Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 9 (2010). Number 2. pp. 106 — 112

© Journal “Algebra and Discrete Mathematics”
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ABSTRACT. A subset T of a group G with the identity e is
called k-thin (k € N) if |[ANgA| <k, |AN Ag| < k for every g € G,
g # e. We show that every infinite group G can be generated by
some 2-thin subset. Moreover, if G is either Abelian or a torsion
group without elements of order 2, then there exists a 1-thin system
of generators of G. For every infinite group G, there exist a 2-thin
subset X such that G = XX ' UX'X, and a 4-thin subset Y
such that G =YY L.

For a group G we denote by Fg the family of all finite subsets of G.
A subset A of an infinite group G with the identity e is said to be

left (right) large if there exists F' € F¢ such that G = FA (G = AF);
large if A is left and right large;

left (right) small if G\ FA (G \ AF) is left (right) large for every
F e Fg;

small if A is left and right small;

left (right) P-small if there exists an injective sequence (g )new in
G such that the subsets {g, A : n € w} ({Agp : n € w}) are pairwise
disjoint;

P-small if A is left and right P-small;

left (right) k-thin for k € Nif |gANA| < k (JAgN A| < k) for every
gE€G. g# e

k-thin, if A is left and right k-thin.
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For the relationships between these types of subsets see [3]. In par-
ticular, every k-thin subset is small, but a small subset could be much
more big than every k-thin subsets. For example, every k-thin subset T is
a universal zero, i.e. u(7") = 0 for every Banach measure p on G. On the
other hand, for every countable amenable group G and every £ > 0, there
exist a small subset S and Banach measure p on G such that p(S) > 1—«¢.
We note also that a subset A is left k-thin if and only if A~! is right
k-thin.

Answering a question from [4], I. V. Protasov [5] (see also [6, Theorem
13.1]) proved that every infinite group G can be generated by some small
subset. Moreover, there exists a small and P-small generating subset of G
[2].

In this paper we show (Theorem 1) that every infinite group G can
be generated by some 2-thin subset. Moreover, if G is either Abelian or
torsion group with no elements of order 2, then G can be generated by
some 1-thin subset. By Theorem 2, for every infinite group G, there exists
a 2-thin subset X such that G = XX ! U X~ 'X. Since every k-thin
subset is small, this is an answer to the Question 13.2 from [6]. We show
also that, in every infinite group G, there is a 4-thin subset X such that
G=XX"1

Given a subset X of a group G, we denote by (X) the subgroup of G
generated by X.

Theorem 1. Every infinite group G has a 2-thin system of generators.
Moreover, if G has no elements of order 2 and G is either Abelian or a
torsion group, then there exists a 1-thin system of generators of G.

Proof. Let |G| = k. We construct inductively an increasing system {G, :
a < k} of subgroups of G' and a subset X = {z, : @ < k} such that

(1) GO = <€>, G = Ua</§ Ga?
(i) Go = Ua<,8 G for every limit ordinal § < k;
(i) Gat1 = (Ga,zq) for every a < k.

Clearly, G = (X). We suppose that X is not left 2-thin and choose
g € G, g # e, distinct ordinals oy, ag, a3 such that gz, , 92a,, 90, € X.
Let gxo, = 23,, 9Tay, = Tp,, gTas = Tp,. By the pigeonhole principle,
there exist distinct k,1 € {1,2,3} such that either ay, < S, oy < 5 or
ag > Br, ag > B;. Let oy, < Br, oy < B;. Then xgkxgkl € Gp,+1 \ Gﬁk’
xglx;ll € Gg41\ Gp and g = zg ., = xglac;ll, which is impossible
because (Gg,+1\ Gg,) N (Gg41 \ Gp,) = @. Hence, X is left 2-thin. The
same arguments show that X is right 2-thin.
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To prove the second statement, we assume that the constructed above
subset X is not left 1-thin. Then there exist distinct o, 5 < k and g # e
such that gz,,grg € X. Let grn = x4, grg = 3. We choose the
minimal A < s such that «a, 3,a/,3 < A. Clearly, A = v + 1 for some
v < k. Replacing g by g~ !, we may suppose that o = v so 2, € Gri1\G,.
Since x4 = g and o’ < a then g € Go41 \ Go. It follows that gr8 = Tq
and

(*) g°rs = zar;

(**) 22 = zpxp if G is Abelian.
Let G be a torsion group with no elements or order 2. Then (*) is
impossible because g € Goy1 \ Go and g2 € G,. It follows that X is left
1-thin. The same arguments show that X is right 1-thin.
Let G be an Abelian group with no elements of order 2. We choose a
system {G,, : @ < Kk} of subgroups of G satisfying (i), (ii), (iii) and

(iv) Gat1/Ga = Z or Goy1/Gq = Zy for some prime number p.

We construct X = {x, : a < s} inductively by the following rule. If
Got1/Go is not isomorphic to Zg, we choose an arbitrary element z, €
Goi1\ Ga. Let Gay1/Go ~ Zs and Goy1 = (Ga,ya). If Y2 # zoxg for
all distinct o/, 3 < a, we put x4 = yo. If y2 = zoxg for some distinct
o, f<a,B<a, weput z, = yaxgl. Then 22 = xa/xgl. If 22 = zonap
for some distinct o”, 8’ < a, ' < o then xa/xgl = zorap. Since f < o
and 3 < o”, we have o/ = o’. Hence, xgl =, but it is impossible, so
22 # xonxp for all distinet o, 8/ < . If X is not 1-thin, by (**), we get
a contradiction with construction of X. O

Question 1. Let G be an infinite group with no elements of order 2. Does
there exist a 1-thin system of generators of G7

Theorem 2. For every infinite group G, there exists a 2-thin subset X
such that G = XX 1U X~ 1X.

Proof. Let |G| = K, {ga : @ < K} be a numeration of G. We construct
inductively a family {X, : @ < k} of 2-thin subsets of G of the form
X, = {z5,y825 : B < a} so that {gs : B < a} € X,X;! and put
X =Uper, Xa

We put Xy = {e, g0} and assume that we have chosen the 2-thin
subsets X, for all & < 7. Let v = 4 1. We find the first element ¢ in the
numeration {g, : @ < k} such that g ¢ XBX/gl U Xngg and put ¥z = g.
To choose xg, we use the following observation.
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Let A be a subset of G, g € G. If |[A| < k and g ¢ A then |{z €
G : 27 'gr ¢ A} = k. Indeed, |[{z7 gz : * € G}| = |G : Zg|, where
Zy={z € G:27 gz = g}, and either |Z,| = k or |G : Z,4| = k.

We choose x5 to satisfy the following conditions

(i) w5 ypes & X5 Xp;
(ii) {xﬁ,ygxﬂ} ﬂXﬁXﬁ_lXﬁ = O,

(i) {ys,y5" Hap,yprs} N Xp = 2.

Suppose that Xgy1 = XgU {zg,yszs} is not left 2-thin and choose
g € G, g # e and distinct a,b,c € Xgy1 such that ga,gb,gc € Xgy1.
If g € XgXEl then, by (ii) and the choice of yg, {a,b,c} C Xg and
{ga,gb,gc} C Xpg which is impossible because Xg is left 2-thin. Let
g ¢ XBXﬁ_l. Replacing if necessary a,b, ¢ to ga, gb, gc and g to ¢g~', we
may suppose that a = x5, b = ygag, c € Xg. If ga € X5 and gb € Xp
then X,gxgl N Xﬁwglyﬁ_l # & so we get a contradiction with (i). Thus,
9 € {ys,y5'} and gc € {wg,ypap}. Hence, {yg, y5 ' }0{ws, ypas} X' # @
and we get a contradiction with (iii).

Suppose that Xg is not right 2-thin and choose g € G, g # e and
distinct a,b,c € X1 such that ag,bg,cg € Xgi1. Let g € XB_IXB. If
either a = x5 or a = ygxg then, by (ii), either g = ajglygacg or g =
xglyglxﬁ, and in both cases we get a contradiction with (i). Hence,
a,b,c € X and ag, bg, cg € Xg so Xg is not right 2-thin. Let g ¢ Xﬁ_ng.
Replacing if necessary a, b, ¢ to ag, be, cg and g to g~', we may suppose
that a = x5, b = ygag, c € Xg. If ag € Xg and bg € Xg then yg € XgX[;l
contradicting the choice of yz. Thus, we have

{zs,yszptg N {z8,Ys28} # 9,
XpgN{xg, yprs} # 9.
It follows that
{25, yps} Hap, ysrp} N X5 {ag, ypzp} # 2,

SO {yﬁ,ygl,e}{xg,yﬁxg} N X3 # @ and we get a contradiction with (i)
and (ii).
U

Corollary 1. For every infinite Abelian group G, there exists a 2-thin
subset X such that G = XX 1.
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Remark 1. Let a group G be defined to have a small square roots if for
any subset A C G with |A| < |G| the set VA = {x € G : 22 € A} has
cardinality |v/A| < |G|. Taras Banakh proved that if an infinite group G
with identity e has small square roots, then it contains a 1-thin subset X
such that G = \/@U XX~1UX~1X. By this theorem, for every Abelian
group G with no elements of order 2 there exists a 1-thin subset X such
that G = X X1

By the Chou’s lemma [1], for every infinite group G there exists a
4-thin subset X such that |X| = |G|.

Corollary 2. For every infinite group G, there exists a 2-thin subset X
such that | X| = |G]|.

Theorem 3. For every infinite group G, there exists a 4-thin subset X
such that G = XX 1.

Proof. Let |G| = K, {ga : @ < Kk} be a numeration of G. We construct
inductively a family {X, : o < k} of 4-thin subsets of G of the form
Xo ={x8,yp2p : f < a}. Also we demand the fulfilment of the condition
| Xo N Xag| <2forall g¢ X, X, 1 Observe that {ys: 8 < a} C Xo X, !
and put X = J, ., Xa-

We put Xy = {e, go} and assume that we have chosen subsets X, for
all & < y such that

(1) | XaNgXa| <4forall ge G\ {e};
(2) |Xa N Xagl <2 for g ¢ Xo X' U{e};
(3) |XaNXag| <4forge Xo X1\ {e}.

If v is a limit ordinal, we put X, = Ua<7 Xo. Let v = 8+ 1. We find the

first element g in the numeration {g, : & < £} such that g ¢ X3X, L and
put yg = g. Then we choose xz to satisfy the following conditions

(i) {xg,yprs} N XpX5' X5 = ;
(i) {e,yp, vz Has, yszsHe,vsy5' ) N Xp = 25

(iii) @ yszs ¢ (X5 X5 UXsX51)\ {ys. 05}

We put Xgi1 = Xg U {x3,ysxs}. Now it is necessary to show the
fulfilment of (1)-(3) for &« = B+ 1. First we show that | Xz NgXpgy1]| <4
for all g € G'\ {e}. Since Xg1 = X5 U {xg,yprs}, for every g € G\ {e},
we have

Xpp1 NgXpy = (XU {zg,ypzs}) N (9X U g{rs ysrs}) =
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= (XpNgXp)UY 1 UYoUYs3,

where Y1 = XgN{gzs, gysxs}, Yo = {xs, ysxp}NgXp, Y3 = {xg, ygrs} N
{923, 9ysx}. We consider two cases:

Case 1: g € XgX ;" By (i), Y1 = @ and Y = @. Since ys ¢ X5X ',
Y3 = @. Then X 1NgXg11 = XgNgXg and, by the inductive assumption,
[ X1 N gXpa| <4

Case 2: g ¢ XpX5'. Then XgNgXz = @. Since Y1 UYa U Y3 C
{z8,ysws, 98, gysas}, we have [Xg11 NgXppi[ =1 UY2 UY3] < 4.

Now we show that |Xgi1 N Xgy1g9] < 2 for all g ¢ XBHXE-L and
| X541 N Xgr19| < 4 forall g e G\ {e}. Since Xg11 = XgU{zs,ys25},
for every g € G \ {e}, we have

Xp11 N Xpgr19 = (XgU{zg,yszs}) N (Xgg U{rsg, ysrsg}) =
= (XpNXpgg)UZ1UZyU Z5 U ZY,

where 21 = {9, yszpg} N X, Zo = {ag, ysrp} N Xpg, Z3 = {xs} N
{yszsg}, Z8 = {yszs} N{xsg}. We consider three cases.

Case 1: g € XgX[;l. By (i), Z1 = @ and Zs = @. Since g € X/gXﬁ_1
and yg ¢ XﬁXrgl then ¢ € (Xng/g U XﬁX[;l) \ {yﬁ,ygl}. So, by (iii),
Zy = @ and Z{ = @. Hence, Xp41 N Xp119 = Xp N Xpg and required
inequalities hold by inductive hypothesis.

Case 2: g € {yﬁ,ygl}. By (ii), Z1 = @ and Z, = @. Hence, Xg411 N
Xp119 = (XN Xpg) U Z5 U ZY. Since g ¢ XX ;" then [ X5 N Xpg| < 2.
Since |Z5] < 1 and |Z3| < 1 then |X41 N Xgi19] < 4. Observe that
g€ X5+1X5+11, so we do not need to check the condition (2).

Case 3: g ¢ X@Xﬁ_l U {yﬁ,y/gl}. Since g ¢ XﬁXle then, by inductive
hypothesis, | X5N Xpgg| < 2. Since yg ¢ XX ;" then |Z;| < 1and [Zo] < 1.
We consider two subcases.

Subcase 8.1: g € X3'Xg. By (i), Z1 = @ and Z, = @. By (iii), 2} = @
and Z§ = @. Hence, X541 N X419 = XgN Xgg and required inequalities
hold by inductive hypothesis.

Subcase 3.2: g ¢ Xngﬁ. Then XN Xgg = 9, so Xg1 N Xgr19 =
ZyUZy U ZiJZY. By (ii), if Z4 # @ then Zy = @, and if Z{ # & then
Z, = @. Taking into account the inequalities |Z;| < 1, |Z3| < 1, |Z4] < 1
and |Z4§| < 1 we obtain [Xg41 N Xgy19] < 2.

So the inequalities (1)—(3) hold for a = S + 1. Note that yz €
X5+1X§+11. We put X = {J,.,. Xa and observe that, by the choice of yg,
G = XX ! and X is 4-thin.

]

Question 2. Which is a minimal number kg, such that, for every infinite
group G, there exists a k;,-thin subset X such that G = XX ~1?
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Question 3. Which is a minimal number kj;, such that, for every infinite
group G, there exists a left kj-thin subset X such that G = XX ~1?

An infinite group G of period 2 shows that ky, > 2, kpp > 2. By
Theorem 3, ki, < 4, kyp < 4.
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