left(Q_{i}\right)
$$

where the first isomorphism is u_{P}, the third is $\mathcal{S}\left(c_{Q}\right)$ and the last one is f. By Lemmas 2.1 and 2.2, each $\mathcal{S}\left(P_{i}\right) \cong \oplus_{j \in I} \mathcal{S}(A)\left(x_{i j}\right)$ is projective as a right graded $\mathcal{S}(A)$-module, hence each $\mathcal{S}\left(Q_{i}\right)$ is also projective as a right graded $\mathcal{S}(A)$-module, and we conclude that $P \in \mathcal{M}_{g r-\mathcal{S}(A)}$ is flat. The final statement is an immediate consequence of Lemma 2.3(3).

3. Appendix

The notations introduced in the preceding sections will be retained throughout. We want to extend the results of section 2 to the more general type of grouplike elements of $\mathcal{C}=A \otimes C$. Assume that A and C are commutative. Then the coring $\mathcal{C}=A \otimes C$ becomes a commutative associative algebra with identity element $1_{A} \otimes 1_{C}$: the multiplication in \mathcal{C} is given by $(a \otimes c)\left(a^{\prime} \otimes c^{\prime}\right)=a a^{\prime} \otimes c c^{\prime}$. Denote by $G(\mathcal{C})$ the set of grouplike elements of \mathcal{C}. Let $a_{i} \in A$ and $c_{i} \in C$. Then $\sum\left(a_{i} \otimes c_{i}\right)$ is an element of $G(\mathcal{C})$ if and only if
$\sum\left(a_{i} \otimes c_{i 1} \otimes c_{i 2}\right)=\sum\left(a_{i} a_{j(0)} \otimes c_{i} a_{j(1)} \otimes c_{j}\right) \quad$ and $\quad \sum a_{i} \epsilon_{C}\left(c_{i}\right)=1_{A}$.
The product of two grouplike elements of \mathcal{C} is a grouplike element.
Let $X=\sum\left(a_{i} \otimes c_{i}\right)$ be an element of $G(\mathcal{C})$, and let M be a \mathcal{C}-comodule. We have $\rho_{M, \mathcal{C}}(m)=m_{0} \otimes_{A} m_{1}=m_{(0)} \otimes_{A}\left(1_{A} \otimes m_{(1)}\right)$. For every $X \in G(\mathcal{C})$, we can define a new \mathcal{C}-comodule M^{X}, the underlying A-module of which is the same as that of M, while the C-coaction is new and is given by $\rho_{M, X}(m)=m_{0} \otimes_{A} m_{1}=m_{(0)} \otimes_{A} X\left(1_{A} \otimes m_{(1)}\right)$; i.e.; $\rho_{M, X}(m)=$ $\sum m_{(0)} a_{i} \otimes c_{i} m_{(1)}$, where $X=\sum\left(a_{i} \otimes c_{i}\right) \in G(\mathcal{C})$. We call M^{X} the twisted \mathcal{C}-comodule obtained from M and X. Note that $M^{1_{A} \otimes 1_{C}}$ is exactly M with its original \mathcal{C}-comodule structure. For every $a \in A^{X}$, we have $\rho_{A, X}(a)=a_{(0)} \otimes_{A} X\left(1_{A} \otimes a_{(1)}\right)$. So A^{X} is exactly the one we have defined in section 1. We have $\left(M^{X}\right)^{Y}=M^{X Y}$ and $A^{X} \otimes_{A} M=M^{X}$, for all $X, Y \in G(\mathcal{C})$.

From now on we assume that G is any subgroup of the monoid $G(\mathcal{C})$. We have $\left(M^{X}\right)_{Y}=M_{X^{-1} Y}$ for every $X \in G$. We set $\mathcal{N}(M)=\oplus_{X \in G} M_{X}$,
so $\mathcal{N}(A)=\oplus_{X \in G} A_{X}$. Then $\mathcal{N}(A)$ is a commutative G-graded algebra called the subalgebra of conormalizing elements of A and $\mathcal{N}(M)$ is a right G-graded $\mathcal{N}(A)$-module called the submodule of conormalizing elements of M. We will denote by $\mathcal{M}_{g r-\mathcal{N}(A)}$ the category of G-graded $\mathcal{N}(A)$ modules. The morphisms of this category are the graded morphisms of degree $1_{A} \otimes 1_{C}$. Recall that $\mathcal{M}_{g r-\mathcal{N}(A)}$ is the category $\mathcal{M}_{\mathcal{N}(A)}^{k G}$ of relative right-right $(\mathcal{N}(A), k G)$-Hopf modules. For any object $N \in \mathcal{M}_{g r-\mathcal{N}(A)}$, $N \otimes_{\mathcal{N}(A)} A$ is an object of $\mathcal{M}^{\mathcal{C}}$: the A-module structure is the obvious one and the C-coaction comes from both N and A; i.e., $\rho_{N, \mathcal{C}}\left(n \otimes_{\mathcal{N}(A)} a\right)=$ $n_{X} \otimes_{\mathcal{N}(A)} a_{(0)} \otimes_{A} X\left(1_{A} \otimes a_{(1)}\right)$ for every $n \in N_{X} ; X \in G, a \in A$, where $\rho_{N, k G}(n)=n_{X} \otimes X$. We have an induction functor,

$$
G=-\otimes_{\mathcal{N}(A)} A: \mathcal{M}_{g r-\mathcal{N}(A)} \rightarrow \mathcal{M}^{\mathcal{C}} ; \quad N \mapsto N \otimes_{\mathcal{N}(A)} A
$$

To each element $X \in G$, we associate an equivalent functor

$$
(-)^{X}: \mathcal{M}^{\mathcal{C}} \rightarrow \mathcal{M}^{\mathcal{C}} ; \quad M \mapsto M^{X}
$$

which has inverse $(-)^{X^{-1}}$. We also associate to each $X \in G$ a functor

$$
(-)_{X}: \mathcal{M}^{\mathcal{C}} \rightarrow \mathcal{M}_{g r-\mathcal{N}(A)} ; \quad M \mapsto M_{X}
$$

We define the conormalizing functor

$$
\mathcal{N}(-): \mathcal{M}^{\mathcal{C}} \rightarrow \mathcal{M}_{g r-\mathcal{N}(A)}, \quad M \mapsto \mathcal{N}(M)=\oplus_{X} M_{X}
$$

Lemma 3.1. $\left(-\otimes_{\mathcal{N}(A)} A, \quad \mathcal{N}(-)\right)$ is an adjoint pair of functors; in other words, for any $M \in \mathcal{M}^{\mathcal{C}}$ and $N \in \mathcal{M}_{g r-\mathcal{N}(A)}, \operatorname{Hom}^{\mathcal{C}}\left(N \otimes_{\mathcal{N}(A)} A, M\right) \cong$ $\operatorname{Hom}_{g r-\mathcal{N}(A)}(N, \mathcal{N}(M))$.

Proof. Let N be an object of $\mathcal{M}_{g r-\mathcal{N}(A)}, M$ an object of $\mathcal{M}^{\mathcal{C}}$ and $f \in$ $\operatorname{Hom}^{\mathcal{C}}\left(N \otimes_{\mathcal{N}(A)} A, M\right)$. Let n be a homogeneous element of N of degree X, then $n \otimes_{\mathcal{N}(A)} 1_{A}$ is an element of $\left(N \otimes_{\mathcal{N}(A)} A\right)_{X}$ and $f\left(n \otimes_{\mathcal{N}(A)} 1_{A}\right) \in M_{X}$. Let us define k-linear maps

$$
\phi: \operatorname{Hom}^{\mathcal{C}}\left(N \otimes_{\mathcal{N}(A)} A, M\right) \rightarrow \operatorname{Hom}(N, \mathcal{N}(M))
$$

by $\phi(f)(n)=f\left(n \otimes_{\mathcal{N}(A)} 1_{A}\right)$ and

$$
\psi: \operatorname{Hom}_{g r-\mathcal{N}(A)}(N, \mathcal{N}(M)) \rightarrow \operatorname{Hom}\left(N \otimes_{\mathcal{N}(A)} A, M\right)
$$

by $\psi(g)\left(n \otimes_{\mathcal{N}(A)} a\right)=g(n) a$. It is easy to show that

$$
\phi(f) \in \operatorname{Hom}_{g r-\mathcal{N}(A)}(N, \mathcal{N}(M)), \quad \psi(g) \in \operatorname{Hom}^{\mathcal{C}}\left(N \otimes_{\mathcal{N}(A)} A, M\right)
$$

and that ϕ is a bijection with inverse ψ.

Let us denote by F^{\prime} the functor $-\otimes_{\mathcal{N}(A)} A$. The unit and counit of the adjunction pair $\left(F^{\prime}, \quad \mathcal{N}(-)\right)$ are the following: for $N \in \mathcal{M}_{g r-\mathcal{N}(A)}$ and $M \in \mathcal{M}^{\mathcal{C}}$:

$$
\begin{gathered}
u_{N}: N \rightarrow \mathcal{N}\left(N \otimes_{\mathcal{N}(A)} A\right), \quad u_{N}(n)=n \otimes_{\mathcal{N}(A)} 1_{A} \\
c_{M}: \mathcal{N}(M) \otimes_{\mathcal{N}(A)} A \rightarrow M, \quad c_{M}\left(m \otimes_{\mathcal{N}(A)} a\right)=m a
\end{gathered}
$$

The adjointness property means that we have

$$
\mathcal{N}\left(c_{M}\right) \circ u_{\mathcal{N}(M)}=i d_{\mathcal{N}(M)}, \quad c_{F^{\prime}(N)} \circ F^{\prime}\left(u_{N}\right)=i d_{F^{\prime}(N)}
$$

The proofs of the following results are similar to those of the preceding section and we omit them.

Lemma 3.2. The functor $\mathcal{N}(-)$ commutes with direct sums; it commutes with direct limits if ${ }^{*} \mathcal{C}$ is left noetherian.

Let A be projective in $\mathcal{M}^{\mathcal{C}}$. Then each A^{X} is projective in $\mathcal{M}^{\mathcal{C}}$. So by Lemma 1.2, the functor $(-)_{X}$ is exact for every $X \in G$. It follows that the functor $\mathcal{N}(-)$ is exact.

Lemma 3.3. Let M be a \mathcal{C}-comodule. Then
(1) $\mathcal{N}(M)(X)=\mathcal{N}\left(M^{X^{-1}}\right)$ for every $X \in G$;
(2) The k-linear $\operatorname{map} f: \mathcal{N}\left(A^{X}\right) \otimes_{\mathcal{N}(A)} A \rightarrow A^{X} ; u \otimes_{\mathcal{N}(A)} a \mapsto u a$ is an isomorphism in $\mathcal{M}^{\mathcal{C}}$.

Lemma 3.4. For every index set I,
(1) $c_{\oplus_{i \in I} A^{x_{i}^{-1}}}$ is an isomorphism;
(2) $u_{\oplus_{i \in I} \mathcal{N}(A)\left(X_{i}\right)}$ is an isomorphism;
(3) if A is projective in $\mathcal{M}^{\mathcal{C}}$, then u is a natural isomorphism; in other words, the induction functor $F^{\prime}=(-) \otimes_{\mathcal{N}(A)} A$ is fully faithful.

Theorem 3.5. For $P \in \mathcal{M}_{g r-\mathcal{N}(A)}$, we consider the following statements.
(1) $P \otimes_{\mathcal{N}(A)} A$ is projective in $\mathcal{M}^{\mathcal{C}}$ and u_{P} is injective;
(2) P is projective as a graded $\mathcal{N}(A)$-module;
(3) $P \otimes_{\mathcal{N}(A)} A$ is a direct summand in $\mathcal{M}^{\mathcal{C}}$ of some $\oplus_{i \in I} A^{X_{i}^{-1}}$, and u_{P} is bijective;
(4) there exists $Q \in \mathcal{M}^{\mathcal{C}}$ such that Q is a direct summand of some $\oplus_{i \in I} A^{X_{i}^{-1}}$, and $P \cong \mathcal{N}(Q)$ in $\mathcal{M}_{g r-\mathcal{N}(A)}$;
(5) $P \otimes_{\mathcal{N}(A)} A$ is a direct summand in $\mathcal{M}^{\mathcal{C}}$ of some $\oplus_{i \in I} A^{X_{i}^{-1}}$.

Then $(1) \Rightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4) \Rightarrow$ (5).
If A is projective in $\mathcal{M}^{\mathcal{C}}$, then (5) $\Rightarrow(3) \Rightarrow(1)$.

Theorem 3.6. Assume that ${ }^{*} \mathcal{C}$ is left noetherian. For $P \in \mathcal{M}_{\text {gr- } \mathcal{N}(A)}$, the following assertions are equivalent.
(1) P is flat as a graded $\mathcal{N}(A)$-module;
(2) $P \otimes_{\mathcal{N}(A)} A=\underset{\longrightarrow}{\lim } Q_{i}$, where $Q_{i} \cong \oplus_{j \leq n_{i}} A^{X_{i j}^{-1}}$ in $\mathcal{M}^{\mathcal{C}}$ for some positive integer n_{i}, and u_{P} is bijective;
(3) $P \otimes_{\mathcal{N}(A)} A=\underset{\longrightarrow}{\lim } Q_{i}$, where $Q_{i} \in \mathcal{M}^{\mathcal{C}}$ is a direct summand of some $\oplus_{j \in I_{i}} A^{X_{i j}^{-1}}$ in $\mathcal{M}^{\mathcal{C}}$, and u_{P} is bijective;
(4) there exists $Q=\underset{\lim }{ } Q_{i} \in \mathcal{M}^{\mathcal{C}}$, such that $Q_{i} \cong \oplus_{j \leq n_{i}} A^{X_{i j}^{-1}}$ for some positive integer n_{i} and $\mathcal{N}(Q) \cong P$ in $\mathcal{M}_{g r-\mathcal{N}(A)}$;
(5) there exists $Q=\underset{\longrightarrow}{\lim } Q_{i} \in \mathcal{M}^{\mathcal{C}}$, such that Q_{i} is a direct summand of some $\oplus_{j \in I_{i}} A^{X_{i j}^{-1}}$ in $\overrightarrow{\mathcal{M}^{\mathcal{C}}}$, and $\mathcal{N}(Q) \cong P$ in $\mathcal{M}_{g r-\mathcal{N}(A)}$.

If A is projective in $\mathcal{M}^{\mathcal{C}}$, these conditions are also equivalent to conditions (2) and (3), without the assumption that u_{P} is bijective.

We conclude the paper by the following remarks:
Remarks 3.7. By [8, Propostion 2.3], if C is a finite-dimensional Hopf algebra, then $G(A \otimes C)$ is a group. If $G(A \otimes C)=\{1 \otimes c ; \quad c \in G(C)\}$, then $G(A \otimes C)$ is obviously a group isomorphic to $G(C)$. In this case, the conormal elements and the semi-coinvariant elements are exactly the same. By [5, Proposition 5.1], this can happen in the following situation: k is algebraically closed, A is a finitely generated normal k-algebra and C is the affine coordinate ring of a connected algebraic group \mathcal{G} acting rationally on A. More precisely, in this situation, we have

$$
G(A \otimes C)=\{1 \otimes \phi ; \quad \phi \in G(C)=\chi(\mathcal{G})\}
$$

where $\chi(\mathcal{G})$ is the group of characters of \mathcal{G}.

References

[1] T. Brzeziński, The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois properties, Algebra and representation theory 5(4), 389-410, (2002).
[2] T. Brzeziński and R. Wisbauer, "Corings and comodules ", London Math. Soc. Lect. Note Ser. 309, Cambridge University Press, Cambridge, 2003.
[3] S. Caenepeel, G. Militaru and S. Zhu, "Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations", Lecture notes in Mathematics, Volume 1787, Springer Verlag, Berlin, 2002.
[4] S. Caenepeel and T. Guédénon, Projectivity of a relative Hopf module over the subring of coinvariants, " Hopf Algebras Chicago 2002", Lect. Notes in Pure and Appl. Math. 237, Dekker, New York 2004, 97-108.
[5] S. Caenepeel and T. Guédénon, The relative Picard groups of a comodule algebra and Harrison cohomolgy, Proceedings of the Edinburgh Math. Soc. 48, (2005), 557-569.
[6] S. Caenepeel and T. Guédénon, Projectivity and flatness over the endomorphism ring of a finitely generated module, Int. J. Math. Math. Sci. 30, (2004), 1581-1588.
[7] J. J. Garcia and A. Del Rio, On flatness and projectivity of a ring as a module over a fixed subring, Math. Scand. $76 n^{\circ} 2$, (1995), 179-193.
[8] T. Guédénon, Picard groups of rings of coinvariants, Algebras and Representation Theory 11, (2008), 25-42.
[9] T. Guédénon, Projectivity and flatness over the endomorphism ring of a finitely generated comodule, Beitrage zur Algebra und Geometrie $49 n^{\circ} 2$, (2008), 399-408.
[10] T. Guédénon, Projectivity and flatness over the colour endomorphism ring of a finitely generated graded comodule, Beitrage zur Algebra und Geometrie $49 n^{\circ} 2$, (2008), 399-408.
[11] S. Montgomery, "Hopf algebra and their actions on rings", Providence, AMS, 1993.
[12] C. Nastasescu and F. Van Oystaeyen, "Methods of graded rings", Lecture Notes Math., Springer, 2004.
[13] F. Van Oystaeyen and Y. Zhang, Induction functors and stable Clifford theory for Hopf modules, J. Pure Appl. Algebra 107 (1996), 337-351.

CONTACT INFORMATION

T. Guédénon
110, Penworth Drive S.E., Calgary, AB, Canada T2A 5H4 E-Mail: guedenth@yahoo.ca

Received by the editors: 09.09.2009
and in final form 09.09.2009.

