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Partitions of groups and matroids
into independent subsets

Taras Banakh, Igor Protasov

ABSTRACT. Can the set R\ {0} be covered by countably
many linearly (algebraically) independent subsets over the field Q?
We use a matroid approach to show that an answer is “Yes” under
the Continuum Hypothesis, and “No” under its negation.

In this paper we discuss partitions of groups and other algebraic objects
into independent subsets. The notion of an independent set can be defined
for any hull operator.

By a hull operator on a set X we understand any function (-) : Px —
Px defined on the power-set Px of X such that A C (A) C (B) for any
subsets A C B of X.

A subset A C X is called independent (with respect to the hull operator
(-))ifa ¢ (A\ {a}) for any point a € A.

We shall say that a hull operator (-) : Px — Px on a set X

e is idempotent if ((A)) = (A) for each subset A C X

e has finite supports if for each A C X and a € (A) there is a finite
subset F' C A with a € (F);

e has the MacLane-Steinitz exchange property if for any subset A C X
and points z,y € X \ (A) the inclusion = € (AU {y}) is equivalent
toy € (AU{x});

By a matroid we understand a pair (X, (-)) consisting of a set X and
an idempotent hull operator () : Px — Px that has finite supports and
the MacLane-Steinitz exchange property. For finite X our definition of
matroid argees with the classical one, see 2, 1.4.4] or [4, p. 270].

2000 Mathematics Subject Classification: 05B35, 05A18.
Key words and phrases: matroid, partition, independent subset.



2 PARTITIONS OF MATROIDS INTO INDEPENDENT SUBSETS

Theorem 1. Let x be an infinite cardinal, X be a set of cardinality
| X| = kT and (-) : Px — Px be a hull operator with finite supports and
the MacLane-Steinitz exchange property. If |(F) \ (@)| < k for each finite
subset F' C X, then the set X \ (&) can be covered by k many independent
subsets.

Proof. 1f | X \ (&)| < k, then X \ (&) can be decomposed into < xk many
singletons (which are independent sets). So, we assume that | X\ (@)| = .

The finite support property of the hull operator and Zorn’s Lemma
imply the existence of a maximal independent subset A C X. We claim
that X = (A). Assuming the opposite, we can find a point z € X \ (A) and
consider the set AU {z} which is dependent as A is maximal independent.
Consequently, there is a point @ € AU{z} such that a € ((AU{z})\ {a}).
This point a is not equal to x as x ¢ (A). Let B = A\ {a}. Since A
is independent, a ¢ (A \ {a}) = (B). Since the hull operator (-) has
the MacLane-Steinitz exchange property and z,a ¢ (B), the inclusion
a € (BU{zx}) implies x € (BU{a}) = (A), which contradicts the choice
of z. Therefore X = (A).

Claim 1. |[(B) \ (@)| < max{|B|,k} for any subset B C X.
Proof. Let [B]=* denote the family of finite subsets of B. Since the hull

operator (-) has finite supports, (B) = {Jpcp)<v (F). By our assumption,
|(F) \ (9)] < k for each finite subset F' C X. Consequently,

BN®I=| U (@)=
Fe[B]<«

Y KE)\(2)] < max{, |[B]*“|} < max{x, |B]}.

Fe[B|<w

O]

By Claim 1, k™ = | X \ (@)| = [(A) \ (©)| < max{k, |A|} and thus
|A| = kT. Fix an injective enumeration A = {as : @ < K7 }.
For every ordinal o < k™, put

Ay ={ay:v<a} and X, = (Aat1) \ (Aa).
Then X \ (@) = U<+ Xa and for every o < w7
Xal = [{Aas1) \ {Aa)] < [(Aasr) \ (2] <

according to Claim 1. For every o < k™ fix an injection y, : Xo — & and
define a function y : X \ (&) — & letting x| X4 = X for all a < x™. For
every A < k consider the set Zy = x~1()\). We claim that {Z) : A < k} is
a desired partition into x many independent subsets.
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Assuming that some set Z) is dependent, we can find a finite dependent
subset F' C Z). We can assume that F'is a minimal dependent subset.
Since F' is dependent, there is an element a € F' such that a € (F'\ {a}).
We claim that x € (F \ {z}) for any element x € F. This is clear if
r = a. So, we assume that = # a. Consider the set E = F \ {z,a}.
Since F' is minimal dependent, the subsets £ U {a} and E U {z} are
independent and thus a,z ¢ (E). Since a € (F'\ {a}) = (E U {z}) the
MacLane-Steinitz exchange property of the hull operator (-) guarantees
that x € (E U {a}) = (F\ {z}).

Since x is injective on each subset X, there exist a numeration

F = {f1,...,fa} and ordinals a; < ay < ... < a, < k" such that
fieYa,. ...fn€Yy, Then f, & ({f1,..., fa=1}) = (F'\ {fn}), which
is a desired contradiction. O

Corollary 1. Let k be an infinite cardinal, X \ {0} be a vector space
over a field F such that |F| <  and dim X = k™. Then X \ {0} can be
partitioned in K linearly independent subsets.

Corollary 2. Let k be an infinite cardinal, X \ {0} be an extension of a
field F such that |F| < k and | X| = k*. Then X \ {0} can be partitioned
in Kk subsets algebraically independent over F.

Corollary 3. Let k be an infinite cardinal, K, .+ be a complete graph with
k™t many vertices. Then there exists an edge coloring of K.+ in k colors
with no monochrome cycles.

Now we consider independent subsets in groups. We define a subset A of
a group G to be independent if A contains no point a € A witha € (A\{a})
where (A\ {a}) is the subgroup of G generated by the set A\ {a}. Thus A
is independent with respect to the hull operator (-) : P — P assigning
to each subset B C G the subgroup (B) generated by B. This hull operator
is idempotent and has finite supports, but in general fails to have the
MacLane-Steinitz exchange property. Because of that, Theorem 1 is not
applicable to the following open problem.

Problem 1. Let G be an (abelian) group G of cardinality |G| = Ny with
neutral element {e}. Can G\{e} be covered by countably many independent
subsets?

Let us prove that for groups of cardinality > Ny this problem has a
negative solution.

Theorem 2. Let k be an infinite cardinal and G be a group of cardinality
|G| > k*. Then, for every coloring x : G\ {e} — k, there exists a
dependent monochrome subset A of G of cardinality |A| = 4.
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We shall need a simple combinatorial lemma.

Lemma 1. Let A > 1 be a cardinal and k be an infinite cardinal. Let
X,Y be sets of cardinality | X| = x* and |Y| > (k)*. For any k-coloring
X : X XY — k there are subsets A C X and Z CY such that |A| = A,
|Z| > (kT)* and the set A x Z is monochrome.

Proof. Since | X| > &, for every y € Y, there exist a subset A(y) C X of
cardinality |A(y)| = A such that A(y) x {y} is monochrome and hence
X(A(y) x {y}) = {X(v)} for some color X(y). Now consider the function
f:Y = [X]* x k defined by

Since |[X] x k] < (K1)} < |Y]| there exists a pair (4,a) € [X]* x &
such that the preimage Z = f~1(A, @) has cardinality |Z| > (x*)*. Then
A x Z is a required monochrome rectangle. OJ

Proof of Theorem 2. Since |G| > k*, we can choose two sets X,Y C
G\ {e} of cardinality |X| = kT and |Y| > x* such that Y N X! = (.
Given any k-coloring x : G\ {e} — &, consider the coloring x : X XY — &
defined by x(z,y) = x(zy). By Lemma 1, there are a 2-element set
A = {a,b} C X and a subset Z C X of cardinality |Z| > k* such
that the set A x Z is monochrome. Choose any point x € Z and any
point y € Z \ {a~'bz,b"'ax}. Then the set B = {az,bxr,ay,by} C G has
cardinality |B| = 4 and is monochrome with respect to the coloring x.
Since az = ay(by) bz, the set B is dependent. O

Next, we consider covers of abelian groups by linearly independent
subsets. Following |1, §16] or [3, §4.2], we call a subset A of an abelian group
G linearly independent if for any pairwise distinct points aq,...,a, € A
and integer numbers Aq,..., A\, € Z the equality

Aay+ -+ A\a, =0

implies Ma; = -+ = Apa, = 0.
Observe that a subset A of an abelian group G is linearly independent
if and only if it is independent with respect to the hull operator -] : Pg —

P assigning to each subset B C G the subset
[B]={0}U{z e G:IneN nz e (B)\{0}}.

The hull operator [-] is idempotent and has finite supports and the
MacLane-Steinitz exchange property. So, the pair (G, [-]) is a matroid.
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Since (A) C [A] for any A C X, each independent subset of G is
linearly independent. On the other hand, the subset {2, 3} of the group of
integers Z is independent but not linearly independent.

For an abelian group G and a natural number n € N consider the
subgroup

Gn]| ={x € G :nxz = 0}.

The union G[N] = {J,,cy G[n] is called the torsion part of G.

Theorem 3. Let k be an infinite cardinal and G be an abelian group.
The set G\ {0} can be covered by k many linearly independent subsets if
and only if |G| < k™t and either |G|N]| < k or G = G[p] for some prime
number p.

Proof. First we prove the “if” part. Assume that |G| < kT and either
|GIN]| < k or G[p] = G for some prime number p.

If |G| < kK, then G\ {0} decomposes into |G\ {0}| < x many singletons,
which are linearly independent. So, we assume that |G| = k™.

Consider the hull operator [-] : Pg — Pg turning G into a matroid
whose independent sets coincide with linearly indepenent subsets of G.
Theorem 1 will imply that G \ {0} can be covered by x many linearly
independent subsets as soon as we prove that for each finite subset F' C GG
the hull [F] has cardinality |[F]| < k.

First we consider the case |G[N]| < k. For every n € N consider the
homomorphism n : G — G, n : x — nx, whose kernel coincides with
the subgroup G[n] that has cardinality |G[n]| < |G|N]| < k. Taking into
account that |(F)] < Ny and

[F1={0yu [Jn ' (F)\{0}) € [ n (),

neN neN

we conclude that

IF <) I (EDI< Y IGR)] - [(F)] < s

neN neN

Next, assume that G = G|[p] for a prime number p. Then G is a linear
space over the p-element field IF, and by Corollary 1, G' can be covered by
x many linearly independent subsets.

To prove the “only if” part, assume that G\ {0} can be covered by x
many linearly independent subsets. By Theorem 2, |G| < x*. It remains
to prove that |G[N]| > x implies G[p] = G for a prime number p. For
every prime number p, consider the subgroup G[p™] = ey G [p*]. By [3,
4.1.1], GIN] = EBH G[p*>] where II denotes the set of all prime numbers.

pe
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Since |G[N]| = kT, there exists a prime number p such that |G[p>]| = ™
and hence |G[p"]| = k* for some n € N. We can assume that n is the
smallest number with this property, i.e., |G[p" ]| < x*.

We claim that G = G[p"]. Otherwise, we can choose a point a €
G \ G[p"]. By our assumption, G \ {0} can be covered by x many linearly
independent subsets. The coset a + G[p"] has cardinality ™ and hence
contains two distinct points a + =, a + y that lie in a linearly independent
subset of G. On the other hand, the set {a+x,a+y} is linearly dependent
since p"(a + x) —p"(a+y) = 0 but p"(a + z) = p"a # 0 # p"(a + y).
This contradiction shows that G = G[p"], which means that the group
G has bounded height and then by Priifer-Baer Theorem 4.3.5 in [3]|, G
is a direct sum @,.,+ H, of cyclic p-groups of order |H,| < p*. Each
group H, contains a cyclic subgroup C,, of order p. Then the subgroup
BperntCo C G[p] has cardinality T and hence p™ = p by the choice of n.
Therefore, G = G[p*] = G[p]. O

Theorem 3 implies that for the direct sum G = &Y' Cy R; many
cyclic groups of order 4 the set G \ {0} cannot be covered by countably
many linearly independent sets. The same concerns the group @™ Cg =
(BN Cy) @ (DM C3).

Problem 2. Can the groups & Cy and &N Cq with removed zeros be
covered by countably many independent sets.

Corollaries 1, 2 and Theorem 2 imply the following interesting equiva-
lence.

Theorem 4. The following statements are equivalent:

1. For the linear space R over the field Q there is a partition of R\ {0}
into countably many linearly independent subsets over Q.

2. For the extension R of the field Q there is a partition of R\ {0} into
countably many algebraically independent subsets over Q.

3. For the abelian group R there is a partition of R\ {0} into countably
many independent subsets.

4. The Continuum Hypothesis is true.

Remark 1. Let «, i be infinite cardinals such that k™ < p. It follows from
Lemma 1 that for every x-coloring of the set of edges of the complete graph
K, there exists a monochrome cycle of length 4. Moreover, S. Slobodianyuk
observed that the proof of Lemma 1 gives a monochrome complete bipartite



T. BANAKH, I. PROTASOV 7

subgraph K ,, provided that A < " and (k7)* < cfu. In particular, there
exists a monochrome cycle of any even length.

On the other hand, for the complete graph Ko« its set of vertice V = 2"
can be identified with the set of all functions f : x — {0, 1}, which allows
us to define a coloring x : [V]? — & by the rule

x({f,g}) = min{a : f(a) # g(a)}.

For this coloring, K5~ has no monochrome cycles of odd length.
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